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Abstract: Correct design of the sheet metal forming process requires knowledge of the friction
phenomenon occurring in various areas of the drawpiece. Additionally, the friction at the drawbead
is decisive to ensure that the sheet flows in the desired direction. This article presents the results
of experimental tests enabling the determination of the coefficient of friction at the drawbead and
using a specially designed tribometer. The test material was a DC04 carbon steel sheet. The tests
were carried out for different orientations of the samples in relation to the sheet rolling direction,
different drawbead heights, different lubrication conditions and different average roughnesses of
the countersamples. According to the aim of this work, the Features Importance analysis, conducted
using the Gradient-Boosted Regression Trees algorithm, was used to find the influence of several
parameter features on the coefficient of friction. The advantage of gradient-boosted decision trees is
their ability to analyze complex relationships in the data and protect against overfitting. Another
advantage is that there is no need for prior data processing. According to the best of the authors’
knowledge, the effectiveness of gradient-boosted decision trees in analyzing the friction occurring in
the drawbead in sheet metal forming has not been previously studied. To improve the accuracy of
the model, five MinLeafs were applied to the regression tree, together with 500 ensembles utilized for
learning the previously learned nodes, noting that the MinLeaf indicates the minimum number of
leaf node observations. The least-squares-boosting technique, often known as LSBoost, is used to
train a group of regression trees. Features Importance analysis has shown that the friction conditions
(dry friction of lubricated conditions) had the most significant influence on the coefficient of friction,
at 56.98%, followed by the drawbead height, at 23.41%, and the sample width, at 11.95%. The average
surface roughness of rollers and sample orientation have the smallest impact on the value of the
coefficient of friction at 6.09% and 1.57%, respectively. The dispersion and deviation observed for
the testing dataset from the experimental data indicate the model’s ability to predict the values of
the coefficient of friction at a coefficient of determination of R2 = 0.972 and a mean-squared error of
MSE = 0.000048. It was qualitatively found that in order to ensure the optimal (the lowest) coefficient
of friction, it is necessary to control the friction conditions (use of lubricant) and the drawbead height.
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1. Introduction

In the modern automotive industry, sheet metal forming processes are widely used to
produce components with complex shapes [1,2]. The sheet metal forming process involves
many challenges and factors that must be taken into account at the drawpiece design stage.
The possibility of forming sheets in the deep drawing process is related to their mechanical
properties (yield strength, elongation, formability) [3,4], processing conditions (tempera-
ture) [5,6] and lubrication conditions [7,8]. Friction is generally undesirable during metal
working processes. Friction is a phenomenon that occurs when one body begins to slide
against the other. The complexity of this phenomenon results from many factors that change
during contact between workpiece and tools in sheet forming processes [9]. These factors
include the surface roughness of the friction pair [10,11], the type of anti-wear coatings on
the tool surface [12], the type of contact (dynamic or static) [13] and the properties of lubri-
cant used [14]. In the case of drawpieces with complex shapes, undesirable wrinkling of the
sheet metal surface or uncontrolled flow of the sheet material in the processing zone may
occur [15]. The basic material for the production of car bodies and load-bearing elements
in motor vehicles are carbon steel sheets [16], including high-strength steels [17–19]. These
are sheets with very good formability and strength; they also have a very good tendency
to work hardening [20]. The basic way to reduce friction in sheet forming processes is to
use an appropriate lubricant [21]. The task of the lubricant is to provide a continuous layer
separating the friction surfaces, and the lubricant should be adapted to the contact pressure
and temperature in the contact zone. The effectiveness of the lubricant application also
depends on the roughness of the surfaces of the cooperating bodies [22]. Surface roughness
is closely related to the formation of open or closed oil pockets that retain the lubricant
during the mutual movement of the friction pair surfaces [23]. In cold sheet metal forming
processes, the use of liquid lubricants dominates. At elevated temperatures, solid lubricants
containing primarily MoS2 are used more often. In addition to special lubricants adapted to
stamping operations, the following lubricants, intended for other applications, are usually
used in sheet metal forming: machine oils, engine oils, gear oils, etc. Recently, research has
also been developing on the use of vegetable oil-based lubricants belonging to the group of
biodegradable substances. They are generally less toxic, more environmentally friendly
and reduce dependency on petroleum oils [24,25]. Surface texturing is an effective method
to control the friction phenomenon without the need to use lubricants [26].

Understanding the friction conditions involves using an appropriate tribological test.
So far, many methods have been developed to determine the value of the coefficient of
friction (CoF) using experimental tests modeling contact conditions in specific areas of
drawpieces [27]. This article focuses on determining the value of the coefficient of friction on
drawbead, which is an element in the stamping die that introduces additional resistance to
moving the sheet metal [28]. In this way, it is possible to equalize the material flow along the
perimeter of the drawpiece or to introduce additional resistance in key areas of the formed
sheet [29]. While passing through the drawbead, the sheet metal is bent and straightened
many times. Determining the deformation resistance and the value of the CoF occurring
on the drawbead is necessary to design the appropriate geometry of the drawbead and to
plan the technological process of plastic processing. The finite element method (FEM) of
numerical modeling is the main tool for analyzing the deformation of sheet metal in the
drawbead region. Chabrand et al. [30] developed the finite element model to determine
the main deformation paths in the drawbead zone. The results can be used for better
approximations of the drawbead in FE-based simulation codes. Billade and Dahake [31]
analyzed the thickness and strain variations during the forming process of the automotive
component by using the finite element method. It was found that circular drawbeads are
preferred over step beads. In the case of step beads, the sheet thinning is larger than circular
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beads. Desai and Deshmukh [32] optimized the draw bead location using the FEM for the
panel header forming process. It was found that wrinkling tendency can be avoided by
decreasing the entry side radius. Sena and Piyasin [33] applied the finite element method
to optimize the drawbead pattern. The optimal drawbead shape chosen was the drawbead,
which resulted in the least failure elements. Jung [34] analyzed the effects that the number
of beads and the bead shape have on forming processes. Despite the high geometric
nonlinearity of the problem, the authors did not observe a convergence problem.

The idea of determining the value of the CoF at the drawbead was discovered in 1978
by Nine [35], who proposed the use of a special tribological simulator, imitating the process
of pulling a strip of sheet metal through a system of rollers. He found that metal deforma-
tion and friction contributions to the drawing and clamping forces for drawbeads can be
separated based on Coulomb’s law. Triantafyllidis et al. [36] numerically investigated (finite
element method) the effects of material properties, bead geometry and CoF on the force-
displacement and strain distribution diagrams for several bead designs. They found that
wide, shallow beads produce little risk of sheet tearing. On the other hand, deep, narrow
beads provide the greatest restraining force during the pulling phase of deformation. The
drawbead model proposed by Maker et al. [37] accurately predicts the effect of variations
in bead geometry, material property and friction conditions on restraining force. In another
article, Maker [38] optimized 3D drawbead designs through the finite element method,
using the LS-Dyna software (Version 950, Livermore Software Technology Corporation,
Livemore, CA, USA). Incorporating analytic drawbeads in 3D-forming analyses showed
a promising outcome in the simulation of the product development cycle. Furthermore,
Hance and Walters [39] investigated the effect of sheet thickness on the frictional forces
using a drawbead simulator. They proposed a correction factor which normalizes the CoF
over a range of sheet metal thicknesses. Leocata et al. [40] analyzed the change in the sheet
topography caused by drawbead. It was found that the roughening due to plastic strain
increases the boundary lubrication, and thus the CoF. Additionally, the surface roughness of
the sheet metal increases during the drawbead pass due to plastic strain [41]. Ren et al. [42]
established a drawbead model with linear Coulomb friction, and they obtained the restrain-
ing forces corresponding to a range of bead penetration depths. Figueiredo et al. [43] used
the drawbead friction test to investigate the effect of the surface roughness, sliding speed
and the lubrication regime on the CoF. The results revealed that the surface roughness of
the die has a significant effect on the CoF.

Due to the complexity of the friction phenomenon, the synergistic influence of many
parameters simultaneously on the value of the coefficient of friction or topography of
the sheet surface caused by friction is difficult. Therefore, statistical analyses, artificial
intelligence (AI) methods and machine learning (ML) are tools supporting tribological
research. In regression, ML algorithms can be classified into the following groups: ran-
dom forests, decision trees, support vector regression and linear regression and deep
neural networks. Najm et al. [44] applied the CatBoost machine learning algorithm to
identify the parameters of CoFs for carbon steel sheets tested in strip-drawing tests. Cat-
Boost was able to predict the CoFs with R2 values between approximately 0.95 and 0.97.
Trzepieciński et al. [45] identified parameters affecting the CoF of 5000 series aluminium
alloy sheets by using artificial neural networks. The authors investigated the influence of
the activation function of neurons on the prediction accuracy of ANN. It was found that
the leaky rectified linear unit was the most appropriate activation function. In paper [46],
ANNs were used to model the influence of drawbead friction test parameters on the CoF.
Four training algorithms (quasi-Newton, conjugate gradients, Levenberg–Marquardt and
back propagation) were used to train the ANNs. The quasi-Newton algorithm was the
most effective and provided R2 = 0.996 for the training set. Szewczyk et al. [47] used the
CatBoost ML algorithm to estimate the mean surface roughness and CoF of DC05 steel
sheets. It was found that contact pressure is the least significant factor in determining
mean surface roughness, whereas the viscosity lubricant has no significant effect on CoF.
Szpunar et al. [48] applied a split plot design and analysis of variance to obtain a response
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about the relationship between incremental forming process parameters and CoF. They
obtained the relationships between the analyzed parameters using response surfaces of the
model exhibited, wherein R2 = 0.96. The integration of analytical methods with tribology
will inevitably improve the efficiency of analysis and research in tribology, and promote
the development of component tribology [49], green tribology [50,51] and intelligent tribol-
ogy [52,53]. Malinowski and Kasińska [54] presented a case study using ANNs and ML
algorithms for the effective prediction of tribological properties of wear-resistant layers.
It was found that using ML is possible to effectively determine the effect of individual
tribological parameters on individually explained parameters, such as wear depth and
wear area. ML regression models could be used to predict CoF by using input parameters
such as chemical composition, microstructure, mechanical properties, coating deposition
process and grain size [55]. Kchaou [55] proposed an innovative framework based on the
coupling experiments and ML algorithm. The developed data-driven approach was used
for the optimization of the experimental tribological test design and to discover correlations
between friction process parameters (sliding distance, temperature, normal load, surface
properties) and friction behavior. Cheng et al. [56] and Motamedi et al. [57] proposed a
variation mode decomposition with ML algorithms to predict the CoF based on the surface
roughness, friction noise and friction-induced vibrations. Baş and Karabacak [58] applied
regression trees and support vector machine ML-based algorithms to model the effects of
load and temperature on the CoF. Performance assessments demonstrated that analyzed
models successfully predicted the value of the CoF. Noma et al. [59] used convolutional
ANNs to recognize the relationship between the elemental distribution of a tribofilm and
CoF. Gradient-weighted class activation mapping was developed to visualize the areas im-
portant for classifying elemental distributions into CoF groups; then, it was concluded that
the CNNs are useful for evaluating friction of tribofilms formed from lubricant additives.
Mohammed et al. [60] applied ANNs, Classification And Regression Tree (CART) and a
support vector-supervised machine learning algorithm to predict the coefficient of friction
of epoxy resin. Based on correlation coefficient R2 and the mean absolute error (MAE), it
was shown that ANN had the best prediction ability. ML approaches allow for the discovery
of correlations that are difficult to find using traditional methods. The K-nearest neighbor
algorithm, principal component analysis and gradient-boosting machine algorithm have
been successfully applied to the analysis of the frictional behavior of metallic composite
materials [61]. Applications and the role of ML in tribology can be found in the review
articles of Paturi et al. [62] and Sose et al. [63]. An overview of the applications of artificial
intelligence (AI) in different tribological research fields, including intelligent tribology, and
a basic theory of tribology can be found in paper [52].

To the best of the authors’ knowledge, this article uses gradient-boosting (GB) with a
regression stress algorithm for the first time in the analysis of friction in sheet metal forming.
Gradient-boosted decision trees involve implementing several models and aggregating
their results. In gradient-boosting, the target of the functional space-boosting is pseudo-
residuals, not the typical residuals used in traditional boosting. In the case of regression,
the final result is generated from the average of all weak learners. In gradient-boosting,
weak learners work sequentially by improving the successive analyzed models. This gives
the model the advantage of predicting complex phenomena that are difficult to analyze
with analytical methods, such as friction. This is a phenomenon that is influenced by
many factors, which often interact synergistically. This makes it difficult to qualitatively
assess the effect of individual friction conditions on the value of the coefficient of friction.
The present study analyzes the influence of parameter features, specifically referred to as
Features Importance, on the coefficient of friction of DC03 carbon steel, as determined in
the drawbead friction test. A special tribometer was designed and manufactured to model
the phenomenon of friction on the drawbead in the stamping die. The relative importance
of the friction conditions (drawbead height, sample orientation and mean roughness) on
the CoF was analyzed.
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2. Material and Methods
2.1. Test Material

The test material was DC04 carbon steel sheet metal. The thickness of the sheets was
0.8 mm. Samples for friction tests had the form of sheet metal strips that were 400 mm long.
Fejkiel [64] found that the width of the sheet metal strip determines the character of the
sheet metal deformation and the value of the coefficient of friction in the drawbead test.
Therefore, it was decided to test sheets of different widths, as follows: 7, 14 and 20 mm.
Basic mechanical properties were determined for informational purposes using a uniaxial
tensile test. This is the basic method for determining the mechanical properties of sheet
metals. Tests using a Z100 (Zwick/Roell, Ulm, Germany) uniaxial testing machine were
carried out in accordance with the EN ISO 6892-1:2020 [65] standard. The average values of
basic mechanical properties for three different directions relative to the rolling direction (0◦,
45◦ and 90◦) (Table 1) were determined on the basis of three repetitions.

Table 1. Basic mechanical properties of DC04 sheet metal.

Sample Orientation Yield Stress, MPa Ultimate Tensile
Strength, MPa Elongation, %

0◦ 184 304 23
45◦ 194 315 22
90◦ 176 296 23

Using the Talysurf CCI Lite profilometer (Taylor-Hobson Ltd., Leicester, UK), the
sheet surface topographies were measured, and the basic surface roughness parameters
(Figure 1) were determined. The profile analysis area was 3.25 × 3.25 mm2. The method of
determining roughness parameters can be found in the ISO 25178-6 [66] standard.
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Figure 1. 3D surface topography and selected roughness parameters of DC04 steel sheet.

2.2. Experimental

Experimental tests were carried out on a specially designed device (Figure 2) whose
operating principle was based on the Nine concept [35]. The device consists of a body, in
which three cylindrical counter-samples are placed. The design of the tester enables the
measurement of force parameters during the friction test. The test involves pulling sheet
metal strips through a system of fixed rollers and through a system of freely rotating rollers.
In this way, it is possible to separate resistance to friction from the resistance to plastic
deformation of the sheet metal associated with repeated bending and straightening of the
sheet metal during its passage through the drawbead. The device was mounted to the
lower gripper of the Z100 universal testing machine (Zwick/Roell). One of the ends of the
sample, in the form of a 400 mm long sheet metal strip, was mounted to the upper gripper
of the testing machine.
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Figure 2. (a) Diagram and (b) view of the testing device: 1, 2, 3—working rollers; 4—support roller;
5—body; 6—sample; 7—nut; 8—horizontal tension cell; 9—upper tension cell; 10, 11—load cells.

The value of the coefficient of friction is determined based on the values of horizontal
and vertical forces that are recorded during tests with freely rotating and fixed rollers.
Load cell sensors are placed on the horizontal tension cell and the upper tension cell
(Figure 2a). During the test, the signal values from these sensors were recorded using
the NI 9237 measurement card (National Instruments Xorporation, Austin, TX, USA) and
the Lab View DAQ program (National Instruments Corporation, ver. 2015 SP1, Austin,
TX, USA), with a frequency of 50 Hz. The diagram of the force parameters is shown in
Figure 3. The tests were carried out for different heights of the drawbead h, as follows:
18 mm, 12 mm and 6 mm. The value of the coefficient of friction was determined from the
following equation [67]:

µ =
sinα

2α
× PF − PR

FF
(1)

where α is the contact angle of the middle roller with the sample. PR and PF are the pulling
forces obtained with the freely rotating rollers and fixed rollers, respectively; FF is the
normal force obtained with fixed beads.
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The change in the value of the coefficient friction was determined based on the
recorded force parameters during the entire test of drawing the sheet metal through the
drawbead. In this way, approximately 750 values of the coefficient of friction as a function
of drawing distance µ = f (distance) were obtained for each test. Then, the average value of
these approximately 750 values of the coefficient of friction was determined, which was
representative for each test carried out under specific friction conditions.

The contact angle α values for the drawbead heights of 18 mm, 12 mm and 6 mm were
111.4◦, 82.6◦ and 36.4◦, respectively.

Rollers with a diameter of 20 mm are made of 145Cr6 tool steel. Three sets of rollers
with different average surface roughnesses of 1.25 µm, 0.63 µm and 0.32 µm were used in the
tests. The sliding speed was 10 mm/s. Three types of friction conditions were considered,
as follows: dry friction and lubrication with oils with different kinematic viscosities, (η),
Heavy-Draw 1150 oil (η = 1157 mm2/s) and LAN-46 machine oil (η = 43.9 mm2/s).

In summary, this section presents the experimental conditions for determining the
coefficient of friction at the drawbead using a specially designed device. The test material
was 0.8-mm-thick DC04 steel sheets. The second elements of the friction pair were counter-
samples made of 145Cr6 tool steel. Friction tests were carried out for the following variable
parameters: sample orientation in relation to the sheet rolling direction, drawbead height
and average surface roughness of the countersamples. The tests were carried out under
dry friction conditions and under lubricated conditions with machine oil (LAN-46) and
synthetic stamping oil (Heavy-Draw 1150). Based on the recorded force parameters of the
test, the value of the coefficient of friction was determined according to Equation (1).

2.3. Gradient-Boosting Regression

Regression with boosted decision trees is used to establish the regression of friction
process parameters on the predicted output of the coefficient of friction (COF), based on
their impacts. The boosting technique involves sequential learning using previously fitted
learners, as well as an analysis of errors [68]. In this study, the Gradient-Boosting Regression
(GBR) algorithm in [69] and [70] is implemented for the prediction of COF. Decision trees
are usually used with boost methods to enhance the prediction of shallow data. To improve
the accuracy of the model, five MinLeafs were applied to the regression tree, together with
500 ensembles utilized for learning the previously learned nodes, noting that the MinLeaf
indicates the minimum number of leaf node observations. In comparison to a tree leaf, each
leaf contains at least one MinLeaf set of observations. The least-squares-boosting technique,
often known as LSBoost, is used to train a group of regression trees. The LSBoost technique
generates regression ensembles to minimize the mean-squared error (MSE). By finding
the difference between the observed response and the summed error of the prediction
of all learners, which have been trained in the previous step, fitting a new learner to the
difference has been shown to be an effective method for minimizing the MSE [71].

2.4. Validation Metrics

The coefficient of determination (R2) and Standard Error Mean (SEM) were used to
validate the COF prediction. SEM is achieved by dividing the initial standard deviation
(SD) of a sample size by the square root of the sample size. R2 is the combined value of the
Total Sum of Squares (SStot) and the Sum of the Square of Residuals (SSres). The formulas
to calculate the parameters mentioned above are as follows:

E =
(

ytarget
i − ypredict

i

)
(2)

MSE =
1
n∑n

i=1

(
ytarget

i − ypredict
i

)2
or MSE =

1
n∑n

i=1(E)2 (3)

y =
1
n

n

∑
i=1

(
ytarget

i

)
(4)
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SStot =
n

∑
i=1

(
ytarget

i − y
)2

(5)

SSres = ∑n
i=1

(
ytarget

i − ypredict
i

)2
or SSres = ∑n

i=1(E)2 (6)

R2 =
SStot − SSres

SStot
(7)

Thus,

R2 =
∑n

i=1

(
ytarget

i − y
)2

− ∑n
i=1

(
ytarget

i − ypredict
i

)2

∑n
i=1

(
ytarget

i − y
)2 (8)

where E is the error, ytarget
i are the actual values of COF, ypredict

i are the prediction values of
COF, y is the mean value of the actual values of COF and n is number of measurements.

The Standard Error Mean (SEM) can be determined from the following equation:

SD =
SD√

n
(9)

where

SD =

√
1

n − 1

n

∑
i=1

(
E − ME

)2 (10)

E =
(

ypredict
i − ytarget

i

)
(11)

ME =
1
n

n

∑
i=1

(
ypredict

i − ytarget
i

)
(12)

2.5. Categorical Variables

One-hot encoding is a commonly used method for expressing categorical variables,
sometimes called dummy variables [68,72]. One-hot encoding is a technique that replaces a
category variable with one or more additional features [73]. These inputs are effectively
transformed into sparse-binarized representations by converting the category inputs into
binary values of 0 and 1. These representations may subsequently be used as features
to train artificial neural network (ANN) models. However, in this study, because the
Gradient-Boosting Regression has been implemented in the CatBoost Jupyter Notebook,
which supports executing categorical variables directly, the process of One-hot encoding
has been skipped.

3. Results and Discussion

It is essential to distinguish between training and test errors while evaluating a model.
Training errors are calculated using the same dataset to train the model, but a distinct,
unseen dataset is used to calculate the test error. The R2 value of the training dataset
quantifies the variation the model captures within the trained samples. On the other
hand, the R2 value of the testing dataset acts as a measure of the model’s capacity to make
predictions. However, the model was run after dividing the data (162 samples) into the
training set and test set by allocating 80% of the actual data (129 samples) for training and
storing 20% for testing, resulting in 33 samples. The reliability of the experimental data was
verified by artificial neural network analysis. This analysis was presented in the previous
article [46].

As stated, 500 iterations were tuned to obtain the optimal R2 and minimum mean-
squared error. Undoubtedly, augmenting the number of iterations may enhance accuracy,
but at the cost of time, and there is a possibility of the model experiencing overfitting. Within
this analysis, 500 iterations were conducted, which proved to be very effective in reaching
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optimal performance, as seen in Figure 4. Stability was achieved after around 300 iterations,
with a slight decrease in MSE that is nearly insignificant in the final 200 iterations.

Materials 2024, 17, x FOR PEER REVIEW 9 of 17 
 

 

One-hot encoding is a commonly used method for expressing categorical variables, 
sometimes called dummy variables [69,73]. One-hot encoding is a technique that replaces 

a category variable with one or more additional features [74]. These inputs are effectively 
transformed into sparse-binarized representations by converting the category inputs into 
binary values of 0 and 1. These representations may subsequently be used as features to 

train artificial neural network (ANN) models. However, in this study, because the Gra-
dient-Boosting Regression has been implemented in the CatBoost Jupyter Notebook, 
which supports executing categorical variables directly, the process of One-hot encoding 

has been skipped. 

3. Results and Discussion 

It is essential to distinguish between training and test errors while evaluating a 

model. Training errors are calculated using the same dataset to train the model, but a 
distinct, unseen dataset is used to calculate the test error. The R2 value of the training 

dataset quantifies the variation the model captures within the trained samples. On the 
other hand, the R2 value of the testing dataset acts as a measure of the model’s capacity to 
make predictions. However, the model was run after dividing the data (162 samples) into 

the training set and test set by allocating 80% of the actual data (129 samples) for training 
and storing 20% for testing, resulting in 33 samples. The reliability of the experimental 
data was verified by artificial neural network analysis. This analysis was presented in the 

previous article [46]. 
As stated, 500 iterations were tuned to obtain the optimal R2 and minimum 

mean-squared error. Undoubtedly, augmenting the number of iterations may enhance 

accuracy, but at the cost of time, and there is a possibility of the model experiencing 
overfitting. Within this analysis, 500 iterations were conducted, which proved to be very 
effective in reaching optimal performance, as seen in Figure 4. Stability was achieved af-

ter around 300 iterations, with a slight decrease in MSE that is nearly insignificant in the 
final 200 iterations. 

 

Figure 4. Model performance of the training and testing iterations. 

The SHapley Additive exPlanations (SHAP) plot shown in Figure 5 is regarded as a 

critical benefit of CatBoost in data analysis and evaluating the influence of inputs on 
outputs. There are several approaches to analyzing this effect; however, SHAP plots excel 

in scrutinizing each number within each group independently. Put simply, if the values of 
other parameters in the same row alter, the same value for a particular parameter may 
have a different impact than its previous impact, even if it has the same value. In Figure 5, 

the parameter of the sample width value is represented by the blue line on the far-left 
side. The last point on this line is positioned at −0.02. Without this value, the prediction 

Figure 4. Model performance of the training and testing iterations.

The SHapley Additive exPlanations (SHAP) plot shown in Figure 5 is regarded as
a critical benefit of CatBoost in data analysis and evaluating the influence of inputs on
outputs. There are several approaches to analyzing this effect; however, SHAP plots excel
in scrutinizing each number within each group independently. Put simply, if the values
of other parameters in the same row alter, the same value for a particular parameter may
have a different impact than its previous impact, even if it has the same value. In Figure 5,
the parameter of the sample width value is represented by the blue line on the far-left side.
The last point on this line is positioned at −0.02. Without this value, the prediction would
rise by 0.02. In contrast, excluding the number on the far-right in red, roughly 0.025, would
result in a drop of 0.025 in the prediction. The divergence and convergence of data points
result in fluctuations in the standard deviation, which in turn influence the average error
and subsequently affect all validation metrics, thus affecting the performance of the model.
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The present study analyzes the influence of parameter features, specifically referred
to as Features Importance or relative importance, on the coefficient of friction, which is
the output variable. As stated before, the experimental study included five parameters,
which were employed as inputs. The Features Importance of the parameters is shown in
Figure 6. The input parameter ‘Friction conditions’, as a categorical variable, is responsible
for the lubrication conditions, i.e., it assumes one of the three following states: dry friction,
lubrication using LAN-46 machine oil (Orlen Oil, Kraków, Poland) and lubrication using
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Heavy-Draw 1150 stamping oil (Lamson Oil, Rockford, IL, USA). The friction condition
during experiments, consisting of three conditions (dry, using oil LAN-46 and using oil
HD1150), had the most significant influence on the coefficient of friction (COF), followed
by the drawbead height and the sample width. Lubrication conditions (dry friction or
lubrication) play a key role in the phenomena occurring in the contact zone in sheet metal
forming [74,75]. The use of liquid lubricants is a basic and effective way to reduce friction.
Lubricant is used to separate rubbing surfaces by forming a continuous film at the contact
interface. In this way, the mechanical cooperation of the surface asperities is limited,
among others, through the mechanisms of flattening or ploughing [76]. Drawbead height
determines the change in the topography of the sheet metal surface caused by repeated
bending and straightening of the sheet when the sheet passes through the drawbead.
Moreover, DC04 steel sheets have a high tendency to work hardening [77,78]. Therefore,
large deformations of the sheet material change their strength and hardness at the same
time. In this way, there is a change in the friction conditions, resulting from a change in
the mechanical properties of one of the bodies of the friction pair. The width of the sample
influences the character of the deformation of the sheet metal while passing through the
drawbead. Therefore, there is a different intensity of frictional cooperation between the
sheet and the countersamples across the width of the sheet strip [64]. This also affects the
value and mutual relationship between the values of force parameters, which, according to
Equation (1), are the basis for determining the value of the coefficient of friction.
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The influence of the surface roughness of the countersamples was minimal. Lastly, the
sample orientation had a minimal influence on the COF. Figure 6b displays the percentage
of influence of several parameter features. The friction condition feature has the most
influence, at 56.98%, followed by drawbead height, at 23.41%, sample width, at 11.95%,
surface roughness of countersamples, at 6.09%, and sample orientation, at 1.57%.

As ‘friction conditions’ (Figure 6), the authors considered three friction process con-
ditions, as follows: dry friction, lubrication using LAN-46 machine oil and Heavy-Draw
1150 stamping oil. During dry friction, severe plastic interaction of the tool and asperities
of surface roughness of sheet metal occur. As a result of contact pressure, these surface
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asperities are flattened. This occurs in both dry friction and lubrication conditions. How-
ever, this phenomenon is more intense in dry friction conditions. In lubricated conditions,
the friction surfaces are separated by a thin layer of lubricant, which limits adhesion phe-
nomena in the contact zone, leading to a decrease in the CoF. ‘Drawbead height’ (Figure 6)
determines the degree of sheet deformation during drawbead passage. Higher values of
this parameter affect the greater degree of change in the sheet surface topography when
strip sample-flowing through the drawbead. This is also associated with more intense
work, hardening of the sheet material and a change in the mechanical properties of one
of the materials of the friction pair (sheet metal). In these conditions, the change in the
sheet metal surface topography limits the flattening mechanism. The ‘Width of sample’
(Figure 6) affects the character of sheet metal deformation when sample-flowing through
the drawbead. Transverse components of stress arise when sheet metal is subjected to
cyclic bending and straightening when passing through the drawbead, which distorts the
process of deformation of the specimen along its width. This phenomenon is described
in detail in the previous paper [79]. The average surface roughness of countersamples
(‘Ra of countersamples’ in Figure 6) is responsible for the character of the friction pair
cooperation. It should be noted that in sheet metal forming, the strength of the tool is
greater than the strength of the sheet metal. The influence of the average surface roughness
of countersamples depends on the friction conditions. During dry friction, the surface
roughness of the tool affects the intensity of flattening and ploughing of the sheet metal
surface. On the one hand, in lubricated conditions, the higher tool roughness provides a
larger volume of valleys, which are a reservoir of lubricant. On the other hand, higher tool
surface roughness increases the share of the ploughing phenomenon in total resistance to
friction, thus increasing CoF. Cold-rolled steel sheets were used in the study. As a result of
the production process (rolling), the sheet properties along the rolling direction and in the
direction transverse to the rolling direction are different [79]. In this way, the deformation
resistance of samples oriented in different directions, considered as ‘sample orientation’
(Figure 6), is different. As a result, the value of the friction process force parameters
and the CoF, determined according to the relationship proposed by Nanayakkara et al.
(Equation (1)) [67], changes according to sample orientation.

Figure 7 illustrates the actual and predicted values of the COF. The X-axis shows the
number of values, while the Y-axis reflects the value of the COF. The values are sorted in
ascending order to prevent displaying the data in a skewed manner. However, it is not
feasible to see the behavior of the predicted values if they align with the actual values and
if they are not sorted. Figure 7a displays the actual and predicted COF values used for the
training dataset of the model, whereas Figure 7b shows the data that were retained and not
used in the training to be used for testing the model, known as the testing dataset. However,
the data in Figure 8 correspond to the data in Figure 7a, with the exception that all the
actual training values have been adjusted by 0.1 in the plot to differentiate between actual
and predicted values. This adjustment was made because the predicted data in Figure 7a
completely matched some of the actual training data, causing them not to be visible.

In Figure 9, the dashed line demonstrates an exact theoretical correspondence between
the observed—actual data—and the predicted values of COF, with the data superimposed
exactly on top of the line. The dispersion and deviation observed from the dashed line
indicate the model’s ability to predict COF values with minimum errors. As mentioned
earlier, the line represents the best fit, and the deviation of values from this line represents
errors. Based on this, the standard deviation, mean-squared error and R-squared have been
calculated using the equations referred to in the section of validation metrics.

Designing the sheet metal forming process with (or without) drawbeads requires
knowledge of friction conditions. In recent years, the finite element method (FEM) has been
increasingly used to model the forming process and its optimization. The numerical model
requires knowledge of contact conditions in critical locations of the formed drawpiece.
This paper presents an example of a tool design that can be used to determine boundary
conditions at the drawbead in the FEM model. Analytical models for determining the
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coefficient of friction in this zone of the stamping die have not been developed yet. The
Features Importance analysis, performed using the Gradient-Boosting with Regression
Trees algorithm, provided information on the significance of selected friction process
parameters. This allows the planning of future research to focus on the parameters most
responsible for the friction phenomenon at the drawbead, omitting the least important ones.
Due to the complex, difficult to analytically assess, synergistic effect of many parameters on
the friction phenomenon, finding the most important factors influencing friction is difficult
without statistical analysis.
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4. Conclusions

This article presents an analysis of the impact of the importance of individual features
on the coefficient of friction of DC04 steel sheets based on the experimental results of
the drawbead test. The Gradient-Boosting with Regression Trees algorithm was used to
analyze the experimental data. A group of regression trees was trained using the least-
squares-boosting technique. Features Importance analysis has shown that the friction
conditions (dry friction of lubricated conditions) had the most significant influence on the
coefficient of friction, followed by the drawbead height and the sample width. The friction
condition feature has the most influence on the coefficient of friction, at 56.98%, followed by
drawbead height, at 23.41%, and sample width, at 11.95%. The average surface roughness
of rollers and sample orientation have a small impact on the value of the coefficient of
friction at 6.09% and 1.57%, respectively. The dispersion and deviation observed from the
experimental data indicate the model’s ability to predict values of the coefficient of friction.
The coefficients of determination for training and testing the datasets were R2 = 0.997 and
R2 = 0.972, respectively.

Future research will test the predictive potential of the developed model for data that
were not used in either the training set or the testing set. The extension of the experimental
campaign to sheets of different roughness will allow for the representation in the data
to have an effect on the interaction between the surface roughness of the tool and the
sheet metal, and on the value of the coefficient of friction. The implementation of the
investigations with the participation of oils with viscosity varying in a wide range would
allow for the inclusion of lubricant viscosity in the gradient-boosting-based model. It
will also be interesting to apply and compare other data processing algorithms, including
machine learning, CatBoost (Yandex), LightGBM, eXtreme Gradient-Boosting (XGBoost),
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etc. The research presented in this article confirmed the effectiveness of experimental data
to obtain a high-performance gradient-boosting-based model.
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