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Abstract

Return visit admissions (RVA), which are instances where patients discharged from the

emergency department (ED) rapidly return and require hospital admission, have been asso-

ciated with quality issues and adverse outcomes. We developed and validated a machine

learning model to predict 72-hour RVA using electronic health records (EHR) data. Study

data were extracted from EHR data in 2019 from three urban EDs. The development and

independent validation datasets included 62,154 patients from two EDs and 73,453 patients

from one ED, respectively. Multiple machine learning algorithms were evaluated, including

deep significance clustering (DICE), regularized logistic regression (LR), Gradient Boosting

Decision Tree, and XGBoost. These machine learning models were also compared against

an existing clinical risk score. To support clinical actionability, clinician investigators con-

ducted manual chart reviews of the cases identified by the model. Chart reviews categorized

predicted cases across index ED discharge diagnosis and RVA root cause classifications.

The best-performing model achieved an AUC of 0.87 in the development site (test set) and

0.75 in the independent validation set. The model, which combined DICE and LR, boosted

predictive performance while providing well-defined features. The model was relatively

robust to sensitivity analyses regarding performance across age, race, and by varying pre-

dictor availability but less robust across diagnostic groups. Clinician examination demon-

strated discrete model performance characteristics within clinical subtypes of RVA. This

machine learning model demonstrated a strong predictive performance for 72- RVA.

Despite the limited clinical actionability potentially due to model complexity, the rarity of the

outcome, and variable relevance, the clinical examination offered guidance on further vari-

able inclusion for enhanced predictive accuracy and actionability.
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Author summary

This study developed a model to predict emergency department (ED) return visit admis-

sions (RVA) which are clinical events in which patients discharged from the ED rapidly

return and require hospital admission. RVA are multifactorial but have been associated

with preventable adverse outcomes. We developed a predictive model by evaluating sev-

eral machine learning techniques and compared this to an existing clinical score. The

model drew data from electronic health records at three urban EDs. Clinicians conducted

a clinical evaluation of the model input and output through manual chart reviews. The

model was found to be predictive and fairly generalizable but lacked clinical actionability.

Findings will inform future model development process by ensuring that we include vari-

ables are that predictive and explainable to clinicians in a way that leads to actionability.

Introduction

Emergency department (ED) return visit admissions (RVA) refer to instances where patients

discharged from the ED return or “bounce back” to the ED within a short period and subse-

quently require hospital admission. RVA within 72 hours of initial ED visit occur following

over half a million US ED visits annually. [1] Prior work has shown RVA to be associated with

adverse outcomes, such as increases in mortality and ICU admission, higher needs for surgical

interventions, and longer hospitalizations. [2–6] These outcomes are unique to RVA and have

not been identified in all ED return visits, a much more frequent, lower acuity outcome. [7]

More recently, RVA case reviews have been utilized to identify quality improvement opportu-

nities, as well as delayed diagnoses in specific disease groups. [8–11] However, the etiology of

RVA are multifactorial, inclusive of complex patient, system, and physician factors such as

shared decision-making, patient non-compliance, adverse social conditions, disease recur-

rence, inadequate outpatient care, unforeseen rapid disease progression, and suboptimal man-

agement by the ED care team. [8,12–15] Known risk factors of RVA include older age, severity

of illness, renal disease, congestive heart failure, vital signs during ED stay, medical error, as

well as social factors such as ambulatory status, family support and insurance status. [2,16]

The lack of clinical tools to prevent RVA has been found as a crucial barrier and is com-

pounded by two factors: the technical problem of RVA prediction and the translation problem

of converting the prediction into actionable tools. The identification of patients at high risk for

acute post-ED adverse events remains a complex endeavor, hindered by the combinatorial

explosion of potentially relevant risk factors of RVA. [17] Information generated from the ED

is highly heterogenous, including a variety of information from ED presentation to ED dis-

charge, in addition to medical history, prior visits, and social determinants of health (SDoH).

The principal conditions for ED presentations also vary in disease and disease severity across

patient populations. [1,18] The episodic ED care model often results in a high degree of miss-

ing and potentially erroneous data. These characteristics render the RVA prediction a techni-

cally challenging problem that calls for innovative analytical techniques tailored to

heterogeneous ED data. Moreover, beyond accurate prediction, the actionable use of machine

learning outputs to the care team is paramount. In this study, we define the actionability of

RVA prediction as the interpretability of the models and the straightforward application of

their predictors in initiating concrete clinical interventions to mitigate the risk. The ability of a

model to not only signal risk but also provide actionable insights into both the etiology of risk

and potential interventions is essential for translating predictive power into clinical impact.

PLOS DIGITAL HEALTH A machine learning model to predict return visit admissions (RVA)

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000606 September 27, 2024 2 / 18

Funding: Yiye Zhang (YZ), Peter Steel (PS),

Arindam Roychoudhury (AR), Jin Ho Han (JH),

Adam Wright (AW) and Jessica Ancker (JA)

received funding from National Institute of Aging,

R01AG076998-01. YZ, PS, Matthew McCarty

(MM), and Lynn Jiang (LJ) received funding from

MCIC LL. Emergency Medicine Patient Safety

Discretionary Award. YZ and Yufang Huang (YH)

received funding from National Library of Medicine,

K01LM013257. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pdig.0000606


Objectives

This study aims to use machine learning to develop a predictive model for RVA. We studied

the predictive robustness of our approach and its practical application in the ED setting, with

the eventual goal of enhancing patient’s health trajectories and mitigating the occurrence of

RVA. This paper delves into the specifics of the machine learning training process using two

EDs’ EHR data, and our process for retrospective validation at an independent hospital. A clin-

ical evaluation was also performed to both examine model performance across different clini-

cal scenarios [19], and support the future development of a clinical response protocol in which

the machine learning model will be included.

Results

A total of 61,564 qualifying patients who had 62,154 ED visits in 2019 were included in the

study in the development site. Using the same inclusion and exclusion criteria, we included an

independent validation set of 73,453 patients who presented to another urban ED in 2019. Fig

1 describes the inclusion criteria. Between the development and validation sites, there is signif-

icant difference in the racial distributions, age, sex, insurance types, and ability to speak

English among patients (p-value <0.01). However, there is no statistically significant differ-

ence in the proportions of 72-hour RVA cases between the two ED sites. Table 1 displays the

patient characteristics in the study cohort. RVA within 72 hours were experienced by 508

(0.82%) of ED treat-and-release patients in the development site, and 571 (0.78%) in the vali-

dation site. There is a statistically significant difference in the racial distributions and insur-

ance types between the total population and those who had 72-hr RVA in the development

and validation sites (p-value <0.05). Between the total population and RVA cases, there was

no statistically significant difference in sex in the development site, but a significant difference

was observed in the validation sites. No difference in English language or age was observed

between the total population and RVA cases either in the development or validation sets.

Table 2 describes the common diagnoses defined in ICD-10 observed in RVA, which provide

a clinical view of factors related to the RVA.

Fig 1. Inclusion Criteria (Development Site). WCM: Weill Cornell Medicine. LMH: Lower Manhattan Hospital.

https://doi.org/10.1371/journal.pdig.0000606.g001
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Prediction performance

Experiment results on the 72-hr RVA are shown in Table 3 sorted by AUC values achieved in

each experiment. The AUC ranged between 0.611 to 0.874 for 72-hour RVA. The highest

AUC is 0.874 (95% CI: 0.842–0.907s) achieved by DICE+LR+FFS (applying LR to DICE clus-

ter membership and variables selected by FFS), moderately outperforming LR+FFS without

DICE (applying LR to variables selected by FFS). Table 3 also lists the positive likelihood ratio,

which is the likelihood that a positive prediction will occur in a patient with RVA compared to

the likelihood that a positive prediction would be expected in a patient without RVA. LR+FFS

has the highest ratio, followed by DICE + GBDT and XGboost.

We applied the model without any modification to the independent validation set. The

same inclusion criteria and data processing were performed. The model performance achieved

an AUC of 0.75, sensitivity 0.37, specificity of 0.93, and positive likelihood ratio of 5.52.

Table 1. Patient Demographics.

Development Site Validation Site

Total

(N = 62154)

72-hour RVA

(N = 508, 0.82%)

Total

(N = 73453)

72-hour RVA

(N = 571, 0.78%)

Race White (%) 25358 (40.80%) 258 (50.79%) 15245 (20.75%) 157 (27.5%)

Black (%) 13288 (21.38%) 79 (15.55%) 8317 (11.32%) 69 (12.08%)

Other (%) 14630 (23.54%) 113 (22.24%) 33563 (45.69%) 207 (36.25%)

Asian (%) 4715 (7.59%) 50 (9.84%) 15014 (20.44%) 136 (23.82%)

Unknown (%) 4163 (6.70%) 8 (1.57%) 1314 (1.79%) 2 (0.35%)

Language English-speaking (%) 54031 (86.93%) 443 (87.20%) 43468 (59.18%) 347 (60.77%)

Sex Female (%) 34945 (56.22%) 285 (56.10%) 39633 (53.96%) 281 (49.21%)

Age (sd) 47.7 (18.55) 55.7 (20.51) 37.67 (24.73) 46.83 (28.92)

Insurance Commercial (%) 29182 (46.95%) 187 (36.81%) 23037 (31.36%) 129 (22.59%)

Medicaid (%) 14992 (24.12%) 114 (22.44%) 32861 (44.74%) 244 (42.73%)

Medicare (%) 12344 (19.86%) 183 (36.02%) 11278 (15.35%) 172 (30.12%)

Self-pay (%) 5569 (8.96%) 23 (4.53%) 6266 (8.53%) 25 (4.38%)

https://doi.org/10.1371/journal.pdig.0000606.t001

Table 2. Characteristics of RVA visits.

RVA Disposition 72-hour (N = 508, 0.8%)

N (%) ICD-10-CM diagnoses (N)

Home 379 (74.61%) Other sepsis (19),

Cellulitis and acute lymphangitis (15),

Other disorders of urinary system (14),

Other 54 (10.63%) Other sepsis (4),

Zoster [herpes zoster] (3),

Malignant neoplasm of colon (2),

Fracture of forearm (2),

Fracture of femur (2),

Other disorders of urinary system (2),

Type 2 diabetes mellitus (2)

Left AMA 71 (14.0%) NA (13)

Pain in throat and chest (5)

Abdominal and pelvic pain (4)

Find of drugs and other substances, not normally found in blood (3)

Deceased 4 (0.79%) Other sepsis (1),

Atheroembolism (1),

Intracranial and intraspinal phlebitis and thrombophlebitis (1),

Intracranial injury (1)

https://doi.org/10.1371/journal.pdig.0000606.t002
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We observed variables that featured predominantly in a positive prediction of RVA across

individual patients. These include membership in the high-risk DICE cluster, orders for

patient navigator consults, use of opiate, orders for blood culture tests, and lactate ringers. To

provide information about the high- and low-risk DICE clusters, we evaluated the risk ratio of

72-hr RVA across clusters. A risk ratio is a measure used to determine the relative risk of a cer-

tain outcome occurring in one group compared to another. The risk ratio between higher- and

lower-risk clusters is 2.96 and 4.51 in the training and test sets, respectively. This indicates that

the higher-risk clusters found by DICE have a greater likelihood of 72-hr RVA (4.51 times in

the test set) occurring compared to the lower-risk clusters. In addition, Fig 2 lists 20 model var-

iables selected by FFS, ordered by their variable importance according to the mean absolute

SHAP values obtained in the test set. The most important variables in predicting 72-hour RVA

included the probability to belong in high- and low-risk clusters derived by DICE, pain in

throat and chest, Basophil count, consult order for patient navigators.

Sensitivity and bias analyses

We conducted additional analyses in the development site to better evaluate the model perfor-

mance and bias. The AUC for 72-hour for White, Black, Asian, and Other racial subgroups

were 0.881 (95% CI: 0.83–0.93), 0.922 (95% CI: 0.87–0.97), 0.825 (95% CI: 0.73–0.92), and

0.833 (95% CI: 0.75–0.92), respectively. The sensitivity analysis included testing on patients

aged 65 years old or above, and across relevant disease categories. Removing variables provid-

ing information around discharge in the prediction decreased AUC by 3%. Limiting the analy-

sis to patients 65 and older decreased AUC by 1.1%. The decrease in AUC was the largest

among patients with HF (AUC = 0.58). The AUC increased for UTI patients in predicting

72-hr RVA (AUC = 0.94).

Clinical evaluation

Figs 3 and 4 display the clinical evaluation results. We selected the 160 patients predicted to

have the 80 highest and 80 lowest risks of RVA. The red and blue colors indicate a positive and

a negative prediction, respectively. Infectious diseases related RVA were more commonly

identified by the model (40%) compared to those missed by the model (11%), with a significant

difference (p<0.001). General Medicine diagnoses were more prevalent in RVA missed by the

model (46.3%) compared to those identified by the model (33.3%, p = 0.008). Illness-related

causes such as disease progression and recurrent disease were common in both model-

Table 3. 72-hr RVA Predictive Performance.

Site Model AUC Sensitivity Specificity Positive Likelihood Ratio

Development (test set) DICE + LR + FFS 0.874 1.000 0.559 2.268

LR + FFS 0.872 0.754 0.806 3.887

XGboost 0.829 0.600 0.826 3.448

DICE + GBDT 0.828 0.708 0.802 3.576

DICE + XGboost 0.828 0.623 0.740 2.396

LR 0.793 0.615 0.785 2.860

DICE + LR 0.783 0.523 0.876 4.218

GBDT 0.759 0.692 0.719 2.463

Risk score prediction (modified score) 0.704 0.692 0.528 1.466

Risk score prediction 0.611 0.446 0.727 1.634

Validation DICE + LR + FFS 0.75 0.37 0.93 5.52

https://doi.org/10.1371/journal.pdig.0000606.t003
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Fig 2. SHAP visualization of 72-hour RVA features.

https://doi.org/10.1371/journal.pdig.0000606.g002
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identified and missed RVAs. Physician-related causes were noted in 27.5% of model-identified

and 17.5% of model-missed RVAs, with no significant difference in model performance across

root cause categories. Arbitration by the third reviewer was necessary in under 5% of the cases.

Discussion

This paper describes our effort to develop and validate a predictive model for RVA that

achieves both predictive performance as well as interpretability. The highest predictive

Fig 3. RVA Evaluated by Index ED Visit Diagnosis Classification. Positive: model predicted RVA; Negative: model

missed RVA.

https://doi.org/10.1371/journal.pdig.0000606.g003

Fig 4. RVA evaluated by index ED visit root cause classification. Positive: model predicted RVA; Negative: model

missed RVA.

https://doi.org/10.1371/journal.pdig.0000606.g004
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performance as measured by AUC resulted from the use of DICE, a novel predictive clustering

algorithm which identified clusters of patients based on their risk of RVA and patient similar-

ity. DICE was especially successful in identifying representations and clusters concerning the

72-hour RVA outcome, as observed in the risk ratio of 4.5 between clusters. While there is lim-

ited prior work on the prediction of RVA, [20] our performance in terms of AUC is strong as

demonstrated in our study data. We subsequently used the cluster membership to train a

binary classifier with additional variables selected from the EHR to boost interpretability. Pre-

dictors in the classifier were consistent with previous studies, including insurance payor status,

higher disease acuity, ED LOS, and chronic conditions such as HF. [12,21,22] On the other

hand, our EHR-derived predictors did not include known predictors related to cognitive

impairment and functional status. [23]

Our quantitative analysis of model performance across age and disease categories exhibited

variability, which may be explained by the constraints of the clinical evaluation of ED patients.

Accurate prediction of RVA is reliant on input that will represent a conceptual “data pro-

drome” for the RVA event, using data available by the end of the index ED visit. This prerequi-

site for performance could bias the model towards clinical scenarios and patients that produce,

or are represented by, a data prodrome of distinguishable EHR variables. This hypothesis is

supported by the superior predictive performance in the infectious disease group observed in

the clinical examination, clinical scenarios (e.g.: urinary tract infection) which may more con-

sistently produce variable input data patterns. Slightly lower performance of the model in

older adults complements prior work describing a loss of physiological reactivity with aging, as

well as afebrile infections and other differences in disease expression that may limit the forma-

tion of a data prodrome during the initial ED visit to suggest a high likelihood of RVA.[24, 25]

While the results of the model examination deliver some transparency into current model per-

formance across differing clinical scenarios, the findings can also provide directionality to

future exploration of additional input variables to improve performance in granular cases such

as predicting RVA-related patient non-compliance with the post-ED care plan. Future

research will also prospectively evaluate the effectiveness of the machine learning model,

including comparison to real-time physician judgement to promote our understanding of the

model’s impact compared.

Further, our “data prodrome” hypothesis offers promise for the clinical value of the model,

since prior work describes the majority of RVA events occur when the care team misjudge the

disease trajectory and the likelihood of disease progression, as evidenced in the successful

implementation of machine learning-based CDS for early sepsis recognition.[26–28] Similarly,

high model performance in RVA determined to be the result of physician-related factors, (e.g.,

diagnostic error), may also be explained by under-interpreted EHR data (e.g.: abnormal lab

values, or vital signs).[26,27] Despite these correlations, model output into two distinct pheno-

types–high risk and low risk for RVA–is unlikely sufficient clinical decision support (CDS) to

inform ED care teams of meaningful next steps. Identifying clinical subgroups of RVA with

discrete model performance characteristics is likely the first step to developing output beyond

the binary, towards a goal of output that can guide meaningful next steps in patient care. ED

disposition decisions are often more complex than a simple dichotomous decision of admit

versus discharge. Despite the recognition of patient vulnerability, hospital admission on an ini-

tial ED visit may not be the best solution for many patients at risk of RVA, who could alterna-

tively benefit from individualized post-ED care management and transitions-of-care

interventions.[29,30] Further, RVA etiology is multifactorial; the appropriate mitigating

actions are likely dramatically different in the setting of an anticipated RVA due a patient’s

non-compliance with their post ED care plan, compared to a missed diagnosis of a critical ill-

ness that warranted admission at the initial ED visit. The complexity of RVA etiology requires
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a CDS design that will inform the variable downstream clinical workflows to mitigate risk.

Thus, future work will focus on further developing model output, such as multiple outcome-

aware clusters from DICE, that can inform next steps in individual patient’s care, a transfor-

mative approach shown to improve patient outcomes. [31,32]

This study has several limitations. Due to the use of EHR data within a single health system,

we likely missed patients who had RVA at hospitals outside the study sites. [33] Future study

will leverage multi-site data or insurance claims data to mitigate this limitation. A technical

challenge for RVA prediction is the low outcome rate leading to moderate positive likelihood

ratio by the model. False positives may lead to alert fatigue and wasted resources, whereas false

negatives may potentially miss opportunities to identify and intervene on patients at risk of

adverse events. We tackled the data imbalance issue with several approaches, including sam-

pling (oversampling of the minority class), learning similarities from patients admitted from

their index ED visits, changing the neural network architecture including hyperparameter tun-

ing. Specifically, we attempted to capture and learn from the nuanced similarities among

patients admitted from their index ED visits so that our model could better generalize across

the outcome of RVA. In training DICE, we experimented with different architectures and lay-

ers that are known to perform well under imbalanced data conditions. We ultimately observed

the best performance through hyperparameter tuning to find the optimal set of parameters

that allowed our model to better predict RVA. Future research can examine methods such as

contrastive learning[34] and a cascade approach to further filter false positives.[35] Relatedly,

while DICE was intended to identify clusters that have similar risk level but differing patient

characteristics, in this study, we found the best predictive performance resulted from 2-clus-

ters: one high-risk and one low-risk. This may be due to the rarity of the outcome and small

sample size. Future work will increase sample size to further study the derived clusters cen-

tered on RVA.

In addition, our evaluation of the trained model in the validation site observed a decrease in

performance by an AUC of 0.12. The decrease may be attributed to change in patient popula-

tion and clinical practice. Since the model’s input variables, particularly orders, are influenced

heavily by the workflow, a change in hospital and thus a change in workflow may affect the

model performance. Since this study used only one year worth of data, in future model devel-

opment phases we will use larger datasets, inclusive of unseen populations and clinical envi-

ronments, to further develop and evaluate the model’s generalizability and evaluate its stability

against distributional shift by using datasets from time periods such as the Covid pandemic era

of 2020–21. [36]

In summary, our machine learning approach using two hospitals’ EHR data predicted 72hr

ED RVA, outperforming a single heuristic RVA clinical risk score. The success potentially

derives from utilizing a diverse array of variables that contribute to precise risk identification,

including the patient’s clinical profile, complexity of the ED presentation itself, and influential

social determinants. [37] This study highlights the potential value of predictive analytics in

emergency medicine: the development of automated, precision screening and prediction tools

in a uniquely challenging environment, where traditional manual CDS tools have been incon-

sistently integrated into clinical practice. [38–45] We also identified crucial area for improve-

ment around clinical significance from limited direct actionability from the model output.

Additional methodological development is warranted for this model to serve as EHR-based

CDS for ED clinicians.

Material and methods

The study design, and the model construction and evaluation process, are described below.
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Relevant work

Despite the potential gain in patient outcomes if RVA are prevented, the development of pre-

dictive tools tailored to RVA has been limited. [4,16,20,21,23,46] Meldon et al. developed a tri-

age risk stratification tool (TRST) to predict the composite outcomes of return visits (RV) and

hospital admissions among elder patients following their ED discharge. [23] McCusker et al.

developed the identification of seniors at risk (ISAR) which is mainly aimed to predict all ED

return visits (RV), a much more frequent, lower acuity outcome compared to RVA. [7] Both

screening tools are intended for manual screening and consist of questions that rely on self-

disclosure and direct assessments by healthcare professionals. Recent work has taken more

predictive model approaches to automate screening without requiring manual assessments.

Gabayan et al. developed a risk score to predict 7-day RVA derived from multivariate logistic

regression among older adults aged 65 and above. [4] Hong et al. and Hao et al. developed

machine learning models to predict 72-hour, 9-day, and 30-day RV using EHR data. [47,48]

Relatedly, others have develop machine learning models to predict admission at time of ED tri-

age and after ED evaluation. [49,50] In addition, there are technical parallels between RVA

and 30-day all-cause hospital readmissions, a problem for which machine learning has demon-

strated notable efficacy, particularly in adapting to the non-linear and intricate relationships

between variables. [51,52]

Quality-based research has most frequently explored ED RV and RVA within 48 hours to

7-days post index visit, with 72 hours between initial to return visit being the most frequently

studied and near consensus “clinically high-yield” time-period. [2,5,8,21,22,53] One large mul-

tistate study by Rising et al on RV advocated for a 9-day period to capture patients’ unmet

“acute care needs”. However, this study also demonstrated that the 75% of the 9-day RV

occurred within the first 72 hours, further informing this study’s target outcome. [54]

Study design

This is a retrospective observational study using variables extracted from the EHR. Study data,

including the development and validation sets, were obtained from two EDs using encounters

from 2019. The development site includes one of quaternary care, urban, academic hospital,

and the other of a medium-sized urban community hospital. The validation set was drawn

from a medium-sized urban community hospital. The three hospitals are divergent in both

geographical location and demographic population served. The outcome is defined as RVA

within 72 hours since the index ED visit discharge.

Participants

Inclusion and exclusion were applied at the patient level, and subsequently, also at the visit

level. At the patient level, we included all patients presenting to the adult ED and were dis-

charged or left against medical advice from their index ED visit. We also excluded patients

who left the ED without being evaluated or seen by a healthcare provider and patients trans-

ferred to other acute care facilities. These criteria include patients discharged to home, as well

as to a non-acute care facility such as a nursing home or a non-acute care facility. We excluded

all patients who were admitted to the hospital from their index ED visit. Patients presenting to

the psychiatric ED were removed from the study. Patients who had more than five ED visits in

a year, a common definition for ED “High-Utilizers”, were also removed from the study.

[55,56] High-utilizers, or patients who visit the ED with significantly higher frequency com-

pared to the rest of the population, have been well described in the literature and frequently do

not require acute hospital admission. [57] This distinct subgroup of ED patients have common

multidimensional characteristics, and typically require extensive longitudinal case
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management to successfully impact their avoidable healthcare utilization reflective of their

challenging chronic care needs. [58] High-utilizers are thus conceptually distinct and have dif-

ferent healthcare needs compared to the vast majority of RVA patients, who quickly bounce

back to the ED and require admission due to inadequacy of their initial post-ED care plan

regarding their acute care needs.

Since patients may have multiple visits, we treated each visit as an index visit to determine

if the following ED visit qualifies as an RVA, the study outcome. Among the study eligible

patients, to remove index visits with scheduled revisits, we excluded those encounters with

diagnoses codes associated with planned return ED visits, such as laceration repairs for suture

removal, and wound checks. Diagnoses associated with excluded visits are listed in S3 File.

Data

For each patient, our study variables include information recorded from ED presentation to

discharge in the index visit. These include information on socio-demographics, diagnoses,

therapeutics (e.g.: medications), laboratory test orders and test results, vital signs, the fre-

quency of imaging tests, operations and utilization data, and other clinical care variables. The

socio-demographic information includes age, gender, race, marital status, preferred language,

and insurance payor. Diagnoses were extracted using ICD-10-codes and additionally repre-

sented as Elixhauser comorbidity index to indicate the comorbidity burden. [59] Medications

were grouped into drug classes according to MedlinePlus. [60] For vital signs, we summarized

the sequential values as one-time variables: first, last, maximum, minimum, and average of all

values recorded in the ED. For lab values, we used the average from the ED stay.

Proposed variables were evaluated by the clinical team prior to model construction to opti-

mize clinical interpretability and meaningfulness. Diagnostic tests that were resulted after

patients’ discharge time, variables determined clinically irrelevant (e.g.: EHR system mes-

sages), and informally scheduled ED return visits (e.g.: planned return visits for suture removal,

wound checks) were all excluded before model construction. For diagnostic and medication

orders, we included a measure for variability across patients, defined as order frequency-

inverse patient frequency, which is a numerical statistic intended to reflect how important an

order is to a patient in a cohort, inspired by frequency-inverse document frequency (TF-IDF).

[61] Additionally, the total number of diagnostic imaging tests was summed as one variable,

used as a surrogate for the complexity of emergency medical care received. Qualitative results

of imaging tests were not included, as the model only uses structured information. The opera-

tions and utilization variables included disposition (e.g.: home, care facility), length of stay

(LOS), frequency of ED visits in the prior year, emergency severity index (ESI), and campus

location. Other clinical care variables included service consultations completed while patients

were in the ED. Numeric and continuous variables from individual patients were represented

as normalized vectors. All numeric variables were normalized with a mean of 0 and a standard

deviation of 1.

Ethics statement

This study has been reviewed and approved by Weill Cornell Medicine Internal Review Board

(protocol number 23–08026440, https://hrp.weill.cornell.edu/irb). Due to the retrospective

nature of the study, we have requested and received approval for waiver of informed consent.

Machine learning

The algorithm used in this work, deep significance clustering (DICE), identifies clusters of

patients who possess similar clinical profiles with respect to RVA using a novel optimization
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technique. [62] DICE is an outcome-aware clustering algorithm designed to cluster patients

based on the severity and etiology of risk, specifically with respect to RVA outcomes. It

employs a combination of autoencoders for representation learning, K-means clustering to

identify patient subgroups, and logistic regression for outcome classification. The algorithm’s

core lies in its joint optimization process, which targets representations from multidimen-

sional data that lead to statistically significant outcome distributions among the clusters. This

is achieved by optimizing a composite objective function, constrained by the statistical signifi-

cance of the cluster-outcome associations, determined via a Wald test. The neural architecture

search (NAS) component of DICE refines the process by selecting the optimal number of clus-

ters and hyperparameters.

The modeling for the RVA prediction task consists of 2 steps: 1) the assignment of individ-

ual patients into risk-tiered clusters, followed by 2) classification using the cluster membership

as a variable along with other selected predictors (Fig 5). In step 1, DICE was applied to study

variables to stratify patients into risk-tiered clusters. In the 2nd step, the cluster membership

with different risk levels obtained from DICE are incorporated as input features in eXtreme

Gradient Boosting (XGboost), Gradient Boosting Decision Tree (GBDT) and L1-regularized

Logistic Regression (LR) for interpretable prediction. In addition to the cluster probabilities,

to choose other predictors in these machine learning models, we used forward feature searches

(FFS) for the best combination of features that returns the maximum AUC as model evalua-

tion metric. Similar to Hong et al, [47] we chose top 20 variables using FFS aside from DICE

cluster membership probabilities.

We conducted modeling with attention to the data imbalance. Since the frequencies of

patients presenting to the ED vary each month, we split the dataset into training, validation,

and testing sets with 8:1:1 balanced in each month of the study period. ED patient volume and

clinical workflow are known to have seasonal effects. Thus, monthly stratification of data is to

ensure that the test data appropriately capture the rare outcome given this seasonality. The test

set was used to evaluate both DICE and the outcome prediction. Hyperparameters for

XGboost, GBDT, LR, and DICE were optimized by maximizing the AUC of the validation set.

Thresholds for all the classifiers were chosen according to the Youdens J statistic. We

Fig 5. Modeling scheme. DICE: deep significance clustering; FFS: forward feature searches.

https://doi.org/10.1371/journal.pdig.0000606.g005
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conducted experiments in the PyTorch framework on NVIDIA GeForce RTX 2070. Most pre-

dictive features for the 72-hr RVA are identified using SHapley Additive exPlanations (SHAP)

values. [63] Hyperparameter settings are listed in Supplement. SHAP is used to explain the

contributions of each variable to individual predictions by examining the impact of each vari-

able’s value, such as large or small and 1 or 0, on the prediction direction, positive or negative,

against a baseline variable value.

Evaluation–quantitative

As a clinical baseline, we compared model performance against an ED RVA risk score devel-

oped by Gabayan et al. [4] This risk score is a 6-factor score using age, body mass index (BMI),

systolic blood pressure (SBP), pulse, Charlson score, [64] and ED LOS trained using LR. BMI

was omitted from our calculation due to the amount of missingness in the data. In addition,

we applied a modified version of the RVA risk score using logistic regression coefficients fitted

using our study data. For machine learning baseline, we tested classification approaches with-

out DICE, and without FFS. Model evaluation metrics include area under the ROC curve

(AUC), sensitivity, specificity, and positively likelihood ratio. S1 File describes the models and

baselines experimented in this study, including the combination of methods (clustering, classi-

fication, and variable selection), as well as hyperparameter tuning.

Examining the clinically meaningful categories of patients for whom the model predicts at

different accuracy levels will elucidate the clinical boundaries of the model’s performance and

inform future implementation strategies. Thus, we conducted a sensitivity evaluation on the

model’s performance as follows. We removed discharge-related variables from the input data

and conducted the experiments with the same hyperparameters. Because older age is an identi-

fied risk factor related to RVA, [65] we also tested the model performance on patients 65 years

old or above as a subgroup analysis. Furthermore, we tested the model performance on

patients who had heart failure (HF), chronic obstructive pulmonary disease (COPD), urinary

tract infection (UTI), and pneumonia as index ED discharge diagnoses coded by the ICD. The

ICD definitions are listed in S2 File. Lastly, we evaluated the model performance across racial

subgroups. AUCs are reported from the test sets. Definitions of diseases are listed in the S2

File.

Evaluation–clinical

A team of three board-certified emergency physicians experienced in quality and patient safety

case reviews conducted a clinical investigation of the classification results from the best per-

forming model. The investigation aims to assess if the classification output aligns with clinical

judgement, can be mapped to clinical sub-phenotypes of RVA, and can be interpreted with

actionability. This process demonstrated the multifactorial nature of the RVA outcome and

facilitated a comparative examination of model performance across different clinical scenarios.

The clinical team reviewed 160 RVA cases from the development site EDs. These included 80

cases with the highest risk probabilities by the best-performing model (model-identified

RVA), and 80 cases with lowest risk probabilities for RVA (model-missed RVA). The team

reviewed all index and return ED visit data, hospital admission data, and prior relevant EHR

data. Using an established RVA diagnosis classification system [66], RVA cases were organized

into clinically relevant categories based on the index ED visit discharge diagnosis. The diagno-

sis categories include Cardiovascular, Pulmonology, Gastroenterology, Nephrology, Infection,

General Medicine, Neurology, Oncology, Hematology, Rheumatology, Endocrinology, Sur-

gery, Gynecology and Obstetrics, Otolaryngology. Ophthalmology, And Psychiatry. In addi-

tion, RVA cases were also classified by quality and patient safety root cause, utilizing a
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modified version of an established framework for quality and patient safety root-cause attribu-

tion of RVA.[26] The root causes include Illness-Related (progression of disease, failure of out-

patient treatment, recurrent disease process, new problem related to index visit,

complication), Physician-Related (admission indicated but consultant recommended outpa-

tient management, failure of reassessment, misdiagnosis, treatment error, admission indicated

on index visit and ED attending did not attempt to admit), Patient-Related (social issues,

missed clinic follow-up, noncompliance), Healthcare System-Related (called back because of

missed radiographic abnormalities, instructed to return for re-evaluation, sent from clinics,

patient unable to get medication), and RVA unrelated to index visit. After each set of 20 cases

were reviewed, the team met to review findings with the goal of expert consensus on the index

ED visit discharge diagnosis and RVA root cause. Two primary reviewers assigned both an

index visit diagnosis and quality and patient safety root-cause attribution for each RVA. In

cases where a category assigned by the two physicians was divergent, a final decision was arbi-

trated by the third senior reviewer. Using Chi-Square tests with multiple testing correction, we

tested the hypothesis of equal RVA prediction across diagnosis and root cause categories.

Supporting information

S1 File. Experimental setting. DICE: Deep significance clustering, LR: L1-regularized Logistic

Regression, FSS: Forward feature searches, XGboost: eXtreme Gradient Boosting, GBDT: Gra-

dient Boosting Decision Tree.

(DOCX)

S2 File. Exclusion definition (ICD-10-CM).

(DOCX)

S3 File. ICD-DM codes definitions for pneumonia, COPD, UTI, and HF.

(DOCX)
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