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Abstract: Video summarization aims to select the most informative subset of frames in a video to
facilitate efficient video browsing. Past efforts have invariantly involved training summarization
models with annotated summaries or heuristic objectives. In this work, we reveal that features
pre-trained on image-level tasks contain rich semantic information that can be readily leveraged to
quantify frame-level importance for zero-shot video summarization. Leveraging pre-trained features
and contrastive learning, we propose three metrics featuring a desirable keyframe: local dissimilarity,
global consistency, and uniqueness. We show that the metrics can well-capture the diversity and
representativeness of frames commonly used for the unsupervised generation of video summaries,
demonstrating competitive or better performance compared to past methods when no training is
needed. We further propose a contrastive learning-based pre-training strategy on unlabeled videos to
enhance the quality of the proposed metrics and, thus, improve the evaluated performance on the
public benchmarks TVSum and SumMe.

Keywords: video summarization; contrastive learning; visual pre-training

1. Introduction

In an era where video data are booming at an unprecedented pace, the importance
of making the video browsing process more efficient has never been greater. Video sum-
marization facilitates efficient browsing by creating a concise synopsis of the raw video, a
topic that has been popular in research for many years. The rapid development of deep
learning has significantly promoted the efficacy of video summarization tools [1]. Super-
vised approaches [2–5] leverage the temporal modeling power of LSTM (long short-term
memory) [6] or self-attention mechanisms [7] and train them with annotated summaries.
Heuristic training objectives such as diversity and representativeness have been applied
using unsupervised methods [8–14] to enforce a diverse selection of keyframes that are
representative of the essential contents of videos.

Past unsupervised approaches have trained summarization models to produce diverse
and representative summaries by optimizing feature similarity-based loss/reward func-
tions. Many research works on visual representation learning have revealed that vision
models pre-trained on supervised or self-supervised tasks contain rich semantic signals,
facilitating zero-shot transfer learning in tasks such as classification [15,16], semantic seg-
mentation [17], and object detection [18]. In this work, we propose leveraging the rich
semantics encoded in pre-trained visual features to achieve zero-shot video summarization
that outperforms previous heavily-trained approaches and self-supervised pre-training to
enhance the zero-shot performance further.

Specifically, we first define local dissimilarity and global consistency as two desirable
criteria for localizing keyframe candidates. Inspired by the diversity objective, if a frame is
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distant from its nearest neighbors in the feature space, it encodes information that rarely
appears in other frames. As a result, including such frames in the summary contributes to
the diversity of its content. Such frames are considered to be decent key frame candidates as
they enjoy high local dissimilarity, the naming of which leverages the definition of locality
in the feature space in [19]. However, merely selecting frames based on dissimilarity may
wrongly incorporate noisy frames that are not indicative of the video storyline. Therefore,
we constrain the keyframes to be aligned with the video storyline by guaranteeing their high
semantic similarity with the global cluster of the video frames, i.e., they are representative
of (or globally consistent with) the video theme. Overall, the selected keyframes should
enjoy a decent level of local dissimilarity to increase the content diversity in the summary
and reflect the global video gist.

In contrast to previous works that required training to enforce the designed criteria, we
directly quantify the proposed criteria into frame-level importance scores by utilizing con-
trastive losses for visual representation learning, i.e., alignment and uniformity losses [20].
The alignment loss calculates the distance between semantically similar samples, such as
augmented versions of an input image, and minimizes this distance to ensure similarity
between these positive samples in a contrastive learning setting. In our case, we directly
apply the alignment loss to quantify the local dissimilarity metric. Uniformity loss is
employed to regularize the overall distribution of features, with higher values indicating
closely clustered features. This characteristic makes it well-suited for assessing the semantic
consistency across a group of frames. To leverage this, we adapt the uniformity loss to
evaluate the consistency between an individual frame and the entire set of video frames,
which serves as a proxy for the global video storyline. These two losses can then be utilized
for self-supervised contrastive refinement of the features, where contrastive learning is applied
to optimize feature distances, ultimately enhancing the accuracy of the calculated frame
importance scores.

Nonetheless, background frames may feature dynamic content that changes frequently,
making them distinct from even the most similar frames and resulting in local dissimilarity.
At the same time, these frames might contain background elements that are common across
a majority of the video frames, contributing to global consistency. For example, in a video
of a car accident, street scenes are likely to appear consistently. Although these frames
might differ due to moving objects, they remain generally consistent with most frames,
on average, due to the shared background context. We propose mitigating the chances
of selecting such frames by exploiting the observation that such background frames tend
to appear in many different videos with diverse topics and, thus, are not unique to their
associated videos, e.g., street scenes in videos about car accidents, parades, city tours, etc.
Specifically, we propose a uniqueness filter to quantify the uniqueness of frames, formulated
by leveraging cross-video contrastive learning. An illustration of the difference between
the proposed method and previous methods is provided in Figure 1.

Leveraging rich semantic information encoded in pre-trained visual features, we,
for the first time, propose tackling training-free zero-shot video summarization and self-
supervised pre-training to enhance the zero-shot transfer. Inspired by contrastive loss
components [20], we achieve zero-shot summarization by quantifying frame importance
into three metrics: local dissimilarity, global consistency, and uniqueness. The proposed
method achieves better or competitive performance compared to previous methods while
being training-free. Moreover, we introduce self-supervised contrastive refinement using
unlabeled videos from YouTube-8M [21] to refine the feature distribution, which aids in
training the proposed uniqueness filter and further enhances performance. Finally, com-
pared to our conference paper [22], we provide results of current SOTA methods [23,24],
provide more insightful analyses of the pros and cons of our proposed methods, and con-
duct more comprehensive ablation studies in various crucial aspects. The code to repro-
duce all the experiments is available at https://github.com/pangzss/pytorch-CTVSUM
(accessed on 18 July 2024).

https://github.com/pangzss/pytorch-CTVSUM
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Figure 1. A comparison between our method and previous work.

2. Related Work

Early applications in video summarization focus on sports videos [25–27] for event
detection and highlight video compilation. Later on, video summarization was explored
in other domains such as instructional videos [28–31], movies [32,33], and general user
videos [34]. Thanks to the excellent generalization capabilities of deep neural networks/
features, the focus of video summarization research has been diverted to developing
general-purpose summarization models for a diverse range of video domains.

As an initial step toward deep learning-based supervised video summarization,
Zhang et al. [2] utilized a long short-term memory (LSTM) for modeling temporal in-
formation when trained with human-annotated summaries, which sparked a series of
subsequent works based on LSTM [3,35–38]. The rise of Transformer [7] inspired a suite
of methods leveraging self-attention mechanisms for video summarization [4,5,10,39–43].
Some works have explored spatiotemporal information by jointly using RNNs and convolu-
tional neural networks (CNNs) [44–46] or used graph convolution networks [47,48]. Video
summarization leveraging multi-modal signals has also performed impressively [23,24,49].

Deep learning-based unsupervised methods mainly exploit two heuristics: diversity
and representativeness. For diversity, some works [8,9,11,48] have utilized a diversity loss
derived from a repelling regularizer [50], guaranteeing dissimilarities between selected
keyframes. It has also been formulated as a reward function optimized via policy gra-
dient methods, as seen in [12,51,52]. Similarly, representativeness can be guaranteed by
reconstruction loss [8,10,11,13,53] or reconstruction-based reward functions [12,51,52].

Unlike previous works, we tackle training-free zero-shot video summarization and
propose a pre-training strategy for better zero-shot transfer. Specifically, we directly calcu-
late frame importance by leveraging contrastive loss terms formulated in [20] to quantify
diversity and representativeness. With features from a vision backbone pre-trained on
supervised image classification tasks [54] and without any further training, the proposed
contrastive loss-based criteria can already well-capture the frame contribution to the di-
versity and representativeness of the summary. The proposed self-supervised contrastive
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refinement can further boost the performance and leverage unlabeled videos for zero-shot
transfer to test videos.

3. Preliminaries

Given the centrality of contrastive learning to our approach, we first introduce the
relevant preliminaries, with a focus on instance discrimination as outlined in [55].

3.1. Instance Discrimination via the InfoNCE Loss

Contrastive learning [56] has become a cornerstone of self-supervised image represen-
tation learning; throughout the years, it has received more attention from researchers. This
method has been continuously refined to produce representations with exceptional trans-
ferability [19,20,53,55,57–60]. Formally, given a set of N images D = {In}N

n=1, contrastive
representation learning aims to learn an encoder fθ such that the resulting features fθ(In)
can be readily leveraged by downstream vision tasks. A theoretically founded loss function
with favorable empirical behaviors is InfoNCE loss [58]:

LInfoNCE = ∑
I∈D

− log
e fθ(I)· fθ(I′)/τ

∑J∈D′(I) e fθ(I)· fθ(J)/τ
, (1)

where I′ is a positive sample for I, usually obtained through data augmentation, and D′(I)
includes I′ as well as all negative samples, e.g., any other images. The operator “·” is the
inner product and τ is a temperature parameter. Therefore, the loss aims to pull the features
of an instance closer to those of its augmented views while repelling them from the features
of other instances, thus performing instance discrimination.

3.2. Contrastive Learning via Alignment and Uniformity

When normalized onto the unit hypersphere, the features learned through contrastive
learning that yield strong downstream performance exhibit two notable properties. First,
semantically related features tend to cluster closely on the sphere, regardless of specific
details. Second, the overall information of the features is largely preserved, resulting in a
joint distribution that approximates a uniform distribution [57–59]. Wang et al. [20] termed
these two properties as alignment and uniformity.

The alignment metric computes the distance between the positive pairs [20]:

Lalign(θ, α) = E
(I,I′)∼ppos

[∥ fθ(I)− fθ(I′)∥α
2 ], (2)

where α > 0, and ppos is the distribution of positive pairs. The uniformity is defined as the
average pairwise Gaussian potential between the overall features, as follows:

Luniform(θ, β) = log

 E
I,Ji.i.d∼ pdata

[e−β∥ fθ(I)− fθ(J)∥2
2 ]

. (3)

Here, pdata is typically approximated by the empirical data distribution, and β is
commonly set to 2, as recommended by [20]. This metric promotes the overall feature
distribution on the unit hypersphere to approximate a uniform distribution and can also
directly quantify the uniformity of feature distributions [61]. Additionally, Equation (3)
approximates the logarithm of the denominator in Equation (1) when the number of
negative samples approaches infinity [20]. As demonstrated in [20], jointly minimizing
Equations (2) and (3) leads to better alignment and uniformity of the features, meaning
they become locally clustered and globally uniform [61].

In this paper, we employ Equation (2) to calculate the distance or dissimilarity between
semantically similar video frame features, which helps measure frame importance based on
local dissimilarity. We then apply a modified version of Equation (3) to assess the proximity
between a specific frame and the overall information of the corresponding video, thereby
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estimating their semantic consistency. Additionally, by leveraging these two loss functions,
we learn a nonlinear projection of the pre-trained features to enhance the local alignment
and global uniformity of the projected features.

4. Proposed Method

We first define two metrics to quantify frame importance by leveraging rich semantic
information in pre-trained features: local dissimilarity and global consistency. To guar-
antee that the metrics encode the diversity and representativeness of the summary, we
conduct self-supervised contrastive refinement of the features, where an extra metric called
uniqueness is defined to further strengthen the keyframes’ quality. We provide a conceptual
illustration of our approach in Figure 2.

Video 1

Video 2

Video 3

  Locally 
Dissimilar

   Locally 
Redundant

   Globally 
Inconsistent

Non-unique

 Globally 
Consistent

Figure 2. A conceptual illustration for the three metrics: local dissimilarity, global consistency, and
uniqueness in the semantic space. The images come from the SumMe [34] and TVSum [31] datasets.
The dots with the same color indicate features from the same video. For concise demonstration, we
only show one frame for “Video 2” and “Video 3” to show the idea of uniqueness.

4.1. Local Dissimilarity

Inspired by the diversity objective, we consider frames likely to result in a diverse
summary as those conveying diverse information even when compared to their nearest
neighbors. Formally, given a video V, we first extract deep features using the ImageNet [62]
pre-trained vision backbone, e.g., GoogleNet [54], denoted as F, such that F(V) = {xt}T

t=1,
where xt represents the deep feature for the t-th frame in V, and T is the total number of
frames in V. Each feature is L2-normalized such that ∥xt∥2 = 1.

To define local dissimilarity for frames in V, we first use cosine similarity to retrieve
for each frame xt a set Nt of top K = aT neighbors, where a is a hyperparameter and
K is rounded to the nearest integer. The local dissimilarity metric for xt is an empirical
approximation of Equation (2), defined as the local alignment loss:

Lalign(xt) =
1

|Nt| ∑
x∈Nt

∥xt − x∥2
2, (4)

which measures the distance/dissimilarity between xt and its semantic neighbors.
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The larger the value of Lalign(xt), the more dissimilar xt is from its neighbors. There-
fore, if a frame exhibits a certain distance from even its closest neighbors in the semantic
space, the frames within its local neighborhood are likely to contain diverse information,
making them strong candidates for keyframes. Consequently, Lalign(xt) can be directly
utilized as the importance score for xt after appropriate scaling.

4.2. Global Consistency

Nt may contain semantically irrelevant frames if xt has very few meaningful semantic
neighbors in the video. Therefore, merely using Equation (4) for frame-wise importance
scores is insufficient. Inspired by the reconstruction-based representativeness objective [8],
we define another metric, called global consistency, to quantify how consistent a frame is
with the video gist by a modified uniformity loss based on Equation (3):

Luniform(xt) = log

 1
T − 1 ∑

x ̸=xt ,
x∈F(V)

e−2∥xt−x∥2
2

, (5)

Luniform(xt) measures the proximity between xt and the remaining frames, bearing
similarity to the reconstruction- and K-medoid-based objectives in [8,12]. However, it
obviates the need to train an autoencoder [8] or a policy network [12] by directly leveraging
rich semantics in pre-trained features.

4.3. Contrastive Refinement

Equations (4) and (5) are computed using deep features pre-trained on image classifi-
cation tasks, which may not inherently exhibit the local alignment and global uniformity
described in Section 3.2. To address similar challenges, Hamilton et al. [17] proposed
contrastively refining self-supervised vision transformer features [15] for unsupervised
semantic segmentation. They achieve this by freezing the feature extractor (to improve
efficiency) and training only a lightweight projector. Following this approach, we also
avoid fine-tuning the heavy feature extractor—in our case, GoogleNet—and instead train
only a lightweight projection head.

Formally, given features F(V) from the frozen backbone for a video, we feed them
to a learnable module to obtain zt = Gθ(xt), where zt is L2-normalized (we leave out the
L2-normalization operator for notation simplicity). The nearest neighbors in Nt for each
frame are still determined using the pre-trained features {xt}T

t=1. Similar to [19,63], we also
observe collapsed training when directly using the learnable features for nearest neighbor
retrieval, so we stick to using the frozen features.

With the learnable features, the alignment loss (local dissimilarity) and uniformity loss
(global consistency) become (we slightly abuse the notation of L to represent losses both
before and after transformation by Gθ):

Lalign(zt; θ) =
1

|Nt| ∑
z∈Nt

∥zt − z∥2
2, (6)

Luniform(zt; θ) = log

 1
T − 1 ∑

z ̸=zt ,
z∈Gθ(F(V))

e−2∥zt−z∥2
2

, (7)

The joint loss function is as follows:

L(zt; θ) = Lalign(zt; θ) + λ1Luniform(zt; θ), (8)

where λ1 is a hyperparameter balancing the two loss terms.
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During the contrastive refinement, Lalign and Luniform will mutually resist each other
for frames that have semantically meaningful nearest neighbors and are consistent with the
video gist. Specifically, when a nontrivial number of frames beyond Nt also share similar
semantic information with the anchor zt, these frames function as “hard negatives” that
prevent Lalign to be easily minimized [19,61]. Therefore, only frames with moderate local
dissimilarity and global consistency will have balanced values for the two losses. In contrast,
the other frames tend to have extreme values compared to those before the refinement.

4.4. The Uniqueness Filter

The two metrics defined above fail to account for the fact that locally dissimilar yet
globally consistent frames can often be background frames with complex content that
is related to most of the frames in the video. For example, dynamic cityscapes might
frequently appear in videos recorded in urban settings.

To address this, we propose filtering out such frames by leveraging a common char-
acteristic: they tend to appear in many different videos that do not necessarily share a
common theme or context. For instance, city views might be present in videos about car
accidents, city tours, or parades, while scenes featuring people moving around can appear
across various contexts. Consequently, these frames are not unique to their respective
videos. This concept has been similarly explored in weakly-supervised action localization
research [64–66], where a single class prototype vector is used to capture all background
frames. However, our approach aims to identify background frames in an unsupervised
manner. Additionally, rather than relying on a single prototype, which can be too restric-
tive [67], we treat each frame as a potential background prototype. By identifying frames
that are highly activated across random videos, we develop a metric to determine the
“background-ness” of a frame.

To design a filter for eliminating such frames, we introduce an extra loss to Equation (8)
that taps into cross-video samples. For computational efficiency, we aggregate the frame
features in a video Vk with Tk frames into segments with an equal length of m. The learnable
features, z, in each segment, are average-pooled and L2-normalized to obtain segment
features Sk = {sl}

|Sk |
l=1 with |Sk| = ⌊Tk/m⌋. To measure the proximity of a frame with

frames from a randomly sampled batch of videos B (represented as segment features),
including Sk, we again leverage Equation (3) to define the uniqueness loss for zt ∈ Vk
as follows:

Lunique(zt; θ) = log

(
1
A ∑

S∈B/Sk

∑
s∈S

e−2∥zt−s∥2
2

)
, (9)

where A = ∑S∈B/Sk
|S| is the normalization factor. A large value of Lunique means that zt

has nontrivial similarity with segments from randomly gathered videos, indicating that
it is likely to be a background frame. When jointly optimized with Equations (8) and (9)
the process will be easy to minimize for unique frames, for which most elements of s are
semantically irrelevant and can be safely repelled. It is not the case for the background
frames with semantically similar s, as the local alignment loss keeps strengthening the
closeness of semantically similar features.

As computing Equation (9) requires random videos, it is not as straightforward to
convert Equation (9) to importance scores after training. To address this, we train a model
Hθ̂ whose last layer is a sigmoid unit to mimic 1 − L̄unique(zt; θ), where L̄unique(zt; θ) is
Lunique(zt; θ) scaled to [0, 1] over t. Denoting yt = 1− sg(L̄unique(zt; θ)) and rt = Hθ̂(sg(zt)),
where “sg” stands for stop gradients, we define the loss for training the model as follows:

Lfilter(zt; θ̂) = −yt log rt + (1 − yt) log(1 − rt). (10)
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4.5. The Full Loss and Importance Scores

With all the components, the loss for each frame in a video is as follows:

L(zt; θ, θ̂) = Lalign(zt; θ) + λ1Luniform(zt; θ)

+λ2Lunique(zt; θ) + λ3Lfilter(zt; θ̂),
(11)

where we fix both λ2 and λ3 as 0.1 and only tune λ1.
Scaling the local dissimilarity, global consistency, and uniqueness scores to [0, 1] over

t, the frame-level importance score is defined as follows:

pt = L̄align(zt; θ)L̄uniform(zt; θ)H̄θ̂(zt) + ϵ, (12)

which ensures that the importance scores are high only when all three terms have significant
magnitude. The parameter ϵ is included to prevent zero values in the importance scores,
which helps stabilize the knapsack algorithm used to generate the final summaries. Since
these scores are derived from three independent metrics, they may lack the temporal
smoothness typically provided by methods like RNNs [2] or attention networks [5]. To
address this, we apply Gaussian smoothing to the scores within each video, aligning our
method with previous work that emphasizes the importance of temporal smoothness in
score generation.

5. Experiments
5.1. Datasets and Settings

Datasets. In line with previous studies, we evaluate our method on two benchmarks:
TVSum [31] and SumMe [34]. TVSum consists of 50 YouTube videos, each annotated
by 20 individuals who provide importance scores for every two-second shot. SumMe
includes 25 videos, each with 15 to 18 reference binary summaries. Following the protocol
established by [2], we use the OVP (50 videos) and YouTube (39 videos) datasets [68] to
augment both TVSum and SumMe. Additionally, to assess whether our self-supervised
approach can benefit from a larger video dataset, we randomly selected approximately
10,000 videos from the YouTube-8M dataset [21], which contains 3862 video classes with
highly diverse content.

Evaluation Setting. Following prior work, we evaluate our model’s performance
using five-fold cross-validation, where the dataset (either TVSum or SumMe) is randomly
divided into five splits. The reported results are the average across these five splits. In the
canonical setting (C), training is performed only on the original splits of the two evaluation
datasets. In the augmented setting (A), we expand the training set in each fold with three
additional datasets (e.g., SumMe, YouTube, and OVP when evaluating on TVSum). In the
transfer setting (T), all videos from TVSum (or SumMe) are reserved for testing, while
the other three datasets are used for training. Additionally, we introduce a new transfer
setting where training is exclusively conducted on the collected YouTube-8M videos, and
evaluation is performed on TVSum or SumMe. This setting is intended to assess whether
our model can benefit from a larger volume of data.

5.2. Evaluation Metrics

F1 score. Denoting A as the set of frames in a ground-truth summary and B as the set
of frames in the corresponding generated summary, we can calculate precision and recall
as follows:

Precision =
|A ∩ B|
|A| , Recall =

|A ∩ B|
|B| , (13)

with which we can calculate the F1 score by the following:

F1 =
2 × Precision × Recall

Precision + Recall
. (14)
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We follow [2] to deal with multiple ground-truth summaries and to convert importance
scores into summaries.

Rank correlation coefficients. Recently, Otani et al. [69] highlighted that F1 scores
can be unreliable and may yield relatively high values even for randomly generated sum-
maries. To address this issue, they proposed using rank correlation coefficients, specifically
Kendall’s τ [70] and Spearman’s ρ [71], to evaluate the correlation between predicted and
ground-truth importance scores. For each video, we first compute the coefficient value
between the predicted importance scores and the scores provided by each annotator, then
average these values across all annotators for that video. The final results are obtained by
averaging the correlation coefficients across all videos.

5.3. Summary Generation

We follow previous work to convert importance scores to key shots. Specifically, we
use the KTS algorithm [72] to segment videos into temporally consecutive shots and then
average the importance scores within each shot to compute the shot-level importance scores.
The final key shots are chosen to maximize the total score while guaranteeing that the
summary length does not surpass 15% of the video length. The maximization is conducted
by solving the knapsack problem based on dynamic programming [31]. Otani et al. [69]
pointed out that using average frame importance scores as shot-level scores will drastically
increase the F1 score for the TVSum dataset, and they recommended using the sum of
scores to alleviate the problem. However, F1 scores reported by previous works mostly rely
on averaging importance scores for shot-level scores. We also report our F1 scores in the
same way as they did but focus on analyzing the rank correlation values for comparison
and analysis.

5.4. Implementation Details

We follow prior studies by using GoogleNet [54] pre-trained features as the default
for standard experiments. For experiments involving YouTube-8M videos, we utilize the
quantized Inception-V3 [73] features provided by the dataset [21]. Both types of features
are pre-trained on ImageNet [62]. The contrastive refinement module appended to the
feature backbone is a lightweight Transformer encoder [7], and so is the uniqueness filter.

Following [9], we standardized each video to have an equal length by using random
sub-sampling for longer videos and nearest-neighbor interpolation for shorter videos.
Similar to [9], we did not observe much difference when using different lengths, and we
fixed the frame count at 200.

The model appended to the feature backbone for contrastive refinement is a stack
of Transformer encoders with multi-head attention modules [7]. There are two training
scenarios: 1. Training with TVSum [31], SumMe [34], YouTube, and OVP [68], divided into
the canonical, augmented, and transfer settings; 2. Training with a subset of videos from the
YouTube-8M dataset [21]. We refer to the training in the first scenario as standard and the
second as YT8M. The pre-trained features are first projected into 128 dimensions for training
in both scenarios using a learnable, fully connected layer. The projected features are then
fed into the Transformer encoders. The model architecture and associated optimization
details are outlined in Table 1. Training the 10,000 YouTube-8M videos takes approximately
6 min for 40 epochs on a single NVIDIA RTX A6000.

Table 1. Model and optimization details.

Layers Heads dmodel dhead dinner Optimizer LR Weight Decay Batch Size Epoch Dropout

Standard 4 1 128 64 512 Adam 0.0001 0.0001 32 (TVSum)
8 (SumMe) 40 0

YT8M 4 8 128 64 512 Adam 0.0001 0.0005 128 40 0
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We tune two hyperparameters: The ratio a, which determines the size of the nearest
neighbor set Nt and the coefficient λ1, which controls the balance between the alignment
and uniformity losses.

5.5. Quantitative Results

In this section, we compare our results with previous work and conduct the ablation
study for different components of our method.

Training-free zero-shot performance. As shown in Tables 2 and 3, L̄∗
align and L̄∗

uniform
directly computed using GoogleNet [54] pre-trained features, achieve performance superior
to most methods in terms of τ, ρ, and F1 score. Notably, the correlation coefficients τ and
ρ surpass supervised methods, e.g., (0.1345, 0.1776) v.s. dppLSTM’s (0.0298, 0.0385) and
SumGraph’s (0.094, 0.138) for TVSum. Although DR-DSN2000 has slightly better perfor-
mance in terms of τ and ρ for TVSum, it has to reach the performance after 2000 epochs of
training, while our results are directly obtained with simple computations using the same
pre-trained features as those also used by DR-DSN.

Table 2. Ablation results in terms of τ and ρ, along with their comparisons to previous work in the
canonical setting. DR-DSN60 refers to the DR-DSN trained for 60 epochs; similarly, DR-DSN2000.
Our scores with superscript ∗ are directly computed from pre-trained features. The results were
generated with (λ1, a) = (0.5, 0.1). Boldfaced scores represent the best among supervised methods,
and blue scores are the best among the methods without using annotations. Methods with † are
vision–language approaches. Please refer to the text for analyses of the results.

TVSum SumMe

τ ρ τ ρ

Human baseline [74] 0.1755 0.2019 0.1796 0.1863

Supervised
VASNet [5,74] 0.1690 0.2221 0.0224 0.0255
dppLSTM [2,69] 0.0298 0.0385 −0.0256 −0.0311
SumGraph [48] 0.094 0.138 - -
Multi-ranker [74] 0.1758 0.2301 0.0108 0.0137
Clip-It † [23] 0.108 0.147 -
A2Summ † [24] 0.137 0.165 0.108 0.129

Unsupervised
DR-DSN60 [12,69] 0.0169 0.0227 0.0433 0.0501
DR-DSN2000 [12,74] 0.1516 0.198 −0.0159 −0.0218
SUM-FCNunsup [9,74] 0.0107 0.0142 0.0080 0.0096
SUM-GAN [8,74] −0.0535 −0.0701 −0.0095 −0.0122
CSNet + GL + RPE [14] 0.070 0.091 - -

Training-free
L̄∗

align 0.1055 0.1389 0.0960 0.1173
L̄∗

align & L̄∗
uniform 0.1345 0.1776 0.0819 0.1001

Contrastively refined
L̄align 0.1002 0.1321 0.0942 0.1151
L̄align & L̄uniform 0.1231 0.1625 0.0689 0.0842
L̄align & H̄θ̂ 0.1388 0.1827 0.0585 0.0715
L̄align & L̄uniform & H̄θ̂ 0.1609 0.2118 0.0358 0.0437

More training videos are needed for the contrastive refinement. For the results in
Tables 2 and 3, the maximum number of training videos is only 159, coming from the SumMe
augmented setting. For the canonical setting, the training set size is 40 videos for TVSum and
20 for SumMe. Without experiencing many videos, the model tends to overfit specific videos
and cannot generalize well. This is similar to the observation in contrastive representation learn-
ing, where a larger amount of data—whether from a larger dataset or obtained through data
augmentation—helps the model generalize better [15,60]. Therefore, the contrastive refinement
results in Tables 2 and 3 hardly outperform those computed using pre-trained features.
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Table 3. Ablation results regarding F1 and their comparisons with previous unsupervised methods.
The boldfaced results are the best ones. Please refer to Table 2’s caption for the explanation of the
notations and the text for analyses of the results.

TVSum SumMe

C A T C A T

Unsupervised
DR-DSN60 [12] 57.6 58.4 57.8 41.4 42.8 42.4
SUM-FCNunsup [9] 52.7 - - 41.5 - 39.5
SUM-GAN [8] 51.7 59.5 - 39.1 43.4 -
UnpairedVSN [11] 55.6 - 55.7 47.5 - 41.6
CSNet [13] 58.8 59 59.2 51.3 52.1 45.1
CSNet + GL + RPE [14] 59.1 - - 50.2 - -
SumGraphunsup [48] 59.3 61.2 57.6 49.8 52.1 47

Training-free
L̄∗

align 56.4 56.4 54.6 43.5 43.5 39.4
L̄∗

align & L̄∗
uniform 58.4 58.4 56.8 47.2 46.07 41.7

Contrastively refined
L̄align 54.6 55.1 53 46.8 47.1 41.5
L̄align & L̄uniform 58.8 59.9 57.4 46.7 48.4 41.1
L̄align & H̄θ̂ 53.8 56 54.3 45.2 45 45.3
L̄align & L̄uniform & H̄θ̂ 59.5 59.9 59.7 46.8 45.5 43.9

Contrastive refinement on YouTube-8M videos and transfer to TVSum. The model
generalizes to the test videos better when sufficient training videos are given, as shown by
the results for TVSum in Table 4. After the contrastive refinement, the results with only
L̄∗

align are improved from (0.0595, 0.0779) to (0.0911, 0.1196) for τ and ρ. We can also observe
improvement over L̄∗

align & L̄∗
uniform brought by contrastive refinement.

Contrastive refinement on YouTube-8M videos and transfer to SumMe. The reference
summaries in SumMe are binary scores, and summary lengths are constrained to be within
15% of the video lengths. Therefore, the majority of the reference summary receives exactly
zero scores. The contrastive refinement may still enhance the confidence scores for these
regions, which receive zero scores from annotators due to the 15% constraint. This can
ultimately reduce the average correlation with the reference summaries, as seen in Table 4.

Table 4. The transfer evaluation setting with the YouTube-8M dataset, where the training is solely
conducted on the collected YouTube-8M videos and then evaluated on TVSum and SumMe. The re-
sults from DR-DSN [12] are also provided for comparison.

TVSum SumMe

F1 τ ρ F1 τ ρ

Unsupervised
DR-DSN [12] 51.6 0.0594 0.0788 39.8 −0.0142 −0.0176

Training-free
L̄∗

align 55.9 0.0595 0.0779 45.5 0.1000 0.1237
L̄∗

align & L̄∗
uniform 56.7 0.0680 0.0899 42.9 0.0531 0.0649

Contrastively refined
L̄align 56.2 0.0911 0.1196 46.6 0.0776 0.0960
L̄align & L̄uniform 57.3 0.1130 0.1490 40.9 0.0153 0.0190
L̄align & H̄θ̂ 58.1 0.1230 0.1612 48.7 0.0780 0.0964
L̄align & L̄uniform & H̄θ̂ 59.4 0.1563 0.2048 43.2 0.0449 0.0553

Suppose that the predicted scores are refined to have sufficiently high confidence for
regions with nonzero annotated scores; in this case, they are likely to be selected by the
knapsack algorithm used to compute the F1 scores. Therefore, we consider scores that
achieve both high F1 and high correlations to be of high quality, as the former tends to
overlook the overall correlations between the predicted and annotated scores [69], while
the latter focuses on their overall ranked correlations but places less emphasis on prediction
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confidence. This analysis may explain why the contrastive refinement for L̄∗
align improves

the F1 score but decreases the correlations.
The effect of L̄align. As can be observed in Tables 2–4, solely using L̄align can

already well-quantify the frame importance. This indicates that L̄align successfully selects
frames with diverse semantic information, which are indeed essential for a desirable
summary. Moreover, we assume that diverse frames form the foundation of a good
summary, consistently using L̄align for further ablations.

The effect of L̄uniform. L̄uniform measures how consistent a frame is with the context
of the whole video, thus helping remove frames with diverse contents that are hardly
related to the video theme. It is shown in Tables 2 and 4 that incorporating L̄uniform helps
improve the quality of the frame importance for TVSum. We now discuss why L̄uniform
hurts SumMe performance.

Compared to TVSum videos, many SumMe videos already contain consistent frames
due to their slowly evolving properties. Such slowly evolving features can be visualized
by T-SNE plots in Figure 3. For videos with such consistent content, the L̄uniform tends
to be high for most of the frames. We show the normalized histogram of L∗

uniform for
both TVSum and SumMe videos in Figure 4. As can be observed, SumMe videos have
distinctly higher L∗

uniform than those of TVSum videos. Consequently, for videos possessing
monotonous content, most of the frames share a similar visual cue, such as the background,
and the frames that are most likely to be keyframes are those with abrupt or novel content.
Therefore, the global consistency metric, L̄∗

uniform, is not discriminative enough to be
sufficiently helpful and may alleviate the importance of frames with novel content. As a
result, the other two metrics—local dissimilarity and uniqueness—are the main roles that
determine keyframes in such videos, as shown in Tables 2–4.

Figure 3. TSNE plots for all 25 SumMe videos. As can be observed, many videos contain features
that slowly evolve and maintain an overall similarity among all the frames.
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Figure 4. The histogram (density) of L̄∗
uniform (before normalization) for TVSum and SumMe videos.

SumMe videos have distinctly higher values than those for TVSum videos.

The effect of the uniqueness filter H̄θ̂ . As shown in Tables 2 and 3, although H̄θ̂
works well for TVSum videos, it hardly brings any benefits to the SumMe videos. Thus,
the good performance of the uniqueness filter for TVSum may be due to the relatively
straightforward nature of the background frames in TVSum, which are easily identified by
the uniqueness filter even with training on only a few videos. Therefore, we suppose that
H̄θ̂ needs to be trained on more videos to filter out more challenging background frames
such that it can generalize to a wider range of videos. This is validated by the L̄align & H̄θ̂
results in Table 4, which indicate both decent F1 scores and correlation coefficients for
both TVSum and SumMe. The TVSum performance can be further boosted when L̄uniform
is incorporated.

Comparison with DR-DSN [12] on YouTube-8M. As per Table 2, DR-DSN is the only
unsupervised method that matches our performance in terms of τ and ρ and has an official
implementation available. We trained DR-DSN on our dataset of YouTube-8M videos to
compare it against our method. As shown in Table 4, DR-DSN has difficulty generalizing
to the evaluation videos.

Ablations over λ1 and a. As shown in Figure 5, when L̄align & H̄θ̂ is used to produce
importance scores, a larger a will make the TVSum performance unstable in terms of both F1
and correlation coefficients, although the SumMe performance is relatively more stable with
respect to a. We hypothesize that when a becomes larger, the nearest neighbor set becomes
noisier, diminishing the effectiveness of both the alignment loss during training and the
local dissimilarity metric (post-training alignment loss) used for generating importance
scores, due to the inclusion of semantically irrelevant neighbors. For λ1, smaller values
generally perform better when a has a reasonable value, as larger values of λ1 tend to
make the uniformity loss suppress the alignment loss. Similarly, too small λ1 will make
the alignment loss suppress the uniformity loss, as we observed unstable training when
further decreasing λ1. As shown in Figure 6, the analysis of the interaction between λ1
and a when using L̄align & H̄θ̂ & L̄uniform is used to produce importance scores, similar to
that in Figure 5. However, we can see that the performance was improved for TVSum but
undermined for SumMe due to incorporating L̄uniform.

Ablation on model sizes. Table 5 shows the ablation results for different sizes of
the Transformer encoder [7], where the number of layers and the number of attention
heads are varied. Meanwhile, we compare the results with those obtained from DR-
DSN [12] trained on the same collected YouTube-8M videos, as DR-DSN has the best τ
and ρ among past unsupervised methods and is the only one that has a publicly available
official implementation. As can be observed, the model performance is generally stable
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with respect to the model sizes, and we choose 4L8H. Moreover, the DR-DSN has difficulty
generalizing well to the test videos when trained on the YouTube-8M videos.
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Figure 5. Ablation results over λ1 and a when using L̄align & H̄θ̂ to produce importance scores.
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Figure 6. Ablation results over λ1 and a when using L̄align & H̄θ̂ & L̄uniform to produce impor-
tance scores.
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Table 5. Ablation results for the model size and comparison with DR-DSN [12] trained on the same
YouTube-8M videos, where 2L2H represents “2 layers 2 heads” and the rest goes similarly. All three
components L̄align & H̄θ̂ & L̄uniform are used with (a, λ1) = (0.05, 0.25) for both SumMe and TVSum
for fair comparison with DR-DSN, which also uses a representativeness-based training objective.

TVSum SumMe

F1 τ ρ F1 τ ρ

DR-DSN [12] 51.6 0.0594 0.0788 39.8 −0.0142 −0.0176

2L2H 58.0 0.1492 0.1953 42.9 0.0689 0.0850
2L4H 58.1 0.1445 0.1894 42.8 0.0644 0.0794
2L8H 58.8 0.1535 0.2011 44.0 0.0584 0.0722
4L2H 57.4 0.1498 0.1963 45.3 0.0627 0.0776
4L4H 58.3 0.1534 0.2009 43.1 0.0640 0.0790
4L8H 58.5 0.1564 0.2050 42.7 0.0618 0.0765

Comparing the effects of different pre-trained features. As our method can directly
compute importance scores using pre-trained features, it is also essential for it to be able to
work with different kinds of pre-trained features. To prove this, we computed and evaluated
the importance scores generated with 2D supervised features, 3D supervised features, and
2D self-supervised features in Table 6. Different 2D features, whether supervised or self-
supervised, all delivered decent results. Differences exist but are trivial. The conclusion that
L̄unif helps TVSum but undermines SumMe also holds for most of the features. Based on
this, we conclude that as long as the features contain decent semantic information learned
from supervision or self-supervision, they are enough to efficiently compute the importance
scores. The performance of these features transferred to different downstream image tasks
does not necessarily generalize to our method for video summarization, as the latter only
requires reliable semantic information (quantified as dot products) to calculate heuristic
metrics for video frames.

Table 6. Evaluation results with different pre-trained features. The results were produced under the
transfer setting with a = 0.1.

TVSum SumMe

L̄∗
align L̄∗

align & L̄∗
unif L̄∗

align L̄∗
align & L̄∗

unif

F1 τ ρ F1 τ ρ F1 τ ρ F1 τ ρ

Supervised (2D)
VGG19 [75] 50.62 0.0745 0.0971 55.91 0.1119 0.1473 45.16 0.0929 0.1151 43.28 0.0899 0.1114
GoogleNet [54] 54.67 0.0985 0.1285 57.09 0.1296 0.1699 41.89 0.0832 0.1031 40.97 0.0750 0.0929
InceptionV3 [73] 55.02 0.1093 0.1434 55.63 0.0819 0.1082 42.71 0.0878 0.1087 42.30 0.0688 0.0851
ResNet50 [76] 51.19 0.0806 0.1051 55.19 0.1073 0.1410 42.30 0.0868 0.1076 43.86 0.0737 0.0914
ResNet101 [76] 51.75 0.0829 0.1081 54.88 0.1118 0.1469 42.32 0.0911 0.1130 44.39 0.0736 0.0913
ViT-S-16 [77] 53.48 0.0691 0.0903 56.15 0.1017 0.1332 40.30 0.0652 0.0808 40.88 0.0566 0.0701
ViT-B-16 [77] 52.85 0.0670 0.0873 56.15 0.0876 0.1152 42.10 0.0694 0.0860 41.65 0.0582 0.0723
Swin-S [78] 52.05 0.0825 0.1082 57.58 0.1120 0.1475 41.18 0.0880 0.1090 41.63 0.0825 0.1022

Supervised (3D)
R3D50 [79] 52.09 0.0590 0.0766 53.35 0.0667 0.0869 37.40 0.0107 0.0138 41.03 0.0150 0.0190
R3D101 [79] 49.77 0.0561 0.0727 52.15 0.0644 0.0834 33.62 0.0173 0.0216 34.96 0.0212 0.0264

Self-supervised (2D)
MoCo [80] 51.31 0.0797 0.1034 55.97 0.1062 0.1390 42.01 0.0768 0.0953 43.19 0.0711 0.0882
DINO-S-16 [15] 52.50 0.0970 0.1268 57.57 0.1200 0.1583 42.77 0.0848 0.1050 42.67 0.0737 0.0913
DINO-B-16 [15] 52.48 0.0893 0.1170 57.02 0.1147 0.1515 41.07 0.0861 0.1066 44.14 0.0679 0.0843
BEiT-B-16 [81] 49.64 0.1125 0.1468 56.34 0.1270 0.1665 36.91 0.0554 0.0686 38.48 0.0507 0.0629
MAE-B-16 [82] 50.40 0.0686 0.0892 54.58 0.1013 0.1327 40.32 0.0560 0.0695 39.46 0.0484 0.0601

Notably, our method does not perform optimally with 3D supervised video features.
This outcome is anticipated because these 3D features are trained to encode information
based on video-level labels, thus capturing less detailed semantic information in individual
frames, which is crucial for our method. Still, such 3D features contain part of the holistic
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information of the associated video and may be a good vehicle for video summarization,
which can benefit from such information.

5.6. Qualitative Results

We show the effect of the local dissimilarity (L̄align), the global consistency (L̄uniform),
and the uniqueness scores generated by the uniqueness filter H̄θ̂ in Figure 7. We visualize
and discuss the effects in pairs, i.e., L̄align & L̄uniform and L̄align & H̄θ̂ . In the upper half of
Figure 7, the green bar selects a frame with high local similarity but low global consistency,
which is a title frame with a disparate appearance and hardly conveys any valuable
information about the video. While the black bar selects a frame related to the main content
of the video (an interview), it has semantic neighbors with almost the same look and is
less likely to contain diverse semantics. The red bar selects a frame with moderate local
dissimilarity and global consistency. This frame, along with its semantic neighbors, conveys
diverse information; for example, the car with or without people surrounding it. Moreover,
it is highly relevant to the overall video context: an interview at a car company.

Anchor Semantic neighbors

Anchor Semantic neighbors

0.364

0.086

0.709

0.717

0.088

0.687

0.691

0.073

0.492

0.498

0.017

0.859

Figure 7. The qualitative analysis of two video examples. The left column contains importance scores,
where “GT” stands for ground truth. The green bar selects an anchor frame with high L̄align but low
L̄uniform or H̄θ̂ , the red bar selects one with non-trial magnitude for both metrics, and the black bar
selects one with low L̄align but high L̄uniform or H̄θ̂ . We show five samples from the top 10 semantic
nearest neighbors within the dashed boxes on the right for each selected anchor frame.

For the lower half of Figure 7, the green bar selects a frame with information notice-
ably different from its neighbors, e.g., the sea occupies different proportions of the scene.
However, such a frame can appear in any video with water scenes, rendering it not unique
to the belonging video. Hence, its uniqueness score is low. The black bar selects a frame
with an object specifically belonging to this video in the center, but the local semantic
neighborhood around it hardly conveys diverse information. The red bar selects a frame
with both high local dissimilarity and high uniqueness, which is the frame related to the
gist of the video: St. Maarten landing.

6. Conclusions

We make the first attempt to approach training-free, zero-shot video summarization
by leveraging pre-trained deep features. We utilize contrastive learning to propose three



J. Imaging 2024, 10, 229 17 of 20

metrics—local dissimilarity, global consistency, and uniqueness—to generate frame impor-
tance scores. The proposed metrics directly enable the creation of summaries with quality
that is better or competitive compared to previous supervised or unsupervised methods
requiring extensive training. Moreover, we propose contrastive pre-training on unlabeled
videos to further boost the quality of the proposed metrics, the effectiveness of which has
been verified by extensive experiments. It would be interesting to explore multi-modal
zero-hot video summarization for future work.
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