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Abstract: Primary congenital glaucoma (PCG) occurs in children due to developmental abnormalities
in the trabecular meshwork and anterior chamber angle. Previous studies have implicated rare
variants in CYP1B1, LTBP2, and TEK and their interactions with MYOC, FOXC1, and PRSS556 in
the genetic complexity and clinical heterogeneity of PCG. Given that some of the gene-encoded
proteins are localized in the centrosomes (MYOC) and perform ciliary functions (TEK), we explored
the involvement of a core centrosomal protein, CEP164, which is responsible for ocular development
and regulation of intraocular pressure. Deep sequencing of CEP164 in a PCG cohort devoid of
homozygous mutations in candidate genes (n = 298) and controls (n = 1757) revealed CEP164 rare
pathogenic variants in 16 cases (5.36%). Co-occurrences of heterozygous alleles of CEP164 with other
genes were seen in four cases (1.34%), and a physical interaction was noted for CEP164 and CYP1B1
in HEK293 cells. Cases of co-harboring alleles of the CEP164 and other genes had a poor prognosis
compared with those with a single copy of the CEP164 allele. We also screened INPP5E, which
synergistically interacts with CEP164, and observed a lower frequency of pathogenic variants (0.67%).
Our data suggest the potential involvements of CEP164 and INPP5E and the yet unexplored cilia-
centrosomal functions in PCG pathogenesis.

Keywords: primary congenital glaucoma; anterior segment; intraocular pressure; centrosome; cilia;
gene; CEP164; INPP5E; CYP1B1

1. Introduction

Primary congenital glaucoma (PCG) is a rare autosomal recessive disease in chil-
dren that occurs due to developmental defects in the trabecular meshwork (TM) and
anterior chamber angle with a corresponding rise in intraocular pressure (IOP), optic
nerve damage, and loss of vision [1,2]. PCG is clinically and genetically heterogeneous,
and its molecular etiology is poorly understood [3]. Primarily, pathogenic variants in
cytochrome P450 family 1 subfamily B member 1 (CYP1B1) [4-6], latent transforming
growth factor beta binding protein 2 (LTBP2) [7,8], and TEK receptor tyrosine kinase
(TEK) [9,10] have been implicated in PCG, but collectively they do not explain the entire
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molecular bases of this disease [3,11]. Additionally, variants in other genes in the ante-
rior segment, cell signaling, extracellular matrix, and so on have been identified through
GWAS (genome-wide association study) and deep sequencing approaches, but their specific
role(s) in PCG pathogenesis remains elusive [3,12]. Variants in other genes comprising
myocilin (MYOC) [13], forkhead box C1 (FOXCI) [14], angiopoietin 1 (ANGPT1) [15],
optineurin (OPTN) [16], thrombospondin 1 (THBS1) [17], guanylate cyclase activator
1C (GUCAIC) [18], procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) [19], col-
lagen type I alpha 1 chain (COL1A1) [20], forkhead box C2 (FOXC2), and paired like
homeodomain 2 (PITX2) [21], neurotrophin 4 (NTF4) [22], C3, and PZP like alpha-2-
macroglobulin domain containing 8 (CPAMDS) [23], sushi, von Willebrand factor type A,
EGF, and pentraxin domain containing 1 (SVEP1) [24] and serine protease 56 (PRSS556) [25]
are reported to be infrequent causes of PCG.

Centrosomal and ciliary genes play critical roles in various developmental anomalies in
the anterior segment of the eye [26-28]. A juvenile open-angle glaucoma (JOAG)-associated
gene, MYOC, localizes in the centrosome and the cytoplasmic filaments of TM cells and, to
a lesser degree, in the trabecular beams and extracellular matrices in the juxta canalicular
region of the TM [29,30]. It also co-localizes with cytochrome c oxidase subunit II of the
mitochondria in the TM cells [29]. MYOC is also involved in PCG through its digenic
interactions with CYP1B1 [13].

The TM of the eye harbors primary cilia that help in regulating IOP by mechanosensation [31].
Elevated IOP causes the shortening of the cilia along with expressions of pro-inflammatory
cytokines [31,32]. Thus, ciliary dysfunction could be an important contributor to the
pathophysiology of glaucoma [33,34]. Earlier, we demonstrated the potential role of a
ciliary gene TEK in PCG pathogenesis based on its genetic and physical interactions with
CYP1B1 [10]. TEK principally localizes to the primary cilia of the surface epithelium of the
ovary, bursa, and extra-ovarian rete ducts and to the plasma membranes of ovarian theca
and endothelial cells [35]. It has also been localized to the caveolae enriched with various
signaling molecules [36] and in ANGPT1 (Angiopoietin 1)-mediated cell-cell junctions in
human umbilical vein endothelial cells (HUVECs) [9,10].

We explored the potential involvement of a centrosomal gene (CEP164), which is
required for microtubule organization along with maintenance of the primary cilia and
genomic stability [37,38] in PCG. Additionally, the Cep164/~ mice have been found to have
a lack of connection between cilia and outer segments of the photoreceptors [33]. CEP164
interacts with INPP5E (Inositol Polyphosphate 5-Phosphatase E), which localizes in the cilia
and helps in the stability and maintenance of the ciliary structures [39-41]. Dysfunction of
INPP5E leads to shortened cilia and impaired ciliary function [42].

Mutations in CEP164 and INPP5E have been implicated in retinal ciliopathies, and
their functional interactions have already been deciphered [43-47]. Additionally, CEP164
is involved in the regulation of epithelial to mesenchymal transition [48] and INPP5E in
embryonic neural development [49]. Based on their potential roles in the centrosome and
cilia, along with their implications in ocular development and regulation of IOP, we aimed
to understand the involvement of CEP164 and INPP5E in the PCG pathogenesis.

2. Results
2.1. Identification of Rare and Common Variants in CEP164 and INPP5E

We identified 17 heterozygous missense rare variants across these two genes in our
PCG cohort (Table 1). There were relatively more PCG-associated variants in CEP164
compared with the INPP5E gene. There were no homozygous pathogenic changes in either
of these genes, and the distributions of overall variants comprised unique heterozygous
alleles, compound heterozygous alleles (two heterozygous alleles within the same gene),
and co-occurring alleles (co-occurrences of heterozygous alleles of CEP164 and INPP5E
along with PCG-associated candidate genes, such as CYP1B1, LTBP2, TEK, and MYOC)
(Figure 1). The INPP5E variants exhibited relatively higher REVEL scores compared with
the CEP164 variants. All these rare variants were either absent or infrequently present
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among our ethnically matched control subjects and in the general populations of other
global databases (Table 1). Most of these variants were highly conserved across multiple
species (Figure 2).

Table 1. A. Distributions of allele frequencies of rare variants in the CEP164 gene in PCG. B. Distribu-

tions of rare variants in the INPP5E gene in PCG.

1000 Genomes (n = 2504);

. . Cases .
C-h.romosomal Amino Acid dbSNP ID REVEL MAF Controls MAF p Value Oddf Ratio gnomAD v4.1
Position (GRCh38) Change Score (n =1757) (95% CI) (n = 807,162); All of Us
(n = 298)
(n = 245,400)
A
11: 117361989T > A p.MI83K 15144206271 0.18 0.0016 0.0003 0.15 o 375;991 71 0.0008; 0.00063; 0.0006
11: 117375787G > A p.R438Q rs137987733  0.05 0.0016 0.0003 0.15 o 375;99}1 1) NA; 0.00018; 0.0001
11: 117381729C > T p.RASOW 15112209873 0.04 0.0016 0 } } 0.001; 0.00019; 0.00068
11: 117381810G > T p.A507S NA 0.08 0.0016 0 - R NA
11: 117391109A > G p.K726R 152044597036 0.02 0.0016 0 R } NA
11: 117393037G > A p.V843M rs566117718  0.09 0.0016 0.0008 0.55 0 o o8) 0.0012; 0.00005; 0.000016
11: 1173943604 > G p.Q876R rs752650513  0.13 0.0033 0.0003 0.01 a 071_1i§61 20 NA; 0.000044; 0.000006
11: 117394981G > C p.RO4IT 15749310077 0.03 0.0016 0 R } NA; 0.0000006; NA
11: 117395553A > G p.T974A 1556699807 0.04 0.0033 0.0003 0.01 a 071_115;61 20 0.0002; 0.0003; 0.0003
11: 117397186G > A p.R1125Q 15767918200 0.03 0.0016 0.0008 0.55 o 23;912 o8) NA; 0.000015; 0.000002
11: 117397192G > A p.R1127Q 15753895198 0.16 0.0016 0 - - NA; 0.000009; 0.000016
11: 117407962G > A p.R1180Q 1s568896676  0.02 0.0050 0.0006 0.004 a 45;% 61 NA; 0.00001; 0.000012
11: 117408909T > G p.L1210R 1s767571570 017 0.0016 0 B ; NA; 0.000003; NA
11: 117409864C > T p.T13321 1s760788324  0.03 0.0016 0 R } NA; 0.000006; NA
11: 117411806G > A pR1392Q 1s772989312 007 0.0016 0.0011 0.72 01 o " NA; 0.000012; 0.000016
B
9: 136438722C > G p.S233T rs568767788  0.35 0.0016 0.0003 0.15 o 375_'991 7 000039; 0.000026; 0.000006
9: 136438785A > C p.V212G 15533861933 0.54 0.0016 0.0017 098  098(0.11-8.18)  0.00019; 0.0000068; 0.00001

MAF = Minor allele frequency; NA = Not available.; - = Cannot be determined.
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Figure 1. Distributions of rare variants in CEP164 and INPP5E genes in PCG cases. Hetero = Cases

with unique heterozygous alleles of either of these genes; Compound hetero = Cases with two

heterozygous alleles within the CEP164 and INPP5E gene, respectively; Co-occurring = Cases with
co-occurring alleles of CEP164 and INPP5E, and PCG-associated candidate genes, res; NV = Cases
without any variations in the CEP164 and INPP5E genes.
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Figure 2. Conservation of wild-type residues of the rare variants across multiple species in CEP164
and INPP5E. Multiple sequence alignment was done using Clustal W and Clustal X v2.1 on Jalview
v2.11 with UniProt database, and a schematic was prepared in Excel. CEP164 protein identi-
fiers: Homo sapiens = QO9UPVO, Pan troglodytes = K7D7G7, Chlorocebus sabaeus = AOAQD9S3C3,
Equus caballus = AOA3Q2I1MO, Bos taurus = FIMNII1, Sus scrofa = AOASWAFCK4, Canis familiaris
= AOASI3MTC7, Mus musculus = Q5DUO05. INPP5E protein identifiers: Homo sapiens = QINRRS,
Pan troglodytes = K7B557, Chlorocebus sabaeus = AOAODIRTF7, Equus caballus = AOA3Q2HCU?7, Bos
taurus = E1BAUS, Sus scrofa = AOA287AEE9, Canis familiaris = AOASI3NOY9, Mus musculus = Q9JI12.

We observed common variants in CEP164 (n = 17) and INPP5E (n = 12) in our normal
controls. The overall profile of allele frequencies of these common variants in our controls
to other global databases is provided in Figure S1. Hardy—Weinberg equilibrium (HWE)
analysis was performed for all the common variants of CEP164 and INPP5E genes in
normal controls, and distributions of their minor allele frequencies (MAFs) are provided in
Table S1. Only polymorphic alleles with MAF > 0.05 and in HWE (p > 0.001) were included.

Genetic associations were performed by taking the common variants of CEP164 (n = 10)
and INPP5E (n = 9) genes, which were in HWE in our controls. Analysis of genetic
associations of the common alleles between PCG cases and controls revealed that the “G”
allele of rs73566945 variant (INPP5E) was significantly associated with the risk of PCG
(p = 0.003; OR = 2.05; 95% CI, 1.27-3.29), which withstood statistical correction (corrected
p value = 0.030) based on 10,000 permutations test (using Haploview). Genetic association
for the rs73566945 genotypes was also undertaken. The homozygous genotype (GG) was
significantly associated with PCG (p = 0.013; OR = 1.84, 95% CI, 1.13-2.99). The other
common variants across these genes did not exhibit any association.

2.2. Haplotype Analysis of CEP164 and INPP5E Genes

The intragenic variants of CEP164 and INPP5E were used to generate linkage dise-
quilibrium (LD) plots (Figure S2), followed by haplotype analysis. There was tight LD
across the markers for both genes. The haplotypes ‘C-C’" and ‘G-C’ (rs59763167-rs521099)
and “A-A-A’ (rs33982662-1rs34936112-rs73566945) of CEP164 and INPP5E, respectively, were
overrepresented either in the PCG cases or controls and exhibited a possible trend of associ-
ation (based on uncorrected p value) but did not withstand statistical correction (Table 2).
On the other hand, the “A-A-G’ (INPP5E) haplotype was significantly associated with the
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risk of PCG, which withstood statistical correction (based on 10,000 permutations test),
which was largely contributed by the risk allele (G) of rs73566945. However, the rare
variants across these two genes were not restricted to the risk haplotypes and were present
in the background of other haplotypes as well.

Table 2. Distributions of haplotypes in CEP164 and INPP5E genes.

Genes  Haplotypes OV ARINPS TR oamaie | Chisauae  UMGERRedr SO
CEP164 c-C 0.747 0.792 0.739 7.464 0.006 0.056
CEP164 Cc-G 0.198 0.171 0.203 3.179 0.075 0.414
CEP164 G-C 0.055 0.037 0.058 4383 0.036 0.242
INPPSE C-G-G 0.844 0.834 0.846 0.613 0.434 0.954
INPPSE A-AG 0.084 0.131 0.076 20.037 7.6 x 10~° 0.0005
INPPSE A-A-A 0.055 0.032 0.059 7.234 0.007 0.055

Order of haplotypes for CEP164 (rs59763167-rs521099) and INPP5E (rs33982662-1s34936112-1s73566945); * Based
on 10,000 permutation test (Haploview v4.2 software). Bold format represents the significant p values.

2.3. Genetic and Physical Interactions between CEP164 and CYP1B1

We observed that the heterozygous rare variants of CEP164 and INPP5E co-occurred
with pathogenic variants of PCG-associated candidate genes (CYP1B1, LTBP2, TEK, and
MYOC) in 5/298 (1.67%) cases (Figure 1). This indicated a possible multi allelic interactions
of these genes in PCG pathogenesis. The distributions of the interacting alleles of these
genes are provided in Supplementary Table S2.

We next assessed potential physical interaction between CYP1B1 with recombinant
epitope-tagged versions of these proteins in HEK293 cells. We selected CEP164 for this
experiment because of its known localization to centrosomes and a previously reported
observation of myocilin, another known glaucoma-related gene in the centrosomes. The
HEK293 cells co-transfected with plasmids encoding GFP-CYP1B1 and MYC-CEP164
showed that CEP164 interacts with CYP1B1 (Figure 3).

A Chrl1:117397186 G>A Chr2:38071251 G>A B GFP-CYP1B1 GFP-CYP1B1
CEP164 p.R1125Q (Het)  CYP1B1 p.R368H (Het) «Da _ Myc-CEP164 kDa  Myc-CEP164
AT GC GG A GG GACCGTC TG 250 250
— — 150
,_é ‘ 100 e
=]
]
U MZ\AMM i
w
; Q
b z
©
AT GCGGA GG GACCGT C T G
A A
2 l
152}
35}
U l
)
[a
o ra = c
H g

Figure 3. (A) Representative chromatograms indicating genetic interactions of CEP164: p.R1125Q
and CYP1B1: p.R368H heterozygous rare variants in PCG 339 patient. The upper panel shows the
wild-type sequence, and the lower panel indicates the variant marked by a red arrow. (B) HEK293
cells were transiently transfected with plasmids encoding GFP-CYP1B1 and MYC-CEP164. As a
negative control, only GFP-encoding plasmid was utilized [10]. The cell extracts were subjected to
immunoprecipitation (IP; pull-down) using anti-GFP or anti-myc antibodies, followed by SDS-PAGE
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and immunoblotting using anti-GFP or anti-myc antibodies, respectively. Arrows indicate the
specific and expected protein bands (myc-CEP164 in the left panel and GFP-CYP1B1; kDa: kilo
Daltons) detected by the indicated antibodies. Input lanes represent 20% of the protein used for
IP. *: non-specific signal; Lower bands are likely the products of degradation. The negative control
pull-downs were performed with protein extracts expressing the tags only, while the positive control
was CYP1B1-TEK pull-down. These were previously published by our group [10].

2.4. Genotype—Phenotype Correlation

Genotype—phenotype correlation was based on IOP, corneal diameter (CD), cup-to-
disc ratios (CDRs), and visual acuity (VA) at presentation and follow-ups at 3 months and
one year amongst PCG cases harboring rare variants in the CEP164 gene. These cases were
further classified based on their allelic configurations pertaining to the presence of either
one heterozygous allele of a gene or combinations of multiple alleles based on co-occurring
alleles of other candidate genes (Table 3). We could not perform a similar analysis for
INPP5E due to a lack of PCG cases harboring rare variants in this gene (Table 1).

Table 3. Genotype—-phenotype correlation based on the presenting and follow-up IOP, corneal diame-
ter, cup-to-disc ratio, and visual acuity in patients harboring various combinations of CEP164 variants.

Intraocular Pressure Cup-to-Disc Ratio Corneal Diameter (mm) Visual Acuity (logMAR)

Genotype Combinations in (mmHg)
PCG Cases At At At At
(Number of Cases) Presen- After3  After1 Presen- After3  After1 Presen- After3  After1 Presen- After3  After1
ese Months  Year ese Months  Year ese Months  Year ese Months  Year
tation tation tation tation
Cases with unique
25.75 12.86 11.63 0.48 + 0.54 + 0.46 £ 13.06 12.71 13.1 + 1.19 +
heterozygous CEP164 1663 +£38  +169 013 02 02 +098 +119 o7a  NA L NA gy
alleles only (n =9)
Cases with compound heterozygous
28 + 15.33 10.33 047+ 05=% 13.67 13.33 13.67
E;Ef 154 alleles 6.93 +503 +25 NA 0.23 0.26 +058 +058 +020 NA NA
Cases with co-occurring CEP164
. 24.25 17.67 0.83 £ 0.63 + 15+ 234 £+
alleles along with heterozygous 1 6.65 NA 158 006 NA 031 2929 NA NA NA NA 075
alleles of other genes (n = 4)
* p value (Unique heterozygous
CEP164 alleles versus co-occurring 0.72 NA 0.019 0.004 NA 0.284 0.056 NA NA NA NA 0.053
CEP164 and alleles of other genes)
* p value (Compound heterozygous
CEP164 0.5 NA 0.117 NA NA 0.598 0.384 NA NA NA NA NA

alleles versus co-occurring CEP164
and alleles of other genes)

* p value is based on Student’s ¢ test; NA: Data are not available. Bold format represents the significant p values.

PCG cases harboring heterozygous alleles of CEP164, along with other candidate genes,
had a relatively poor prognosis compared with those who harbored only a single copy of
the CEP164 allele. The mean IOP was uncontrolled and significantly raised in these cases at
one-year follow-up (p = 0.019). Similarly, the cup-to-disc ratios were significantly higher in
these cases at presentation (p = 0.004). However, visual acuity (VA) could not be graded at
presentation or immediate follow-up in cases harboring CEP164 variants (Table 3).

3. Discussion

PCG is a complex disease and is collectively attributed to multiple gene variants with
varying magnitudes of effects. The PCG-associated candidate genes (CYP1B1, LTBP2, TEK,
MYOC, and FOXC1) do not contribute to our complete understanding of the underlying
molecular bases of this disease [3,10,11]. The discovery of novel genes and their functional
interactions have provided new insights into biological pathways that may be implicated in
PCG pathogenesis. Our earlier efforts in this direction have led to the identification of genic
interactions of CYP1B1 with MYOC [13], FOXC1 [14], and PRS556 [25] in PCG. Additionally,
we also demonstrated physical interactions of CYP1B1 with TEK (a ciliary gene) due to their
digenic involvement in PCG [10]. We have now extended our efforts toward understanding
the possible involvements of centrosomal (CEP164) and its interacting ciliary (INPP5E) gene
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in PCG cases. Based on its genetic profile, functional interaction, and genotype—phenotype
correlation, our study suggested that the CEP164 gene could be a novel candidate in
PCG pathogenesis.

We identified multiple novel rare variants in the highly conserved regions of CEP164
and INPP5E in PCG cases devoid of homozygous mutations in the known PCG-associated
candidate genes (Table 1; Figure 2). It is intriguing that we did not observe any homozygous
pathogenic alleles in these genes, unlike in most other PCG-associated genes. The overall
allelic contributions of CEP164 (2.51%) and INPP5E (0.33%) in PCG were very low com-
pared with the major candidate gene, CYP1B1 (38.07%). However, their frequencies were
comparable to other genes, comprising LTBP2, TEK, MYOC, and FOXC1, which ranged
from 0.31 to 3.55% in our PCG cohort.

CEP164 is involved in microtubule organization and maintenance for the formation
of primary cilia, which are essential for the proper functioning of the TM and the anterior
chamber angle [37,38]. Additionally, it is also involved in DNA damage response and
chromosome segregation, which are critical processes in maintaining genomic stability.
Mutations in CEP164 have been associated with severe ciliopathy phenotypes (Figure 4A),
such as nephronophthisis, occipital encephalocele, and liver fibrosis, and milder pheno-
types, like nephronophthisis with Leber congenital amaurosis [33,44,45,50,51]. The exact
mechanisms by which CEP164 would contribute to PCG are not fully understood, but
mutations in this gene may possibly interfere with cell cycle progression, apoptosis, and
epithelial-to-mesenchymal transition during developmental stages [48].

A CEP164
Total variants (n=37)
Language impairment
1.85% PCG (Present study)
27.79%

Schizophrenia
3.70%
Nephronophthisis-
CU
741%
e Senior-Lo om,

Oesophagial squamous cell
carcinoma
3.70%

Nephronophthisis

Peritonium tumour

3.70%  joubert syndrome

1.85%
Cardiovascular disease trait
185% Nephronopthisis
185%

. Oral-facial-digital syndrome
Bardet-Biedl syndrome 3.70% Pancreatic cancer

3.70% Motile ciliary defects Primary ciliary dyskinesis  3.70%
3.70% 3.70%

B INPP5E

Total variants (n=67)

Joubert syndrome
42.46%

Intellectual PCG (Present study)
disability 4.72%
0.94%
Ciliopathy
disorder
0.94%

Developmental disorder Retinitis pigmentosa

0.9%%  Macular and

\\ ~ g 9.44%
/cone-rod
R Retinal disease
ystrophy e
Vascular Malformations, 094% i
Enlarged Kidney, Macrodactyly
Joubert 0.94%
syndrome with
nephropathy  Retinal Pituitary stalk Ataxia

0.94% interruption syndrome 2.83% Leber congenital amaurosis

disease, N
0.94% 5.67%

syndromic
0.94% Neurodevelopmental disorder
0.94%

MORM syndrome

1.89% Joubert syndrome with

retinal dystrophy
1.89%

Figure 4. Pie charts depicting the proportions of observed pathogenic variants in CEP164 (A) and
INPPS5E (B) across different phenotypes and the present study (PCG). The data show the frequencies
of the classified disease mutations as per the HGMD database (Tables S3 and S4).
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We also observed co-occurrences of heterozygous pathogenic alleles of CEP164 (n = 4)
that genetically interact with heterozygous alleles of other PCG-associated genes (Figure 1).
Interestingly, the genetic interaction of CEP164 (p.R1125Q) with CYP1B1 (p.R368H) was sup-
ported by a corresponding physical interaction in HEK293 cells (Figure 3), like our earlier
observations on TEK and CYP1B1 [10]. We speculate that co-occurring mutations in CEP164
and CYP1B1 (Figure 3) may perturb this interaction and disrupt ciliary functions and regu-
lation of IOP. However, this needs to be confirmed with additional functional validations.

We have also demonstrated that another JOAG-associated gene, MYOC, localizes
in the centrosome and genetically interacts with CYP1B1 through a digenic mechanism
in PCG [13]. While we did not observe any genetic interactions of MYOC and CEP164
alleles in our present cohort, the presence of pathogenic variants of MYOC in PCG in our
earlier study [13] and in other populations [22,52-59] suggest the potential involvement of
centrosomal proteins in PCG, which need to be functionally characterized.

Interestingly, PCG patients harboring heterozygous alleles of CEP164, along with
heterozygous alleles of other PCG-associated genes had a relatively poor prognosis in terms
of their IOP control and cup-to-disc ratios (Table 3). This has been consistently observed
with other multi-allelic scenarios involving MYOC [13] and TEK [10] with CYP1B1 in our
PCG cohort.

The INPP5E, on the other hand, is a widely expressed ciliary gene that plays a critical
role in controlling ciliary function by regulating the length of the cilia [42]. Mutations
in INPP5E have been associated with various ciliopathies, including Joubert syndrome,
which can present with glaucoma as one of the clinical features (Figure 4B). Our data
revealed relatively smaller numbers of rare variants in INPP5E compared with CEP164
(Table 1). There was only one co-occurring allele of INPP5E with another gene (MYOC),
and genotype—phenotype correlation was inconclusive considering the number of PCG
patients harboring rare variants in this gene (Table 3). Although there was no evidence of
any genetic interactions between CEP164 and INPP5E genes, it could be speculated that
defects in INPP5E may lead to shortened cilia and impaired ciliary function, which may
further contribute to the development of PCG [40,42].

Overall, CEP164 and INPP5E have revealed a total of 22 and 65 pathogenic vari-
ants, respectively, across multiple phenotypes as per the HGMD (Human Gene Mutation
database) [60]. The discovery of rare variants in these genes in PCG has expanded the mu-
tation spectra of CEP164 (n = 37) and INPP5E (n = 67) genes (Figure 4A,B; Tables S3 and S4).
We observed a relatively larger number of rare variants in CEP164 compared with INPP5E
in PCG (Figure 4). The observation of a functional interaction and poor prognosis in cases
with co-occurring alleles of CEP164 and other genes, along with a strong pathogenic po-
tential of INPP5E, might be indicative of their underlying role(s) in PCG that need to be
elucidated further in additional cohorts.

Network analysis of CEP164 and INPP5E, along with PCG-associated candidate genes,
indicated their interactions through pathways, which is further suggestive of their involve-
ment with PCG (Figure 5). Further, metabolic interactions of lipid and lipo-proteins were
noted between CYP1B1 and INPP5E (that further interacts with CEP164). On the other
hand, TEK and INPP5E shared a common transcription factor target. The involvement of
these genes in ciliopathies and various retinal functions indicated a possible mechanism in
PCG pathogenesis [44—47].

CEP164 is also involved in retinal photoreceptor layer development [33] and INPP5E
in embryonic neural development [49]. Both these genes synergistically interact with each
other in the formation of a functional network involving the primary cilia [43]. Based on
the involvement of these genes in our cohort, we speculate their involvement in retinal
damage in PCG. Reduction in retinal nerve fiber layer thickness (RNFL) and its correlation
with IOP among PCG patients [61,62] have already indicated the involvement of retinal-
associated genes in disease pathogenesis. This is further supported by the fact that the
primary PCG-associated gene, CYP1BI, is expressed in retinal ganglion cells (RGCs) and
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promotes its survival [63], but the possible mechanisms leading to retinal damage in PCG
remains elusive.

<> CYP1B1 <>

i iDi EGF-like_dom
Metabolism of lipids and ... LTBP? _

=

o M
EGF-like_CS

‘ TEK

INPP5E

CEP164 VSNFAT_ Q6

Figure 5. Network analysis of CEP164 and INPP5E with PCG-associated candidate genes. The
network was generated using GeneMania of Cytoscape v3.5.3 software. Solid nodes represent
genes. Diamond nodes represent the consolidated pathways, domains and transcription fac-
tor targets. Color scheme: Pink = Co-expression, Blue = Co-localization, Grey = Shared at-
tribute. “V$NFAT_Q6” = Transcription factor target motif, “EGF-like_dom” = EGF-like domain,
“EGF-like_CS” = EGF-like conserved site, “Metabolism of lipids and ...” = Metabolism of lipids
and lipoproteins.

In summary, CEP164 and INPP5E genes may play critical roles in PCG considering
their involvements in centrosomal, ciliary, and retinal functions and the regulation of
IOP. Further research would be needed to fully understand their underlying molecular
mechanisms through which these genes contribute to PCG pathogenesis.

4. Materials and Methods
4.1. Study Approval

The study was approved by the Institutional Review Board of L V Prasad Eye Institute
(LEC 09-18-141) and adhered to the tenets of the Declaration of Helsinki. A written informed
consent was obtained from all the study subjects and guardians of minors.

4.2. Enrolment of Cases and Controls

The study comprised 2055 subjects, including PCG cases (n = 298) and ethnically
matched normal controls (n = 1757). Detailed inclusion and exclusion criteria have been
described earlier [10,64]. Briefly, all study participants underwent a comprehensive ocular
examination. Each case was independently diagnosed by at least two glaucoma specialists,
and a good inter-observer agreement was seen based on kappa statistics (k = 0.94). Cases
that had discordant diagnoses amongst the clinicians were excluded. Demographic details
of subjects, including their gender, history of consanguinity, and age at disease onset and
intervention, were recorded. Quantitative data of clinical variables such as intraocular
pressure (IOP), corneal diameter (CD), cup-to-disc ratio (CDR), and visual acuity (VA) were
collected from all the PCG cases at presentation and further follow-ups following surgery.

4.3. Targeted Sequencing, Cell Culture, and Pull-Down Assay

A customized, targeted gene panel (Applied Biosystems, Foster City, CA, USA) com-
prising CEP164 and INPP5E genes, along with other PCG-associated genes, was used for
screening. Library preparation, amplification, enrichments, and deep sequencings were per-
formed as per the manufacturer’s guidelines (Applied Biosystems, Foster City, CA, USA).
The quality control measures for data cleaning, data analysis pipelines, and interpretations
have been described earlier [10]. The observed variants were validated through Sanger
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sequencing using the BigDye Terminator (v3.1) chemistry on a 3130xl Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA). The cell culture experiments with HEK293
cells and GFP pull-down assay were as described earlier [10].

4.4. Allele and Haplotype Analysis

The Ensembl canonical transcripts of CEP164: ENST00000278935.8 and INPP5E:
ENST00000371712.4 were considered for analysis. Allele frequencies were calculated
using the gene counting method along with their odds ratios and 95% confidence intervals.
p values were based on the Chi-square test. These frequencies were compared with the
global allele frequencies reported in the 1000 Genomes [65], gnomAD [66], and All of
Us [67] databases.

Pathogenicity predictions were based on REVEL scores [68], which provide a score
combining 13 different tools (SIFT, PolyPhen2, Mutation Taster, Mutation Assessor, FATHMM
v2.3, MutPred, VEST 3.0, PROVEAN, LRT, phyloP, SiPhy, GERP++, and phastCons).

Hardy-Weinberg equilibrium (HWE) and haplotypes analysis were conducted using
the HaploView (version 4.2) software [69]. The HWE cut-off p value was 0.001 based on
the default parameter of this software. The minimum genotype cut-off percent was set
at 100%, and the minimum minor allele frequency (MAF) was >0.05. Only haplotypes
with frequencies above 5% were considered. Phenotypes of genes and disease-causing
mutations were extracted from the HGMD database (accessed on 19 July 2024) [60].

4.5. Conservation of Amino Acids

Multiple sequence alignment was performed using Clustal W and Clustal X v2.1 [70]
on the Jalview v2.11 platform [71]. With three residues on either side for the target residue,
the remaining intermediary amino acids were removed from the sequence.

4.6. Network Analysis

Network analysis was conducted using the GeneMania v3.5.3 app on the Cytoscape
software platform [72]. Gene list as an input, co-expression, co-localization, genetic in-
teractions, pathways, physical interactions, predicted interactions along with attributes
including consolidated pathways, drug interactions, InterPro, miRNA-target-predictions,
and transcriptional factor targets were analyzed. The top twenty related genes and, at most,
twenty attributes were used with automatic weighting.

5. Conclusions

The potential functional involvement and genotype—-phenotype correlation exhibited
by CEP164 variants, along with a strong pathogenic potential of INPP5E variant, suggest
these genes as a potential candidate(s) in PCG and a yet unexplored involvement of cilia-
centrosomal functions in disease pathogenesis.
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