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Załuska, W.; Kronbichler, A.

Kynurenine Pathway after Kidney

Transplantation: Friend or Foe? Int. J.

Mol. Sci. 2024, 25, 9940. https://

doi.org/10.3390/ijms25189940

Academic Editor: Christy C. Bridges

Received: 21 August 2024

Revised: 9 September 2024

Accepted: 13 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Kynurenine Pathway after Kidney Transplantation: Friend
or Foe?
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Abstract: Kidney transplantation significantly improves the survival of patients with end-stage
kidney disease (ESKD) compared to other forms of kidney replacement therapy. However, kidney
transplant recipients’ outcomes are not fully satisfactory due to increased risk of cardiovascular
diseases, infections, and malignancies. Immune-related complications remain the biggest challenge
in the management of kidney graft recipients. Despite the broad spectrum of immunosuppressive
agents available and more detailed methods used to monitor their effectiveness, chronic allograft
nephropathy remains the most common cause of kidney graft rejection. The kynurenine (KYN)
pathway is the main route of tryptophan (Trp) degradation, resulting in the production of a plethora
of substances with ambiguous properties. Conversion of Trp to KYN by the enzyme indoleamine
2,3-dioxygenase (IDO) is the rate-limiting step determining the formation of the next agents from the
KYN pathway. IDO activity, as well as the production of subsequent metabolites of the pathway, is
highly dependent on the balance between pro- and anti-inflammatory conditions. Moreover, KYN
pathway products themselves possess immunomodulating properties, e.g., modify the activity of IDO
and control other immune-related processes. KYN metabolites were widely studied in neurological
disorders but recently gained the attention of researchers in the context of immune-mediated diseases.
Evidence that this route of Trp degradation may represent a peripheral tolerogenic pathway with
significant implications for transplantation further fueled this interest. Our review aimed to present
recent knowledge about the role of the KYN pathway in the pathogenesis, diagnosis, monitoring,
and treatment of kidney transplant recipients’ complications.

Keywords: kidney; transplantation; graft; rejection; immunosuppression; kynurenine; kynurenic
acid; tryptophan; infection; cancer

1. Introduction

Kidney diseases represent a broad spectrum of disorders with various etiologies
and clinical presentations. Although the number of individuals worldwide affected by
kidney diseases is estimated at 850 million, their true prevalence seems to be largely
underestimated [1]. It was suggested that kidney disorders are one of the most common
healthcare problems, as the number of people affected by kidney diseases is significantly
larger than patients with diabetes or individuals infected by the human immunodeficiency
virus (HIV) [1]. Chronic kidney disease (CKD), the predominant kidney disorder with a
significant impact on health outcomes, often diagnosed late or unrecognized, is expected
to be the 5th leading cause of death by 2040 [2]. Patients with CKD are at exceptionally
high risk of cardiovascular events, largely dependent on preexisting comorbidities and the
presence of specific risk factors [3,4]. The incidence of cardiovascular events was reported
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to be even higher in advanced CKD, namely end-stage kidney disease (ESKD), resulting in
a 5-year survival rate in patients receiving kidney replacement therapy (KRT) of only 48%
in Europe and 41% in the United States of America [5]. According to the European Renal
Association Registry, the unadjusted incidence of KRT in Europe in 2021 was 145 per million,
whereas the number of kidney transplantations performed per million was estimated at
37 [6]. Among KRT methods, kidney transplantation represents the gold standard of
treatment for ESKD, resulting in a substantial improvement in patients’ 5-year survival,
ranging from 85.8% (deceased donor) to 94.2% (live donor) [7]. The unadjusted 5-year graft
survival was shown to be lower, 77.0% in deceased donor transplantations vs. 88.3% in
live donor kidney transplantations [7]. In Europe, despite a lower transplant rate than in
America, more ESKD patients live with a functioning graft (47% vs. 32%, respectively). This
can still be considered unsatisfactory [8]. Despite the improvements in surgical techniques,
organ preservation methods, and immunosuppressive modalities, patient and graft survival
are limited, mainly due to immunological damage of the transplanted organs, as well as
cardiovascular, infectious, and oncological complications [9,10]. Searching for reliable and
well-validated biomarkers is of special importance in kidney transplant recipients’ care [11].
Proposed biomarkers, including plasma donor-derived cell-free DNA (dd-cfDNA), blood
Torque teno virus copy numbers, or urinary chemokine tests, are promising noninvasive
methods of graft function evaluation already under investigation [12,13]. However, the
increasing number of kidney transplant recipients necessitates the search for novel strategies
for the diagnosis and treatment of transplant-related complications.

Tryptophan (Trp) is one of the eight essential amino acids. Yet, only 1% of its pool is
used for protein synthesis [14]. The remaining 99% of available Trp is metabolized into
biologically active substances, including serotonin (1–2%), and several molecules formed
along the kynurenine (KYN) pathway [15]. The KYN pathway, a major route of Trp degrada-
tion, has been extensively studied in the context of neurological [16,17], inflammatory [18],
oncological [19], kidney [20,21], cardiovascular [22,23], and metabolic disorders [24,25].
The functional link between Trp metabolism and organ transplant complications received
increasing attention during the last few years. The Trp-KYN pathway was implicated in
the host defense against pathogens and in peripheral mechanisms of tolerance induction,
mainly through its impact on T cell activity [26].

In this review, we discuss the putative role of the KYN pathway in immunological
control after kidney transplantation and in the risk of infectious, oncological, and cardio-
vascular complications. Additionally, diagnostic and therapeutic implications for kidney
transplant recipients’ management are highlighted.

2. The Kynurenine (KYN) Pathway

Trp degradation begins with a rate-limiting step, which is catalyzed by 3 enzymes:
indoleamine-2,3-dioxygenase 1 (IDO1), indoleamine-2,3-dioxygenase 2 (IDO2), or tryptophan-
2,3-dioxygenase (TDO) (Figure 1).

All Trp-degrading enzymes are hemoproteins [27]. TDO is exclusively expressed in
the liver and central nervous system and controls the entrance of Trp into the KYN pathway
under physiological conditions [28]. Due to its low affinity for Trp, TDO is active when
Trp concentrations exceed those required for protein or serotonin synthesis, indicating the
role of TDO in the prevention of Trp accumulation [15]. Several factors, including Trp [29],
glucocorticoids (GCs), and glucagon [30,31], were shown to upregulate TDO activity. In
contrast to TDO, IDO is an inducible enzyme widely distributed in various cells; in immune
cells, it includes monocytes, macrophages [32], and dendritic cells (DCs) [33]. IDO gene
transcription is mainly stimulated by interferon-γ (IFN-γ) [34], tumor necrosis factor-α
(TNF-α), interleukin-1 (IL)-1 [35], and toll-like receptors (TLRs) activated by lipopolysac-
charide (LPS) [36]. However, IDO expression should not be considered equal to IDO’s
activity, since some DCs may constitutively express IDO and require stimulatory signals
(i.e., superoxide) for posttranslational heme modification to activate IDO [37]. During the
activation of IDO by immunological stimuli, the activity of TDO is substantially suppressed,
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and IDO remains the main enzyme responsible for Trp breakdown [38]. Additionally, IDO
has a lower capacity with a significantly higher affinity for Trp compared to TDO [39].
Two distinct isoforms of IDO have been found in humans. Whereas IDO1 seems to play
a major role in Trp depletion, resulting in antimicrobial defense and T cell suppression,
and most available data regarding IDO are related to IDO1, the role of IDO2 is much less
explored [40]. Several studies suggested IDO2 involvement in oncogenesis [41] through the
inhibition of immune response to tumor cells [42]. However, other Trp-degrading enzymes,
TDO and IDO1, have also been found on cancer cells, pointing to their role in facilitating
the immune escape of tumors [28].
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Figure 1. The kynurenine pathway. 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hy-
droxykynurenine; AA, anthranilic acid; 3-HAAO, 3-hydroxyanthranilic acid dioxygenase; IDO1, in-
doleamine-2,3-dioxygenase 1; IDO2, indoleamine-2,3-dioxygenase 2; KATs, kynurenine ami-
notransferase; KMO, kynurenine-3-monooxygenase; KYN, kynurenine; KYNA, kynurenic acid; 
KYNU, kynureninase; NAD+, nicotinamide adenine dinucleotide; PA, picolinic acid; QA, quinolinic 
acid; QPRT, quinolinic acid phosphoribosyltransferase; TDO, tryptophan-2,3-dioxygenase; Trp, 
tryptophan; XA, xanthurenic acid. Created with https://www.BioRender.com (accessed on 01st Au-
gust 2024). 
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Figure 1. The kynurenine pathway. 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine;
AA, anthranilic acid; 3-HAAO, 3-hydroxyanthranilic acid dioxygenase; IDO1, indoleamine-2,3-
dioxygenase 1; IDO2, indoleamine-2,3-dioxygenase 2; KATs, kynurenine aminotransferase; KMO,
kynurenine-3-monooxygenase; KYN, kynurenine; KYNA, kynurenic acid; KYNU, kynureninase;
NAD+, nicotinamide adenine dinucleotide; PA, picolinic acid; QA, quinolinic acid; QPRT, quinolinic
acid phosphoribosyltransferase; TDO, tryptophan-2,3-dioxygenase; Trp, tryptophan; XA, xanthurenic
acid. Created with https://www.BioRender.com (accessed on 1 August 2024).

After the transformation of Trp to N-formylkynurenine (N-formyl KYN) by IDO
or TDO, the next step entails the formation of KYN, which later can be converted into
three types of metabolites. KYN is preferentially metabolized into 3-hydroxykynurenine
(3-HK) by kynurenine-3-monooxygenase (KMO) and then by kynureninase (KYNU) into
3-hydroxyanthranilic acid (3-HAA), which is a substrate for picolinic acid (PA) or quinolinic
acid (QA) production, with nicotinamide adenine dinucleotide (NAD+) as a final prod-
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uct [43]. Although some data show that most Trp metabolites from this branch, especially
3-HK, 3-HAA, and QA, act as antioxidants [44], the majority of reports indicate that they
exert pro-oxidant activity [45–47] and thus may evoke cell death [48]. IDO/TDO and KMO
enzymes are crucial to the control of Trp degradation and its metabolic effects.

Kynurenic acid (KYNA), synthesized from KYN by kynurenine aminotransferases
(KATs), is a broad-spectrum antagonist of all types of ionotropic glutamate (GLU) receptors of
N-methyl-D-aspartate (NMDA) [49], alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), and kainate [50] type. Neuroprotective, antiepileptic, and neuromodulatory
effects of KYNA are well described, and the possible impact of KYNA on brain disorders
is broadly accepted [51–54]. KYNA was also shown to inhibit α7 nicotinic acetylcholine
receptors [55] and to act as a ligand for aryl hydrocarbon receptor (AhR) [56] and G protein-
coupled receptor 35 (GPR35), which regulate the immune response [57]. Consequently,
through the AhR- [58] and GPR35-mediated processes, KYNA may act as an immunosup-
pressive agent [59] and a guardian of gut microbiota homeostasis, linking the immune
system with microbiota and metabolic disorders [60,61].

The third branch of the KYN pathway, yielding anthranilic acid (AA), is the least stud-
ied route of Trp metabolism. Since AA can be converted through nonspecific hydroxylation
into 3-HAA (Figure 1), it becomes a precursor for neuroactive products. Although AA
itself presented ambiguous properties in the context of neurological disorders, a complex
interplay between AA and the gut-brain axis was recently highlighted [62].

Trp and its metabolites have been extensively studied in CKD patients. KYN pathway
activation, presented as IDO induction, and high serum KYN, KYNA, and QA levels
correlate with CKD severity and inflammatory parameters, high-sensitivity C-reactive
protein (hsCRP), and soluble TNF-receptor-1 (sTNFR-1) concentration, independently of
serum creatinine level [63]. Additionally, KYN and its metabolites have been linked to
oxidative stress [64], endothelial dysfunction [65], cognitive impairment [66], and incident
cardiovascular disease in CKD patients [67,68]. Although products of Trp degradation can
accumulate in the body secondary to impaired glomerular filtration, their level, especially
in the serum, was shown to tightly correlate with immune system activation and possibly
to predict kidney damage and its progression. The measurement of serum IDO activity
together with the Naples prognostic score has been recently proposed as a useful tool in
early CKD diagnosis [69].

Importantly, Trp is present at a 2 mmol/L concentration in one of the most popu-
lar preservation solutions, a histidine-tryptophan-ketoglutarate (HTK) solution, mainly
because of its antioxidant and membrane-stabilizing potential [14]. HTK, invented by
Bretschneider, was shown to be a comparable preservation solution when preservation
times were shorter and when standard criteria donor organs were implanted [70,71]. Mod-
ified HTK solution, a HTK-N solution, was shown to lower endothelial graft damage,
although observations in kidney graft recipients are limited [72]. On the other hand, Trp
deprivation is suggested to induce resistance to hypoxia and prevent ischemia-reperfusion
injury, mainly by lowering the number of circulating neutrophils [73] or autophagy in-
duction, which may decrease the secretion of proinflammatory cytokines [74]. Indeed,
Eleftheriadis et al. reported that Trp deprivation increased renal proximal tubular epithelial
cell survival in hypoxic conditions through autophagy induction [75]. Further studies are
needed to clarify the impact of Trp on kidney graft preservation results.

3. Immune Function in Kidney Transplantation and the Kynurenine Pathway

Despite significant progress in immunosuppressive treatment and methods of im-
munological monitoring, the 10-year graft survival rate remains suboptimal, reaching
53.6% in patients with kidney transplants received from deceased donors [76]. Chronic
antibody-mediated rejection (ABMR) is considered the most common cause of graft loss,
without clear benefits from currently available treatment strategies, including intensified
immunosuppression or therapeutic plasma exchange (TPE). Therefore, it is of special im-
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portance to search for novel targets for the monitoring and treatment of immune-mediated
kidney graft damage.

3.1. Indoleamine 2,3-Dioxygenase (IDO)

IDO remains one of the most extensively studied enzymes in the KYN pathway.
The interest in this field has rapidly increased since Munn et al. showed that female
mice accepted semi-allogenic fetuses under undisturbed Trp catabolism only [77]. Due to
pleiotropic immunoregulatory effects revealed through the years, IDO is considered one of
the main guardians of immune tolerance, contributing to the downregulation of allogenic
responses (Figure 2).
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Figure 2. IDO activation resulting in immune cell activity modifications. AhR, aryl hydrocarbon
receptor; APC, antigen-presenting cell; CTLA4, cytotoxic T-lymphocyte associated protein 4; GCN2,
general control non-derepressible 2; IDO, indoleamine 2,3-dioxygenase; IFN-γ, interferon-γ; IL-4,
interleukin-4; IL-10, interleukin-10; LPS, lipopolysaccharide; MHC, major histocompatibility complex;
mTOR, mammalian target of rapamycin; NK, natural killer; NO, nitric oxide; PD-L1, programmed
death-ligand 1; TGF-β, transforming growth factor-β; Th, T helper cell; TLR, toll-like receptor; TNF-α,
tumor necrosis factor-α; Treg, regulatory T cell. Created with https://www.BioRender.com (accessed
on 1 August 2024).

IDO is expressed constitutively in the majority of cells and tissues, including im-
munocompetent cells such as monocytes, macrophages, and DCs. In the kidney, IDO
expression was mainly detected in renal tubular epithelial cells [78], which are critically
involved in kidney graft rejection, as well as in mesangial [79] or glomerular endothelial
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cells, as shown in patients with graft glomerulitis [80]. However, IDO localization in the
graft may vary through time. Considerable IDO expression was detected around atrophic
tubules, in cells resembling endothelial and mesangial cells, and in minor quantities in
tubular epithelial cells in biopsy samples obtained from patients at two years after kidney
transplantation and with signs of chronic damage [81]. IDO activity is highly susceptible
to stimulation with pro-inflammatory stimuli, such as IFN-γ, TNF-α, and TLRs, whereas
anti-inflammatory cytokines IL-4 [82], IL-10, transforming growth factor-β (TGF-β) [83],
and nitric oxide (NO) [84] diminish it. Among the possible effects of IDO on the immune
system, its influence on T cells was widely explored. Stimulation of IDO resulting in Trp
depletion was shown to activate the general control non-derepressible 2 (GCN2) kinase
pathway, causing an arrest of T cell proliferation in the mid-G1 phase and making them
susceptible to apoptosis [85]. Interestingly, apoptosis of T helper (Th1) cells rather than
Th2 cells may be evoked by KYN metabolites, 3-HAA and QA [86]. As shown in mes-
enchymal stem cells, IFN-γ-induced stimulation of IDO results in regulatory T cell (Treg)
induction, contributing to local immunosuppressive effects and to attenuation of renal
fibrosis [87]. Ligation of B7-1/B7-2 molecules by cytotoxic T-lymphocyte-associated protein
4 (CTLA4)/CD28 present on the surface of Tregs or by a separate CTLA4 fusion protein
(CTLA4-Ig) is necessary to activate IDO and afterward inhibit T cell proliferation [88].

IDO activation was also suggested to increase macrophage polarization into the M2
phenotype [89], suppress natural killer (NK) cell activity [90], decrease mean histocompati-
bility complex (MHC) class I gene expression [91], and be implicated in the development
of local immune tolerance. Although IDO does not affect B cell proliferation [92], there is
some evidence suggesting the impact of IDO on B cell-driven responses [93]. Inhibition
of the mammalian target of rapamycin (mTOR) is another potential mechanism related to
IDO’s action [94].

Furthermore, IDO1 may modulate immunological system activity through other mech-
anisms. The activation of AhR, a transcription factor crucial for immune system control,
increases both IDO1 and IDO2 expression in DCs, together with the generation of FoxP3(+)
Tregs [95]. On the other hand, it was demonstrated that IDO products alone, especially
KYN, can activate AhR and lead to Treg generation [96]. Moreover, in plasmacytoid DCs,
TGF-β-dependent self-tolerance was linked with the non-enzymatic regulatory activity of
IDO [97].

There is ongoing debate about the significance of the KYN pathway activity mea-
surement in kidney transplant recipients. The key question remains whether elevated
Trp degradation and production of KYN-derived compounds is an immunosuppressive
mechanism preventing tissue damage or rather reflecting already ongoing tissue break-
down. Discrepancies come from different models tested (animal vs. human), diverse tissues
and body fluids analyzed (serum, urine, or graft biopsy samples), or analytical methods.
Another issue that should be taken into consideration is the kidney transplant recipient’s
condition. Lower serum Trp, which is considered a marker of IDO activation, may not
reflect true amino acid turnover. After kidney transplantation, based on improved protein
ingestion and kidney function normalization, an elevation of serum Trp level should be
expected [98]. Indeed, it has been shown that already during the first 3 days after trans-
plantation, changes in Trp and its metabolites can be observed, with a significant reduction
of serum KYNA and KYN and an increase of Trp [99]. On the other hand, higher serum Trp
can be expected in the case of tissue damage, especially under inflammatory stimuli [100].
The role of gut microbiota in protein breakdown and KYN metabolite formation should
not be forgotten. Therefore, the diagnostic and prognostic relevance of the KYN pathway
monitoring in kidney transplant recipients remains a huge challenge.

In one of the first studies in kidney transplant recipients, Holmes et al. reported that
the serum KYN level started to increase 5 to 7 days prior to a biopsy-confirmed acute
rejection (AR) episode, and it did not correlate with serum creatinine concentration or
high dose steroid treatment [101]. Later on, it was shown that serum levels of KYN and
Trp are higher in non-rejecting allograft recipients than in healthy volunteers, and that
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their levels considerably increase during rejection episodes [102]. Importantly, the serum
KYN/Trp ratio in the rejection group was higher starting from day 1 after transplantation
and correlated with serum neopterin concentration, a marker of immune system activa-
tion [103]. Moreover, kidney biopsy specimen staining indicated IDO upregulation in
tubular epithelial cells of rejected grafts, whereas in healthy grafts, IDO expression was not
detectable. Similarly, it was reported that the serum KYN level increases from the 3rd day
before biopsy-proven kidney graft rejection, as compared to recipients without rejection
episodes [104]. It remains unclear whether the KYN pathway activation can be related to
a specific type of graft rejection. In a recently published study, a higher IDO1 expression
in interstitial foci of kidney graft biopsies specimens was related to a higher incidence of
ABMR (15% vs. 2.44%, p = 0.035) and T cell-mediated rejection (TCR) (53.75% vs. 17.07%,
p = 0.0001) [105]. The significance of IDO elevation in kidney transplant recipients exposed
to a plethora of immune stimuli is not fully clarified [106]. Studies in pediatric kidney
graft recipients suggested that serum KYN/Trp ratio elevation can be an important tool in
differentiating acute graft rejection from infection [107,108].

3.2. Kynurenine 3-Monooxygenase (KMO)

Possible involvement of KMO in graft survival was recently highlighted. In contrast
to IDO, KMO is a mitochondrial outer membrane protein, found preferentially in tubular
epithelial cells [109], glomerular cells, and podocytes [110]. KMO is an important enzyme
of the KYN pathway, which controls the amount of KYN entering three different arms of
the path and thus regulates the formation of various biologically active products, including
NAD+ (Figure 1). Diminished de novo NAD+ formation due to KMO downregulation
in proximal tubular epithelial cells was postulated as one of the potential mechanisms
of acute kidney injury (AKI) [111]. Direct KMO products, 3-HK together with 3-HAA,
are well-known immunosuppressive agents. Both compounds significantly inhibit T cell
proliferation and survival without effect on DCs or endothelial cells, as shown in the
murine corneal allograft model [112]. Inhibition of KMO, resulting in lower 3-HK and
3-HAA formation, can be related to a higher immunological risk of graft rejection. Indeed,
in a porcine model of acute kidney allograft rejection, lower KMO gene transcription and
protein level, with concomitant higher IDO gene expression and enzyme activity, were
demonstrated [113]. Similarly, a significant reduction in KMO activity was observed in a
pig model of kidney allograft rejection [109]. Additionally, 3-HK and 3-HAA protected
tubular epithelial cells from injury, in part through inhibition of T cell proliferation and
upregulation of AhR expression. Moreover, 3-HK was reported to inhibit mesangial
cell proliferation [114], whereas 3-HAA and 3-HK attenuated glomerular injury in an
experimental autoimmune glomerulonephritis animal model [115].

On the other hand, in animals with the KMO knockout, a proteinuria phenotype
developed, and in diabetic patients, a significant decrease in podocytic KMO expression
was found [110]. Thus, more studies are needed to explore the role of KMO and its
metabolites in kidney diseases.

3.3. Kynurenic Acid (KYNA)

The immunomodulatory role of KYNA is well recognized. Through the impact on
GPR35, KYNA may inhibit the activation of the NLRP3 inflammasome in macrophages
and suppress the production of caspase-1 and IL-1 β [116]. KYNA, through an activation
of AhR, was shown to enhance the expression of TNF-stimulated gene 6 (TSG-6) in human
mesenchymal stem cells and to reduce immune cell infiltration in an animal model of
acute lung injury [58]. The potential impact of KYNA on T cell activity should also be
considered, since AhR activation promotes differentiation of Tregs and inhibits expression
of proinflammatory IL-17 [117]. Indeed, KYNA was reported to decrease IL-23 secretion
by LPS-activated DCs and Th17 cell polarization [118]. Additionally, KYNA lowered
human invariant NK T cell activation through GPR35 [119]. However, in an animal model
of arthritis, KYNA failed to promote Treg development, contrary to the other NMDA
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antagonist memantine [120]. Other effects, including inhibition of TNF-α secretion from
human mononuclear cells and high mobility group box protein 1 (HMGB1) secretion
in monocytes and granulocyte cultures, were shown [121]. Although KYNA was not
examined in kidney transplant patients in the context of immunological risk, presented
data suggest the involvement of KYNA in immune tolerance formation. Interestingly, it
was reported that tacrolimus (TAC), but not cyclosporine (CsA), elevates KYNA formation,
suggesting KYNA’s role in selected immunosuppressive drug action [122].

4. Infections

In addition to the great impact on alloantigen tolerance induction, the activation of
the KYN pathway may impair the immune response against pathogens, which is of special
importance in kidney transplant recipients. Trp degradation is a well-described mechanism
of suppressing pathogens’ growth, including Chlamydia species [123] or cytomegalovirus
(CMV) [124]. However, an uncontrolled KYN pathway activation, especially during sepsis,
is considered to act bidirectionally. The pro-inflammatory state results in an increased
level of certain Trp metabolites and leads to an impaired response to opportunistic infec-
tions [125], which may have a tremendous impact on patient outcomes. Indeed, plasma
KYNA levels in patients with septic shock correlated with lactate and procalcitonin con-
centration only in survivors. Furthermore, a lack of reduction of KYNA after continuous
veno-venous hemofiltration (CVVH) procedures was suggested as a factor predicting the
fatal outcome of septic shock [126]. Although data from kidney transplant recipients are
limited, KYN pathway activity analysis was indicated as a promising tool in early diagnosis
of infectious complications and evaluation of their intensity. In a group of 355 kidney graft
recipients, blood KYN levels were positively correlated with CMV infection severity prior
to the diagnosis and were higher in patients with bacterial sepsis [106]. A decrease in
blood KYN concentration reflected a response to the treatment, whereas its further increase
was associated with poor outcomes. Similarly, serum KYN levels were markedly elevated
in kidney transplant recipients with viral and Gram-negative bacterial infections in the
absence of AR, making this parameter useful in differentiating posttransplant complica-
tions [101]. Interestingly, KYN and QA plasma concentrations were shown to increase
significantly during CMV, but not BKV infection, indicating their significance in the fast
detection of systemic immune activation linked with CMV [127]. More studies are needed
to explore the relevance of KYN pathway metabolite measurements in different types of
infections after kidney transplantation and its impact on long-term outcomes.

5. Malignancies

Despite the well-known effects of KYN pathway activation in immune tolerance,
Trp degradation can be a double-edged sword regarding carcinogenesis, especially in
kidney transplant recipients. In the tumor microenvironment, a complex interplay between
immune and cancer cells regulates tumor growth, its response to treatment, and metastasis
formation. In clear cell renal cell carcinoma (RCC), secreted IL-10 and TGF-β promote
Treg differentiation, which suppresses effector T cells and stimulates tumor growth [128].
Increased PD-L1 (programmed death-ligand 1) expression is another mechanism of negative
T cell function control by cancer cells [129]. It was demonstrated that PD-L1 expression
is enhanced by IDO1 in cancer cells in an AhR-dependent manner [130] and reduced by
IDO1/TDO inhibition [131]. Co-expression of PD-L1 and IDO1 are negative prognostic
factors associated with poor overall survival [132]. IDO1 and IDO2 were found in various
types of cancers [133], and their presence was related to resistance to therapy and lower
survival. A higher KYN/Trp ratio in clear cell RCC patients was associated with a decreased
5-year survival compared to subjects with low KYN/Trp values [134]. Other abnormalities
in KYN pathway activity in tissues of RCC patients include lower expression of QPRT and
downregulation of KMO and 3-HAAO [135], although QPRT activity may vary in different
types of cancers [136]. Under QPRT inhibition, NAD+ synthesis is secured by the activation
of a salvage pathway, often preferred by cancer cells, in which nicotinamide is converted
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by nicotinamide phosphoribosyltransferase (NAMPT) into NAD+ [137]. In patients with
metastatic RCC, increased tissue TDO expression was strongly associated with higher KYN
levels, a worse response to immunotherapy, and higher mortality [138]. Therefore, the
KYN pathway can be an interesting target for diagnosis, monitoring, and treatment of
malignancies [139]. In fact, IDO [140], TDO [141], or KMO [142] inhibitors were found
effective as antineoplastic agents in certain types of cancer [143]. However, inhibitors of the
KYN pathway enzymes should be used with great caution in kidney transplant recipients
due to the potential risk of AR, as observed with programmed cell death protein 1 (PD-1),
PDL-1, and CTLA-4 inhibitors [144]. On the other hand, KYNA exhibited antiproliferative
effects on glioblastoma [145], colon [146], and renal [147] cancer cells, but its potential role
in carcinogenesis is not fully clarified [148]. Therefore, a more selective KYN pathway
inhibition should be preferred.

6. Cardiovascular Risk

KYN pathway metabolites play a complex role in cardiovascular disease pathogene-
sis. Although Trp degradation products possess anti- and pro-inflammatory properties,
most studies correlated them with higher cardiovascular risk, especially due to AhR ac-
tivation [23]. Recent animal studies suggested a direct effect of KYN on blood pressure
elevation and kidney damage [149]. Elevated Trp breakdown was associated with the
development of cardiovascular disease [22] and was suggested as a prognostic factor
in heart failure [150], coronary artery disease [151], pulmonary hypertension [152], and
thromboembolic episodes [153], especially in patients with established CKD. In a recent
Chronic Kidney Disease–Renal Epidemiology and Information Network (CKD-REIN)
study, KYN was established as an independent risk factor for nonfatal and fatal cardio-
vascular outcomes in patients with CKD [154]. In this cohort of patients, increased Trp
catabolism was correlated with procoagulant factors including plasma tissue factor [155],
prothrombin fragments 1 + 2 [156], thrombomodulin, and von Willebrand factor level [157].
Although more evidence indicates the involvement of KYN metabolites in tissue damage,
KYNA displays distinct properties. In bovine endothelial cell cultures, KYNA prevented
cells from homocysteine-induced impairment, significantly increasing their migration and
proliferation [158]. A positive correlation between KYNA plasma concentration and hy-
perhomocysteinemia in peritoneal dialyzed patients with atherosclerotic cardiovascular
disease, possibly reflecting the protective effects of KYNA in this group of patients, was
reported [159]. A relationship between serum KYNA level and aortic stiffness in patients
with atrial fibrillation was also presented [160].

In kidney transplant recipients, cardiovascular diseases remain the most common
cause of death, accounting for about 20–35% of overall mortality and significantly decreas-
ing life expectancy [161]. Therefore, the search for novel diagnostic and therapeutic targets
in this population is of special importance. Due to the fact that serum KYN and 3-HK levels
were shown to be independently associated with graft failure, and 3-HK level was linked
with higher mortality in kidney transplant recipients [100], more studies are necessary to
explore the impact of the KYN pathway activation on cardiovascular risk and mortality in
this particular group of patients.

A summary of possible effects of KYN pathway activity alterations in kidney trans-
plant recipients is presented in Table 1.
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Table 1. Summary of KYN pathway activity alterations and their possible effects on kidney transplant
recipients. ABMR, antibody-mediated rejection; CKD, chronic kidney disease; IDO, indoleamine-2,3,-
dioxygenase; KMO, kynurenine 3-monooxygenase; KYN, kynurenine; KYNA, kynurenic acid; RCC,
renal cell carcinoma; Tac, tacrolimus; TCR, T-cell-mediated rejection; Trp, tryptophan.

KYN Pathway Element Organ or System Function Modification

Indoleamine-2,3 dioxygenase
(IDO)

• High IDO activity correlates with chronic kidney disease (CKD) severity and
inflammatory parameters [63];

• IDO activity measurement as a tool for early CKD diagnosis [69];
• IDO upregulation in tubular epithelial cells of rejected kidney grafts [102];
• Higher IDO expression in kidney graft biopsies related to a higher incidence of

antibody-mediated rejection (ABMR) or T-cell-mediated rejection (TCR) [105];
• Elevated kynurenine (KYN)/tryptophan (Trp) ratio as a tool in differentiating acute

graft rejection from infection [107,108];
• High IDO expression in various cancers related to resistance to anticancer treatment and

lower survival [133];
• High IDO activity related to cardiovascular risk [23].

Kynurenine 3-monooxygenase
(KMO)

• Low KMO gene expression protein level [113] and activity [109] in a porcine model of
kidney allograft rejection;

• KMO knockout results in proteinuria in animal models [110];
• Low podocytic KMO expression in diabetic patients [110];
• Low KMO expression in renal cell carcinoma (RCC) patients [135];
• KMO inhibitors as antineoplastic drugs in certain types of cancer [142].

Kynurenic acid (KYNA)

• High serum KYNA level correlates with CKD severity and inflammatory markers [63];
• High plasma KYNA levels correlate with procalcitonin and lactate concentration in

survivors from septic shock, whereas a lack of KYNA concentration reduction relates to
poor survival [126];

• Plasma KYNA concentration correlates with hyperhomocysteinemia in peritoneal
dialyzed patients with atherosclerotic cardiovascular disease [159];

• Serum KYNA level related to aortic stiffness in patients with atrial fibrillation [160];
• Tacrolimus Tac increases KYNA production [122].

7. Pharmacological Interventions

The impact of pharmacotherapy, in particular immunosuppression, on the KYN
pathway activity after kidney transplantation is a matter of debate (Figure 3).
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of KYN pathway modifications, through the impact on urinary microbiota (left) or local IDO
transfection (right). CsA, cyclosporine A; CTLA4-lg, cytotoxic T-lymphocyte associated protein
4 fusion protein; GCS, glucocorticosteroids; IDO, indoleamine-2,3-dioxygenase; MMF, mycophe-
nolate mofetil; mTORi, mammalian target of rapamycin inhibitor; TAC, tacrolimus. Created with
https://www.BioRender.com (accessed on 1 August 2024).

Since increased Trp metabolism along the KYN pathway induces immune tolerance,
the impact of immunosuppressive drugs on the pathway seems conceivable. On the other
hand, immunosuppressive agents can potentially restrict IDO overactivation. Changes in
the KYN pathway activity may also serve as a diagnostic tool assessing the response to
the pharmacotherapy, similarly to selected soluble checkpoint inhibitors in patients with
antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) [162].

So far, the data on immunomodulating agents and the KYN pathway in kidney
transplantation are rather limited. In phytohemagglutinin-stimulated and unstimulated
human peripheral blood mononuclear cells, TAC, CsA, mammalian target of rapamycin
inhibitor (mTORi) sirolimus, and methylprednisolone dose-dependently inhibited Trp
degradation and neopterin level, whereas mycophenolate mofetil (MMF) was efficacious
only at higher concentrations [163]. Different results were obtained in a mesangial cell line,
in which incubation with MMF, CsA, and TAC significantly enhanced IDO expression, but
sirolimus showed no effect [79]. As previously mentioned, TAC was shown to increase
KYNA synthesis in cortical slices, which suggests that this KYN metabolite may be involved
in TAC’s action [122]. Prior studies suggested that immunosuppressive drugs may affect
the KYN pathway differently in various types of cells and that the outcome depends on
coexisting immune stimuli. Studies analyzing the impact of CTLA4-Ig, abatacept and
belatacept, on the KYN pathway did not yield consistent results. Abatacept failed to change
the expression of IDO mRNA and KYN levels in DCs [164], and CTLA4-Ig did not increase
the KYN/Trp ratio in bone marrow recipients [165]. In contrast, recombinant soluble CTLA4
induced the expression of IDO in human peripheral blood mononuclear cells and DCs [166].
Transduction of adenovirus-mediated CTLA4Ig (AdCTLA4Ig) increased IDO mRNA and
KYN levels, and both effects were blocked by the IDO inhibitor 1-methylTrp (1-MT) [167].
In kidney graft biopsies specimens, belatacept treatment increased the number of Tregs
in dysfunctional kidneys compared to CsA, whereas no changes in peripheral Tregs were
observed [168]. Similarly, higher Treg levels, lower CD4(+)/IL-17A cell levels, decreased
kidney graft fibrosis [169], and higher peripheral Bregs, Tregs, and DCs counts [170] were
demonstrated after belatacept treatment in comparison to patients receiving CsA. Although
an important alternative to calcineurin inhibitors, beletacept use is still limited due to the
increased risk of AR and posttransplant lymphoproliferative disorder [171].

On the other hand, targeted KYN pathway inhibition may provide beneficial effects
on the treatment of selected complications after kidney transplantation, namely malig-
nancies or cardiovascular diseases. Beyond KMO, KATs, and KYNU inhibitors, which
are potentially novel candidates in anticancer therapy [136], other already available drugs
were shown to selectively inhibit the KYN pathway. Angiotensin converting enzyme in-
hibitors [172], angiotensin II type 1 receptor blockers [173], cyclooxygenase inhibitors [174],
fibrates [175], and glibenclamide [176] were reported to inhibit KATs activity, which may
result in the reduction of kidney damage-related complications, especially in kidney trans-
plant recipients.

8. Conclusions

Generalized KYN pathway activation with the goal to evoke peripheral immune
tolerance poses a risk of uncontrolled immune system depression; therefore, methods
of its localized activation are of special interest. Local administration of IDO by viral
vectors [177,178] or modulation of urinary microbiota [179] are interesting options for
future studies on the modulation of KYN pathway activity in kidney transplant recipients.

Exploring KYN pathway activity in patients after kidney transplantation offers an
interesting approach to the diagnosis and treatment of tissue graft rejection and related com-
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plications. Due to the multiple and often opposing effects of the KYN pathway metabolites
on cellular survival and immune processes, there is a need for enzyme- and target-organ-
selective pharmacological tools. Precise targeting of the pathway may bring novel diagnos-
tic and therapeutic tools, allowing better management of kidney transplant recipients.
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Abbreviations

1-MT 1-methyltryptophan
3-HAA 3-hydroxyanthranilic acid
3-HAAO 3-hydroxyanthranilic acid dioxygenase
3-HK 3-hydroxykynurenine
AA anthranilic acid
AAV ANCA-associated vasculitis
ABMR antibody-mediated rejection
AdCTLA4Ig adenovirus-mediated CTLA4Ig
AhR aryl hydrocarbon receptor
AKI acute kidney injury
AMPA alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANCA antineutrophil cytoplasmic antibody
AR acute rejection
BKV polyomavirus BK
CKD chronic kidney disease
CTLA4 cytotoxic T-lymphocyte-associated protein 4
CTLA4-Ig CTLA4 fusion protein
CMV cytomegalovirus
CsA cyclosporine
CVVH continuous veno-venous hemofiltration
DC dendritic cell
dd-cfDNA donor-derived cell-free DNA
ESKD end stage kidney disease
GCN2 general control non-derepressible 2
GCS glucocorticosteroids
GLU glutamate
GPR35 G protein-coupled receptor 35
HIV human immunodeficiency virus
HMGB1 high mobility group box protein 1
hsCRP high-sensitivity C-reactive protein
HTK histidine-tryptophan-ketoglutarate
IDO indoleamine-2,3-dioxygenase
IDO1 indoleamine-2,3-dioxygenase 1
IDO2 indoleamine-2,3-dioxygenase 2
IFN-γ interferon-γ
IL interleukin
KAT kynurenine aminotransferase
KMO kynurenine 3-monooxygenase
KRT kidney replacement therapy
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KYN kynurenine
KYNA kynurenic acid
KYNU kynureninase
LPS lipopolysaccharide
MHC mean histocompatibility complex
MMF mycophenolate mofetil
mTOR mammalian target of rapamycin
mTORi mammalian target of rapamycin inhibitor
NAD+ nicotinamide adenine dinucleotide
NAMPT nicotinamide phosphoribosyltransferase
N-formyl-KYN N-formyl-kynurenine
NK natural killer
NMDA N-methyl-D-aspartate
NO nitric oxide
PA picolinic acid
PD-1 programmed cell death protein 1
PD-L1 programmed death-ligand 1
QA quinolinic acid
QPRT quinolinic acid phosphoribosyltransferase
RCC renal cell carcinoma
sTNF-1 soluble TNF-receptor-1
TAC tacrolimus
TCR T cell mediated rejection
TDO tryptophan-2,3-dioxygenase
TGF-β transforming growth factor-β
Th T helper cell
TLR toll like receptor
TNF-α tumor necrosis factor-α
TPE therapeutic plasma exchange
Treg regulatory T cell
Trp tryptophan
TSG-6 TNF-stimulated gene 6
XA xanthurenic acid
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61. Iwaniak, P.; Owe-Larsson, M.; Urbańska, E.M. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in
Parkinson’s Disease—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 2915. [CrossRef] [PubMed]

62. Shaw, C.; Hess, M.; Weimer, B.C. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic
Acid and Anthranilic Acid Derivatives. Microorganisms 2023, 11, 1825. [CrossRef] [PubMed]

https://doi.org/10.1179/135100099101534927
https://doi.org/10.1016/S0021-9258(17)35696-X
https://doi.org/10.1016/j.neuropharm.2015.11.015
https://doi.org/10.3389/fendo.2019.00158
https://doi.org/10.1158/0008-5472.CAN-07-1872
https://www.ncbi.nlm.nih.gov/pubmed/17671174
https://doi.org/10.1016/j.biocel.2008.01.005
https://www.ncbi.nlm.nih.gov/pubmed/18282734
https://doi.org/10.1586/14737175.2015.1049999
https://www.ncbi.nlm.nih.gov/pubmed/26004930
https://doi.org/10.1073/pnas.87.7.2506
https://www.ncbi.nlm.nih.gov/pubmed/2320571
https://doi.org/10.1046/j.1471-4159.1998.70010299.x
https://doi.org/10.1021/bi992997s
https://doi.org/10.1007/s12640-023-00656-1
https://doi.org/10.1073/pnas.93.22.12553
https://doi.org/10.1016/0014-2999(88)90814-X
https://doi.org/10.1111/cns.13768
https://www.ncbi.nlm.nih.gov/pubmed/34862742
https://doi.org/10.3390/nu15041030
https://www.ncbi.nlm.nih.gov/pubmed/36839388
https://doi.org/10.1016/j.jns.2009.02.326
https://www.ncbi.nlm.nih.gov/pubmed/19268309
https://doi.org/10.1111/jnc.16015
https://www.ncbi.nlm.nih.gov/pubmed/38102897
https://doi.org/10.1016/j.bcp.2012.12.014
https://doi.org/10.1093/toxsci/kfq024
https://doi.org/10.1074/jbc.M603503200
https://doi.org/10.1038/s41418-017-0006-2
https://doi.org/10.3389/fimmu.2017.01957
https://doi.org/10.3389/fimmu.2021.717392
https://doi.org/10.3390/ijms25052915
https://www.ncbi.nlm.nih.gov/pubmed/38474162
https://doi.org/10.3390/microorganisms11071825
https://www.ncbi.nlm.nih.gov/pubmed/37512997


Int. J. Mol. Sci. 2024, 25, 9940 16 of 21

63. Schefold, J.C.; Zeden, J.P.; Fotopoulou, C.; Von Haehling, S.; Pschowski, R.; Hasper, D.; Volk, H.D.; Schuett, C.; Reinke, P. Increased
Indoleamine 2,3-Dioxygenase (IDO) Activity and Elevated Serum Levels of Tryptophan Catabolites in Patients with Chronic
Kidney Disease: A Possible Link between Chronic Inflammation and Uraemic Symptoms. Nephrol. Dial. Transpl. 2009, 24,
1901–1908. [CrossRef] [PubMed]

64. Pawlak, K.; Kowalewska, A.; Pawlak, D.; Mysliwiec, M. Kynurenine and Its Metabolites—Kynurenic Acid and Anthranilic Acid
are Associated with Soluble Endothelial Adhesion Molecules and Oxidative Status in Patients with Chronic Kidney Disease. Am.
J. Med. Sci. 2009, 338, 293–300. [CrossRef] [PubMed]
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