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Abstract: We aimed to provide an updated narrative review with respect to the RET pathogenic
variants and their implications at the clinical and molecular level in the diagnosis of medullary
thyroid cancer (MTC)/multiple endocrine neoplasia (MEN) type 2, particularly with respect to the
presence of cutaneous lichen amyloidosis (CLA). We searched English-language, in extenso original
articles with no timeline nor study design restriction that were published on PubMed. A traditional
interplay stands for CLA and MTC in MEN2 (not MEN3) confirmation. While the connection has
been reported for more than three decades, there is still a large gap in understanding and addressing
it. The majority of patients with MEN2A-CLA have RET pathogenic variants at codon 634; hence,
it suggests an involvement of this specific cysteine residue in both disorders (most data agree that
one-third of C634-positive subjects have CLA, but the ranges are between 9% and 50%). Females seem
more prone to MEN2-CLA than males. Non-C634 germline RET pathogenic variants included (at a
low level of statistical evidence) the following: RET V804M mutation in exon 14 for MTC-CLA (CLA
at upper back); RET S891A mutation in exon 15 binding OSMR variant G513D (familial MTC and CLA
comprising the lower legs to thighs, upper back, shoulders, arms, and forearms); and C611Y (CLA at
interscapular region), respectively. Typically, CLA is detected at an early age (from childhood until
young adulthood) before the actual MTC identification unless RET screening protocols are already
applied. The time frame between CLA diagnosis and the identification of RET pathogenic variants
was between 5 and 60 years according to one study. The same RET mutation in one family is not
necessarily associated with the same CLA presentation. In MTC/MEN2 subjects, the most affected
CLA area was the scapular region of the upper back. Alternatively, another hypothesis highlighted
the fact that CLA is secondary to long-term prurit/notalgia paresthetica (NP) in MTC/MEN2. OSMR
p. G513D may play a role in modifying the evolutionary processes of CLA in subjects co-harboring
RET mutations (further studies are necessary to sustain this aspect). Awareness in CLA-positive
patients is essential, including the decision of RET testing in selected cases.
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1. Introduction

Medullary thyroid carcinoma (MTC), a rare neuroendocrine tumor, involves 1–2% of
thyroid cancers (SEER—Surveillance, Epidemiology, and End Results) [1–4]. This rate is
lower than 3–5% as previously shown, due to a relative increase in papillary-type (PTC)
incidence over the last three decades [4], noting that differentiated thyroid malignancies
remain the most frequent histological types all over the world nowadays [5–7].

We aimed to provide an updated narrative review with respect to the RET pathogenic
variants and their implications at the clinical (dermatology and endocrinology assessments)
and molecular level in the diagnosis of MTC/multiple endocrine neoplasia (MEN) type
2, particularly with respect to the presence of cutaneous lichen amyloidosis (CLA). We
searched English-language (at least at the abstract level), in extenso original articles with
no timeline nor study design restriction that were published on PubMed regarding the key
points of the mentioned thyroid malignancy and its skin signature of the amyloid type.

2. Medullary Thyroid Carcinoma (MTC) and Multiple Endocrine Neoplasia (MEN)
Harboring RET Pathogenic Variants

MTC may occur sporadically (sMTC) (75% of all cases) or hereditary as a manifesta-
tion of MEN type 2 (formerly named MEN2A) and MEN 3 (formerly called MEN2B) [8,9].
MEN2 has a prevalence of 1 in 25,000 people and accounts for over 95% of the hereditary
MTC [10,11]. Four clinical variants of MEN2 have been described with various multidisci-
plinary elements on first presentation and long-term surveillance [12–14]. Firstly, classic
MEN2A, featuring MTC in 100% of the patients and less frequent occurrence of phaeochro-
mocytoma (PHEO) in 50% of the subjects, or primary hyperparathyroidism (HPTH) in 15%
of the MEN2 individuals, or both; secondarily, MEN2A with CLA; thirdly, MEN2A with
Hirschsprung disease (HD); and fourthly, isolated familial MTC (FMTC) that accounts for
about ~15% of the patients with hereditary MTC and it is diagnosed only if MTC is present
in the family members as well [1,15]. On the other hand, MEN3 involves a rare syndrome,
also including MTC (5% of hereditary MTCs), etc. [11,16,17].

MTC is related to the Rearranged during Transfection (RET) gene [18–27] (Figure 1).

Int. J. Mol. Sci. 2024, 24, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 1. Main highlights with regard to RET gene [18–27]. 

RET functions are numerous [28–40] (Figure 2). 

 
Figure 2. RET kinase functions [28–40]. 

In the absence of the ligand, the RET protein is a single unphosphorylated tyrosine 
kinase receptor, while in cancer cells, RET proto-oncogene led to the auto-phosphoryla-
tion of the tyrosine residues [41–43]. 

Some RET pathogenic variants in thyroid malignancies are inherited and are present 
throughout every cell in the body (germline type) and others are acquired (somatic type) 
that are present only in certain cells in the body [44,45]. Even so, mutational screening is 
mandatory in all patients with MTC, allowing the detection of germline mutations in ini-
tially “so-called” sporadic MTC in up to 6.5% of the patients [46,47]. The etiology of sMTC 
has not been completely elucidated at this point [48–56] (Figure 3). 

HD occurs in approximately 7% of MEN2 subjects; conversely, 2% to 5% of the pa-
tients diagnosed with HD have MEN2 [57–60]. RET pathogenic variants in individuals 

Figure 1. Main highlights with regard to RET gene [18–27].



Int. J. Mol. Sci. 2024, 25, 9765 3 of 21

RET functions are numerous [28–40] (Figure 2).
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Figure 2. RET kinase functions [28–40].

In the absence of the ligand, the RET protein is a single unphosphorylated tyrosine
kinase receptor, while in cancer cells, RET proto-oncogene led to the auto-phosphorylation
of the tyrosine residues [41–43].

Some RET pathogenic variants in thyroid malignancies are inherited and are present
throughout every cell in the body (germline type) and others are acquired (somatic type)
that are present only in certain cells in the body [44,45]. Even so, mutational screening
is mandatory in all patients with MTC, allowing the detection of germline mutations in
initially “so-called” sporadic MTC in up to 6.5% of the patients [46,47]. The etiology of
sMTC has not been completely elucidated at this point [48–56] (Figure 3).
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HD occurs in approximately 7% of MEN2 subjects; conversely, 2% to 5% of the
patients diagnosed with HD have MEN2 [57–60]. RET pathogenic variants in individuals
identified with MEN2 and HD are point mutations involving codons in exon 10: 609
(15%), 611 (5%), 618 (30%), and 620 (50%) [41,53,55]. It seems paradoxical that MEN2 and
HD may occur together, since RET mutations associated with HD are loss-of-function,
while those associated with MEN2A are gain-of-function. This dual occurrence could
be explained by the fact that constitutive activation of RET is sufficient to trigger the
neoplastic transformation of the C cells (at the level of thyroid cancer), yet insufficient to
generate a trophic response in the precursor neurons due to a lack of expression of the
RET protein at the cell surface [61–63]. Of note, the congenital absence of the ganglion
cells at the level of the myenteric and submucosal intestinal plexus (namely, HD) has
been found amidst other syndromes such as trisomy 21, congenital central hypoventila-
tion syndrome, and Mowat–Wilson syndrome, while (other than RET proto-oncogene)
endothelin receptor type B (EDNRH) gene was the most frequent gene incriminated
in HD [63].

In isolated FMTC, the most common variants affect codons 768, 790, or 804 (ex-
ons 13 or 14), with 804 being the most frequent [11,15,64,65]. MEN3 is exclusively
related to exon 16 (M918T). These mutations lead to increases in ATP-binding and auto-
phosphorylation activity, thereby mediating a dimerization-independent activation of
RET kinase [11,15,66–68]. In less than 10% of the patients, MEN3 is associated with an
A883F mutation or with double mutations, which include V804M and either Y806C,
S904C, E805K, or Q781R [69–72].

Current guidelines recommend germline RET testing in all patients with a new diag-
nosis of MTC, including family members. As a result of the link between the type of RET
pathogenic variant and the aggressiveness of CMT in children with mutations at codon 918,
exon 16 (harboring the highest risk) should undergo thyroidectomy in their first year of life.
Those with mutations at codon 634, exon 11 or codon 883, or exon 15 (that are regarded
as high risk) should have a thyroidectomy performed at the age of 5 years or earlier if
the serum levels of calcitonin become elevated. In children with any of the other RET
mutations (moderate risk), the decision regarding the age of prophylactic thyroidectomy
is no longer based upon genotype alone, but is currently driven by the hormonal panel,
specifically, by the increasing trend of the serum calcitonin levels [11,15].

3. Insights into Lichen Amyloidosis (LA)

Amyloidosis, characterized by abnormal misfolded protein-based deposits in ad-
dition to amyloid fibrils, affects various organ functions. It is divided into cutaneous
and systemic forms (that may be accompanied by different co-morbidities) based on
localization, but it can be sub-grouped via its biochemical structure [73–75]. The cuta-
neous form of amyloidosis was first recognized in the 1930s by Freudenthal [76,77], who
noted the presence of Congo red-positive hyaline bodies within the epidermis [76,77].
The deposition of amyloid in previously apparently normal skin without deposits in
the internal organs is known as primary localized cutaneous amyloidosis (PLCA), and
secondary amyloidosis, which forms on a pre-existing dermatologic lesion (benign or
malignant) [73,75]. Secondary PLCA is caused by rubbing/scrubbing (“friction amy-
loidosis”) [76–78]. Its subtypes are macular (MA), lichen (LA)—the most common,
and nodular (NA); biphasic amyloidosis (BA) is MA + LA [79–84]. The most common
site involves the extensor surfaces of the extremities [85]. Clinically, it is difficult to
distinguish different subtypes of PLCA, with the histological and immunohistochem-
istry characteristics being a very important tool for diagnosis. MA, LA, and BA are
keratinocyte-derived, in which cytokeratins serve as amyloid precursors, while NA
involves an immunoglobulin that is light-chain-derived and it is associated with der-
mal plasma cell infiltration [86–88]. With regard to LA, the amyloid deposits display
immunoreactivity to antikeratin antibodies, but not to antibodies against A protein,
pre-albumin, or fibronectin [78,88].
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Generally, amyloid stands on >20 proteins [89–91]. In nature, proteins usually have
both an alpha helix and β sheet structure. In amyloid, electron microscopy studies have
shown the abnormal folding of proteins that are arranged predominantly as β-pleated
sheets over the alpha helix [92–94]. Amyloidosis manifests when these sheets are misfolded,
resulting in extracellular deposits. As for why these deposits form, the exact mechanism is
not fully understood nowadays. Potential causes are as follows: protein over-production
makes them fold into β-pleated sheets, abnormal protein structure, other contributors like
low pH, metal ions, etc. [95–97]. Normally, certain mechanisms degrade the abnormal
proteins but if they fail, amyloid can deposit in tissue. This process is highly variable
and a lag phase is described in which the prerequisites are present, but no amyloid fibrils
are formed yet. This lag phase can last from weeks to years. After a nucleus of amyloid
is formed, aggregation occurs under fast kinetics and the development of the insoluble
architecture soon follows [98–100].

Overall, the pathogenesis is considered multifactorial, involving both environmental
and genetic factors. Regarding environmental factors, it is worth mentioning that Epstein–
Barr virus (EBV) has been demonstrated in a high percentage of cases of MA, LA, or BA.
The presence of EBV in the epidermis has been postulated as a contributing event in the
degeneration of keratinocytes [101–103]. Recently, COVID-19 infection was suspected to
exacerbate amyloidosis, potentially acting as a supplementary contributor or as a trigger for
pre-existing histological lesions (as seen in other associated diseases following a coronavirus
infection) [104–107]. When assessing if certain factors predispose individuals to develop
PLCA, familial forms have been described; PLCA is common in Southeast Asia, South
America, and Middle Eastern regions [108]. In addition, up to 10% of all PLCA cases
are familial and an autosomal dominant inheritance may be observed [109,110]. Racial
susceptibility and familial aggregation suggest that underlying genetic factors must play
a role in the pathogenesis of PLCA. In cases of familial PLCA, pathogenic heterozygous
missense mutations have been mapped to the oncostatin M receptor beta subunit (OSMR)
gene [111–121] (Figure 4).
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4. CLA in MTC/MEN2
4.1. Traditional Pathogenic Aspects in CLA in Patients Diagnosed with MEN2

Traditionally, scratching appears to play an important role in the pathogenesis of
CLA by causing epidermal cell damage that leads to filamentous degeneration of the ker-
atinocytes, subsequent apoptosis, and conversion of the filamentous masses into typical
amyloid material. This mechanism is supported by the fact that LA commonly presents as
a pruriginous lesion. [121,122]. With regard to the majority of LA cases that are associated
with MEN2, pruritus precedes the skin lesion, causing subsequent scratching and therefore
cutaneous lesions. In an early study conducted by Chabre et al. [122] in 1992, a French
MEN2A family (as the term was used at that moment) had three members with the same
type of pruritic scapular skin lesion associated with paresthesia and hyperalgesia in the
same area. Despite extensive analysis of the skin biopsies (special staining and immunohis-
tochemistry analysis), no amyloid deposits were found at that time [122]. Moreover, these
previous findings suggested a neurological origin of the cutaneous manifestation associated
with MEN2A. Based on this hypothesis, CLA in MEN2 may be caused by a neurological
condition called notalgia paresthetica (NP) [122–126]. NP refers to a neuropathy involving
the dorsal primary divisions of spinal nerves, which causes localized pruritus. It was first
described in 1934 and afterwards reviewed by Weber and Poulos [127,128], who extended
the term to several entities previously described as “localized pruritus”, “puzzling posterior
pigmented patches”, and “peculiar spotty pigmentation” [123–126]. The main symptom
of NP is pruritus, and it is typically unilateral, localized on two-thirds of the scapula. In
patients with long-standing pruritus, secondary lesions such as hyperpigmentation and
lichen development may be visualized. The relationship between NP and MEN2 might be
explained by the fact that neural crest cells, implicated in the embryological development
of the adrenal medulla and para-follicular C cells of the thyroid, are also involved in the
embryogenesis of the thoracic sensory fibers that explains the pruritus sites [127,128].

Another hypothesis relates to the RET ligand, namely, GDNF family receptor alpha
(GFRα) proteins with a potential role in enteric neurons, parasympathetic and sympathetic
neurons, and sensory neurons, but further evidence is necessary [30,129–135].

4.2. Sample-Based Data in MTC/MEN2-Related CLA

After Gagel et al. [136] described for the first time CLA in MEN2 (in 1989), it was
found that multiple papules disposed as a well-demarcated plaque in the scapular area
might accompany the endocrine malignancy as a skin signature (other than the presence
of a carcinoid syndrome in metastatic MTC) [136]. Although the association of CLA with
MEN2 has long been established, the reason why only a small percentage of MEN2 patients
actually develop this manifestation remains an open matter nowadays. MEN2-related
CLA occurs in patients with C634 RET pathogenic variants, and it has been estimated that
more than 30% of the patients with this type of mutation will be CLA-positive across their
life span [56,137]. Verga et al. [120] reported that CLA was found only in MEN2A/FMTC
families harboring the RET pathogenic variant in codon 634, with an incidence of 36%
(9/25 of the affected subjects), mentioning that two patients actually lacked these skin
lesions, but the symptom of the neurological pruritus (namely, NP) in the upper back was
present [120]. Moreover, in a cohort of 38 MEN2A cases harboring the C634 mutation,
Scapineli et al. [121] reported CLA in 50% of these individuals, with the C634R mutation
being the most prevalent (7 kindred, 35%) [121]. A smaller percentage was reported by
Eng et al. [52], specifically, CLA was detected in approximately 9% (18/199) of MEN2
individuals, and all 18 families carried the RET codon 634 pathogenic variant [52]. Qi
et al. [138] showed that the leading mutation at codon 634 in exon 11 was C634Y (affecting
43.6%, 24/55 of the subjects), followed by C634R (27.3%, 15/55 individuals), C634W (10.9%,
6/55), C634G (9.1%, 5/55), C634F (1.8%, 1/55), respectively, and C634 (5.5%, 3/55) [138].
The fact that the majority of the subjects diagnosed with MEN2A-related CLA harbor
codon 634 suggests an involvement of this specific cysteine residue in both endocrine and
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dermatologic disorders and this might be a key turning point in understanding common
pathogenic features [52,138].

Yet, other RET germline mutations of the intracellular TKD have been described in
MEN2-related CLA; for instance, Rothberg et al. reported a case of an American female
with the germline RET V804M mutation within exon 14 with MTC and CLA on the upper
back [56]. In a Chinese family with FMTC and CLA comprising the lower legs to thighs,
upper back, shoulders, arms, and forearms, Qi et al. described (in 2015) the RET S891A
mutation within exon 15 binding OSMR variant G513D [139]. In 2018, Qi et al. described
a novel genotype–phenotype relationship between MEN2A and CLA. They reported a
Chinese pedigree with 17 individuals carrying the C611Y RET mutation with one member
(1/17, representing 5.9%) affected by CLA in the interscapular region [140].

To date, no family with MEN3 has been reported to be diagnosed with CLA. More-
over, families with CLA (but without MEN disease features) do not seem to harbor RET
pathogenic variants [11,121,141]. To summarize, the genetic basis for MEN2A-related CLA
remains obscure, with it being suggested that the primary cause is actually neurogenic, and
the skin lesions are only a secondary phenomenon due to chronic pruritus and repeated
scratching (as we already mentioned) [11,121,122,141].

Other potential contributors to MEN2-CLA have been studied. Gender-related pre-
dominance in the prevalence of CLA was observed by some authors. For instance, Qi
et al. [139,140] described a higher prevalence in the female population with a male-to-
female ratio of approximately 2:9 (6:27), respectively, of 1.0:3.6 (12:43) [139,140]. Similarly,
Scapianeli et al. [121] described a CLA prevalence of 1.0/2.3 in men/women in the men-
tioned cohort [121].

Interestingly, many literature data describe the presence of CLA earlier than other
endocrine (clinical) elements of MEN2, thus delaying the diagnosis of MEN2-related CLA.
For example, Qi et al. revealed that the mean age at diagnosis of CLA with the RET
mutation was 29.5 years (range between 5 and 60 years) [140]. The age at onset for CLA for
most MEN2 individuals was often in infancy or adolescence and most patients presented
pruritic symptoms before the actual endocrine diagnosis of MTC [11,120,140,142–146].
Individuals with the same or different RET pathogenic variant typically presented with a
variable clinical manifestation of CLA. The most described phenotypes are in the scapular
region of the upper back, exhibiting on the side, midline, or bilateral extending across the
midline, followed by the hyperpigmentation, respectively, by the papules developed in
the same area after many years of itching and scratching [11,120,140,143–146]. Thus, much
attention should be paid to the recognition of CLA located in the scapular region. The
most recent guidelines for MTC recommend that subjects with CLA located in the scapular
region should be investigated clinically and then undertake germline RET screening for
MEN2 [11,15]. A more expanded affected region than previously described, encompassing
the upper back, shoulders, arms, and legs manifesting as BA, harbored the RET S891A
pathogenic variant and OSMR variant G513D in a Chinese FMTC family, as mentioned [139].
Conversely, MEN2-related CLA was strictly located in the scapular region and had the RET
C634F/G mutation without the OSMR mutation in four Chinese patients [140]. Therefore,
OSMR p.G513D may play a role in modifying the evolutionary process of CLA with RET
pathogenic variants [139,140] (Table 1).
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Table 1. Sample-focused analysis on published data with respect to MTC/MEN2 and CLA according to our methods (PubMed search based on key terms
“lichen amyloidosis” and “thyroid cancer” without any timeline restriction); the display starts with the most recent publication date [56,121,128,136,139,142–156].
(Abbreviations: CLA = cutaneous lichen amyloidosis; F = female; GC = glucocorticoids; HPTH = primary hyperparathyroidism; PHEO = pheochromocytoma;
MEN = multiple endocrine neoplasia; MTC = medullary thyroid carcinoma; M = male; NA = not available; n = number of family members/affected patients with
MEN2A; a = two patients were not evaluated for the presence of CLA; b = all three patients with CLA had the RET p.S891A mutation and a novel OSMR variant
p.G513D, which provides a possible new insight into the mechanism underlying FMTC/CA; c = data expressed as mean and standard deviation for age; of note, the
data are displayed across a heterogeneous spectrum depending on the original reports).

Publication
Data
Reference

Studied
Population
(MEN
Subtype)

RET Mutation CLA + [n (%)] Sex CLA +
M:F (F%)

Age CLA at
Diagnosis (Years)

Clinical Features
of CLA Treatment

Associated
Endocrine Lesions
MTC [n (%)]
PHEO [n (%)]
HPTH [n (%)]

Other Observations

Fang X et al.,
2022
[147]

28 MEN2A C634G/F/R/S/W
and C611Y 8/28 2:6 18.4 ± 4.6 Interscapular

region NA NA
Incidence of CLA in

C611Y lower than those
in C634G/F/R/S/W

Tang HX et al.,
2021
[148]

8 MEN2A C634R 1/8 0:1 (100) NA

Interscapular area
of the left back
corresponding to
dermatomes
T2-T6 level

Topical GC PHEO, MTC, HPTH

Pruritus before CLA
CLA 22 years earlier
than other endocrine
symptoms of MEN2A

Pruritus relieved
temporarily by

topical GS

Malhotra
et al., 2020
[149]

A 33-year-old 634 1 (100) 0:1 (100) NA Right scapular
region NA Metastatic MTC,

PHEO Pruritus before CLA

Pal R et al.,
2018
[150]

A 45-year-old C634R 1 (100) 0:1 (100) 41 Interscapular
region NA Metastatic PHEO,

MTC

Zhang XW
et al., 2016
[151]

73 634 14/73 () NA NA NA NA

Scapineli JO
et al., 2016
[121]

38 a MEN2A C634Y/R/W 18 (50) 5:13 (72) 19 ± 10 Interescapular
region NA

MTC 37 (97)
PHEO 11 (31)
HPTH 6 (19)

−15/18, 83% CLA
before other endocrine
symptoms of MEN2A
Pruritus before CLA
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Table 1. Cont.

Publication
Data
Reference

Studied
Population
(MEN
Subtype)

RET Mutation CLA + [n (%)] Sex CLA +
M:F (F%)

Age CLA at
Diagnosis (Years)

Clinical Features
of CLA Treatment

Associated
Endocrine Lesions
MTC [n (%)]
PHEO [n (%)]
HPTH [n (%)]

Other Observations

Qi XP et al.,
2015
[139]

6 MEN2A S891A and
G513D b 3 (50) 2:1 (33) 29 ± 2

Upper back and
legs, arms,
shoulders

All patients were
treated with

glucocorticoid cream,
which resulted in a
decreased period of

itching, but the
application was

discontinued due to
side effects.

MTC 3 (50)
PHEO 0, HPTH 0 Pruritus before CLA

Rothberg AE
et al.,
2009
[56]

1 FMTC V804M 1 (100) 0:1 (100) 40 Interscapular

Glucocorticoid cream
provided minimal
relief, but no other

medication was
palliative.

MTC 1 (100)
PHEO 0, HPTH 0

Pruritus worsened by
stress

Gullu S et al.,
2005
[144]

1 MEN2A C634Y 1 (100) 0:1 (100) 34 Interscapular
region NA

1 (100) MTC, 1 (100)
bilateral PHEO, 0 (0)
HPTH

Pruritus present

Abdullah F
et al.,
2004
[146]

4 MEN2A 634 3 (75) 0:3 (100) 31 ± 14 Interscapular
region NA 4 (100) MTC, PHEO

NA, HPTH NA

Lemos MC
et al.,
2003
[152]

5 MEN2A C634W 4 (80) 1:3 (75) 33 ± 21 NA NA 5 (100)CMT, 2(40)
PHEO, 2(40)HPTH

Vieira AE
et al.,
2002
[153]

4 MEN2A C634Y/R 1 (25) 0:1 (100) 21 NA NA 1 (100) MTC, 1 (100)
PHEO, 1(100) HPTH

Lemos MC
et al., 2002
[154]

1 MEN2A C634W 1 (100) NA 5 NA NA 1 (100) MTC, 0 (0)
PHEO, 0 (0) HPTH

Karga HJ
et al.,
1998
[145]

29 MEN2A 12 C634R/2
C620Y/15 C634Y 1 (3.4) 1:0 (0) 24 NA NA 1 (100) MTC, 1 (50)

PHEO, 0 (0) HPTH
CLA before the

diagnosis of MEN 2A
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Table 1. Cont.

Publication
Data
Reference

Studied
Population
(MEN
Subtype)

RET Mutation CLA + [n (%)] Sex CLA +
M:F (F%)

Age CLA at
Diagnosis (Years)

Clinical Features
of CLA Treatment

Associated
Endocrine Lesions
MTC [n (%)]
PHEO [n (%)]
HPTH [n (%)]

Other Observations

Seri M et al.,
1997
[142]

2 MEN2A C634G 2 (100) 0:2 (100) 49 ± 7 Interscapular NA 2 (100) MTC, 1 (50)
PHEO, 0 (0) HPTH Pruritus present

Pacini F et al.,
1993
[155]

11 MEN2A NA 4 (36) 0:4 (100) NA Interscapular
region NA NA Pruritus present

Kousseff BG
et al., 1991
[128]

6 MEN2A NA 2 (33) 0:2 (100) NA Interscapular
region NA 6 (100) 5 (83) 0 (0) Pruritus present

Ferrer JP et al.,
1991
[143]

7 MEN2A C634W 5 (71) 2:3 (60) 16 ± 7 Interscapular
region NA 7 (100) 0 (0) 0 (0)

Gagel RF
et al., 1989
[136]

5 MEN2A NA 3 (60) 0:4 (100) 19 ± 1 Upper back Topical GS 5 (100) 1 (20) NA
Pruritus relieved
temporarily by

topical GS

Nunziata V
et al., 1989
[156]

10 MEN2A NA 5 (50) 1:4 (80) 7 ± 2 NA NA 10 (100) 3 (30) NA Prurit present
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5. Discussion

According to the searched data [56,121,128,136,139,142–156], a traditional interplay
stands for CLA and MTC in MEN2 (not MEN3) confirmation. While the connection has
been reported for more than three decades, there is still a large gap in understanding and
addressing it from a practical multidisciplinary point of view and awareness is essential,
especially since the timeline perspective includes an early CLA identification before the recog-
nition of the thyroid cancer in subjects who are not already confirmed with RET pathogenic
variants or they are not under endocrine surveillance protocols. Females seem more prone to
MEN2-CLA than MEN2 males. The majority (but not all) of patients with MEN2A-related
CLA have RET pathogenic variants at codon 634; hence, this represents a key point that
suggests an involvement of the specific cysteine residue in both disorders, which may imply
the possibility of additional mechanisms in the pathogenic signal transduction pathways
for MEN2A-related CLA. Additionally, OSMR p.G513D may play a role in modifying the
evolutionary process of CA in subjects co-harboring RET mutations (but the level of statistical
evidence remains low in this specific matter) [56,121,128,136,139,142–156].

5.1. Unraveling Clinical CLA Insights

Regardless of the synchronous/asynchronous identification of MEN2 or confirmation
of RET pathogenic variants at screening genetic testing on one patient, the diagnosis of
PLCA should be confirmed by the histological exam in daily practice, whereas the deposi-
tion of eosinophil, amorphous globular material in the papillary dermis, melanophages,
and increased pigmentation of the basal layer are typically observed [114]. The special
stains routinely employed in the detection of amyloid deposits are Congo red and Crystal
violet. Also, other stains such as Thiofavin T, periodic acid–Schiff method, and Sirius
red may be used for a more defined visualization [80,85,109,114,157]. Of note, Congo red
plays a particular role in the pathological confirmation of MTC as well [158–160]. Both
macular and lichen amyloidosis display amyloid deposits restricted to the upper dermis,
particularly the papillary dermis [80,85,109]. As previously reported by Nunziata et al.,
staining for amyloid may be negative in a skin biopsy and multiple biopsies are needed
to demonstrate amyloid content [156]. Such negative results may be explained by the fact
that in the initial stages of PLCA, there is a small amount of amyloid deposit. Perhaps,
dermal amyloid might be demonstrated only after long-term scratching when the skin
appears clearly hyperkeratotic and pigmented [80]. Currently, most of these techniques
have lost some use in daily practice due to the availability of specific types of antibodies
via immunohistochemistry analysis [161]. Electronic microscopy plays a limited role in the
everyday diagnosis of CLA. Nevertheless, it might prove a useful tool when the mentioned
special stains fail to demonstrate the amyloid deposit, as explained by [161,162].

To date, several treatment options for PLCA have been described: both topical and
systemic agents as well as phototherapy and laser therapy. However, with few clinical trials
available so far, there is no gold standard treatment. Despite the multitude of treatment
options, none are curative and most of them aim to break the itch–scratch cycle. One
treatment option could be systemic retinoid treatment, which revealed benefits in decreas-
ing pruritus and the size of the cutaneous lesion in LA and BA [117,163]. Other systemic
options were cyclophosphamide and colchicine, which showed benefits on pruritus, pig-
mentation, and decrease in the size of the lesions with few side effects according to some
authors [164]. In cases of refractory PLCA, methotrexate was proposed as an alternative
therapy in resolving skin manifestations and also in reducing pruritus [164,165]. Amitripty-
line, a tricyclic antidepressant, was indicated in neuropathic itching and it has proved
beneficial in the resolution of pruritus in PLCA with no change in the skin lesions [164].
Mild cases of PLCA responded to a topical treatment such as the application of capsaicin to
some extent [165]. Topical corticosteroids have demonstrated long-term resolution in LA
lesions and improvement in pruritus when combined with topical salicylic acid 25% oint-
ment [166,167]. Dimethyl sulfoxide has been used in LA with varying degrees of success
and notable side effects [117]. Alternatively, topical vitamin D3 analogue calcipotriol, the
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calcineurin inhibitor cyclosporine, menthol, and tacrolimus have been used [117]. Recently,
laser therapy was found to be efficient in PLCA (carbon dioxide laser and erbium:yttrium
aluminum garnet laser) [168,169]. Different phototherapeutic modalities have also been
described in the treatment of PLCA such as UVB irradiation and topical psoralen with UVA
(PUVA) therapy with heterogeneous results until the present time [170,171]. Furthermore,
additional interventions such as transcutaneous nerve stimulation and surgical procedures
(such as electrodessication, dermabrasion) in LA have also been reported [117]. Currently,
we have no statistically significant data to pinpoint whether MEN2-CLA should be ap-
proached differently than non-MTC cases and whether LCA in association with a thyroid
malignancy/neuroendocrine neoplasm is more severe apart from an increased disease
burden that comes with the clinical expression due to the RET pathogenic variants.

5.2. Integrating MTC/MEN2-Related CLA into the Larger Frame of Skin Lesions in
Neuroendocrine Neoplasia and Endocrine Tumors/Malignancies

Rarely in the general population are there patients presenting with skin lesions that
reflect an underlying endocrine disorder, typically a functionally active tumor. As seen in
MEN2-CLA, awareness remains the key operating perspective. For instance, necrolytic
migratory erythema (NME) was firstly described by Becker et al. (Becker’s nevus) in
1942 in a woman with an islet cell type of pancreatic carcinoma that was revealed only
post-mortem [172]. Further on, a connection with glucagonoma was established, regardless
of if the neoplasia was a part of MEN1 in some patients (in addition to other endocrine
tumors in the pituitary, parathyroid, thyroid, and adrenal glands) [173,174]. McCune–
Albright syndrome (somatic activating mutations in GNAS gene) has cafe-au-lait spots,
hyper-function of multiple endocrine glands, etc.; autonomous hyper-function most com-
monly involves the ovary, but also the thyroid (nodular hyperplasia with thyrotoxicosis),
adrenal (multiple hyperplastic nodules with Cushing’s syndrome), and pituitary glands
(somatotropinomas and prolactinomas), and parathyroid tumors causing HPTH (another
type of hereditary HPTH as found in MEN2) [175,176]. As mentioned, MEN1, with an
autosomal dominant predisposition to tumors of the parathyroid glands, anterior pituitary,
and pancreatic islet cells, associates with multiple cutaneous lesions such as angiofibromas,
lipomas, and collagenomas, and, potentially, an increased risk of other non-endocrine
malignancies [177,178]. The complex of spotty skin pigmentation, myxomas, endocrine
gland over-activity due to various tumors, and schwannomas, namely, Carney complex,
stands for an autosomal dominant syndrome involving the skin in terms of developing
myxomas (that may have different non-cutaneous sites), and spotty pigmentation [179,180].

Finally, one of the most important aspects in the complex panel of skin signature
with respect to the endocrine malignancies/neuroendocrine neoplasia is represented by
the carcinoid syndrome in metastatic MTC. This is caused by the liver metastases that
interfere with the serotonin (5-hydroxytriptamine), respectively, 5-hydroxyindolacetic acid
metabolism as similarly seen in cancers of other primary origins [181,182]. Cutaneous
involvement such as episodic flushing is the clinical hallmark in 85% of the patients. It
primarily involves the face, neck, and upper chest, which become red to violaceous or
purple, and are associated with a mild burning sensation [181,183,184]. Thus, CLA in
MTC/MEN2 subjects should be regarded via the larger and complex frame of endocrine
and skin interplay that involves a common genetic, epigenetic, molecular, immune, and
hormonal background depending on the specific circumstance.

5.3. Current Limits and Further Expansion

We are aware of the limits of a non-systematic review, but, noting the current data
available, we chose a more flexible approach under various perspectives, from genetic
interplay to the clinical expression. There is still a matter of debate: if CLA is more severe in
MEN2 versus non-MEN2 subjects; if MTC displays a more severe outcome in CLA-positive
versus CLA-negative patients; if there is a distinct risk of non-MTC MEN2 components other
than the indications provided by the mutation map in CLA-positive individuals. Overall,
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early diagnosis of CLA should raise the question of a thyroid malignancy across the life
span. Moreover, prurit before the actual skin lesion might pinpoint a pathogenic contributor
to lichen, other than the actual RET gene influence. We still need large, longitudinal studies
to address this crossroad between CLA and MEN2. Although the association of CLA with
MEN2 has long been established, the reason why a small percentage of MEN2 patients
actually develop this manifestation remains an open matter.

6. Conclusions

CLA in thyroid cancer, particularly, MTC (and mostly across the confirmation of MEN2
underlying the RET pathogenic variants) stands for the following key points:

• MEN2-related CLA occurs in patients with C634 RET pathogenic variants; most data agree
that one-third of C634-positive subjects have CLA, but the ranges are between 9% and 50%.

• One single study showed the RET codons map (codon 634 in exon 11) in CLA: C634Y
(affecting 43.6% of the subjects), followed by C634R (27.3%), C634W (10.9%), C634G
(9.1%), C634F (1.8%), and C634 (5.5%).

• Non-C634 germline RET pathogenic variants included (at a low level of statistical
evidence) the following: RET V804M mutation in exon 14 for MTC and CLA (CLA at
upper back); RET S891A mutation in exon 15 binding OSMR variant G513D (FMTC
and CLA comprising the lower legs to thighs, upper back, shoulders, arms, and
forearms); and C611Y (CLA at interscapular region).

• Awareness in CLA-positive patients is essential, including the decision of RET testing
in selected cases (Table 2).

Table 2. Key findings across our search according to the mentioned references [128,137,139,141,143,
146,149–155,157–162].

Number Key Findings according to Our Search

1. MEN2-related CLA occurs in patients with C634 RET pathogenic variants; most data agree that one-third of the
C634-positive subjects have CLA, but the ranges are between 9% and 50%.

2. One single study showed the RET codons map (codon 634 in exon 11) in CLA: C634Y (affecting 43.6% of the subjects),
followed by C634R (27.3%), C634W (10.9%), C634G (9.1%), C634F (1.8%), and C634 (5.5%).

3.

Non-C634 germline RET pathogenic variants included (at a low level of statistical evidence) the following: RET V804M
mutation in exon 14 for MTC and CLA (CLA at upper back); RET S891A mutation in exon 15 binding OSMR variant
G513D (FMTC and CLA comprising the lower legs to thighs, upper back, shoulders, arms, and forearms); and C611Y
(CLA at interscapular region).

4. Typically, CLA is detected at an early age (from childhood until young adulthood) before the actual MTC identification
unless RET screening protocols are already applied.

5. The time frame between CLA diagnosis and the identification of RET pathogenic variants varied between 5 and 60
years according to one study.

6. Females seem more prone to MEN2-CLA than males.

7. The same RET mutation is not necessarily associated with the same CLA presentation.

8. In MTC/MEN2 subjects, the most affected CLA area was the scapular region of the upper back.

9. Alternatively, another hypothesis highlights the fact that CLA is secondary to a long-term prurit/notalgia paresthetica
in MTC/MEN2, and not to a distinct RET influence.

10.
The relationship between NP and MEN2 might be explained by the fact that neural crest cells, implicated in the
embryological development of the adrenal medulla and para-follicular C cells of the thyroid, are also involved in the
embryogenesis of the thoracic sensory fibers that explains the pruritus sites.

11. While the NP hypothesis might explain some cases, pruritus may be largely absent in a high percentage of patients with
PLCA, including some patients with LCA-MEN2; thus, other pathogenic loops might actually be involved.

12.
Alternatively, it has been suggested that pathogenic variants in OSMR and IL31RA genes lead to incorrect IL-31
signaling, which is directly related to local pruritus (and the co-presence of other non-RET mutations should be taken
into consideration to explain CLA in MTC/MEN2).
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Table 2. Cont.

Number Key Findings according to Our Search

13. OSMR p.G513D may play a role in modifying the evolutionary processes of LA in the subjects that co-harbor RET
mutations (further studies are necessary to sustain this aspect).

14 Awareness in CLA-positive patients is essential, including the decision of RET testing in selected cases.
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Abbreviations
BA biphasic amyloidosis
CLA cutaneous lichen amyloidosis
CRD cysteine-rich domain
EDNRH endothelin receptor type B
EBV Epstein–Barr virus
FMTC familial medullary thyroid carcinoma
GDNF glial cell line-derived neurotrophic growth factor
GFRα GDNF family receptor alpha
IL interleukin
HD Hirschsprung disease
HPTH primary hyperparathyroidism
LA lichen amyloidosis
MTC medullary thyroid carcinoma
MEN multiple endocrine neoplasia
MA macular amyloidosis
NA nodular amyloidosis
NP notalgia paresthetica
NME necrolytic migratory erythema
OSMR oncostatin M receptor beta subunit
PTC papillary thyroid carcinoma
PLCA primary localized cutaneous amyloidosis
PHEO phaeochromocytoma
PUVA psoralen with UVA
RET Rearranged during Transfection
sMTC sporadic medullary thyroid carcinoma
SEER Surveillance, Epidemiology, and End Results
TKD tyrosine kinase domain
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