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Abstract: As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting
healthcare for years. The largest sequencing initiative for any species was initiated to combat the
virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing
represents a unique opportunity to understand selective pressures and viral evolution but requires
cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we
integrate a two-year genotyping window with structural biology to explore the selective pressures of
SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein
continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the
high drift rate of amino acids involved in antibody evasion also corresponds to changes within the
ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The
genotyping suggests selective pressure for receptor specificity that could also confer changes in viral
risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex
(nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain
critical factors for drug development that will be sustainable, unlike those strategies targeting Spike.
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1. Introduction

SARS-CoV-2 currently ranks as the most sequenced virus in human history, with
nearly 9 million genomes sequenced as of early 2024 within NCBI [1] and 16.8 million in
GISAID [2], the two largest repositories of viral genomics. Within NCBI Virus, most (~97%)
of the sequenced SARS-CoV-2 genomes were isolated from oronasopharynx swabs, with
less than one percent from feces and blood (Figure 1A).
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Figure 1. Status of SARS-CoV-2 genomes (taxid:2697049) within NCBI Virus. Data extractions were 
performed on 24 July 2024. Data are shown for the isolate (A), protein annotations (B), or geograph-
ical region based on continent (C), country (D), or state within the USA (E). Panel (F) shows the 
normalized genome sequences in each state of the USA relative to the million individuals within the 
state based on the 2020 census levels. Red boxes indicate the location of current genotyping data. 

2. Materials and Methods 
This work was approved by the Corewell Health West Institutional Review Board 

(IRB #CHW 2020-470). Nasal swabs were obtained from routine clinical testing at Core-
well Health regional hospitals and collection sites throughout Michigan (MI), United 
States. Samples positive for SARS-CoV-2 (cycle threshold Ct value ≤ 32) were extracted 
using a QIAcube HT (Qiagen, Hilden, Germany) with a QIAamp 96 Viral RNA kit with 
Offboard Lysis 1NS-2 protocol. Illumina’s COVIDSeq Test kit was used for sequencing in 
rounds of 96-well plates consisting of 94 samples, a positive control, and a no template 
control for each run. IDT for Illumina DNA/RNA UD Index sets A through D (96 indexes 
per set) were used to identify each unique sample. Individual libraries were pooled per 
plate, quantified, and then normalized to 4 nm. Four normalized libraries were pooled 
together and sequenced on the NextSeq 500 using a mid-output sequencing cartridge. 
FASTQ analysis was performed using Illumina’s DRAGEN COVID Lineage application, 
and the flattened FASTA file for each sample was exported to NCBI and GISAID with 
collection dates for further protein annotations. NCBI processing of sample uploads as the 

Figure 1. Status of SARS-CoV-2 genomes (taxid:2697049) within NCBI Virus. Data extractions
were performed on 24 July 2024. Data are shown for the isolate (A), protein annotations (B), or
geographical region based on continent (C), country (D), or state within the USA (E). Panel (F) shows
the normalized genome sequences in each state of the USA relative to the million individuals within
the state based on the 2020 census levels. Red boxes indicate the location of current genotyping data.

The early genomic datasets suggested that the virus could accumulate one substitution
every 11 days, with extensive focus on how changes in the genome could alter the viral
spread to inform the pandemic response [3]. Frequent reports of genomic changes have
contributed to the public perception that the virus is rapidly changing, a perception that
has influenced scientists to focus on genomic change rather than conservation. Although
extensive work addressed the changes to the Spike (S) protein and how they result in
immune escape [4], the virus contains additional proteins coded by the genes ORF1ab
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(ORF1a and ORF1b), ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10 [5] that have
remained poorly characterized for variant impacts. SAR-CoV-2 genomes contain each of
these proteins at similar detection as Spike (Figure 1B), but assessments of protein-coding
changes within them have been less of a focus throughout the literature [6].Based on the
NCBI, the majority of our genomes for SARS-CoV-2 were generated in Europe and North
America (Figure 1C), with the USA, United Kingdom, Germany, Denmark, and Switzerland
depositing the most genomes as countries (Figure 1D). Within the USA, many of the states
with the largest populations generated the most genomes (Figure 1E), including California
(CA), Florida (FL), and Texas (TX). Several states sequenced a higher number of genomes
relative to their population (Figure 1F), including Vermont (VT), Massachusetts (MA), and
Minnesota (MN). As there is a clear disbalance in genotyping of SARS-CoV-2 relative to
geography, there has also been a lag in the publications of data analysis for these genotypes
from diverse geographies, emphasizing individual groups to define dynamics of the virus
in unique locations [7–10]. Yet, there has been a lack of strategy for exploring the full viral
genome drift to proteins outside Spike.

The SARS-CoV-2 genomics field has been centered around phylogenetics and “high-
impact” variants [11], which was beneficial for predicting new risk strains in the pandemic
response. As data accumulated over the years, the extensive volumes of genomic data,
the complexities of sequencing bias, the challenge of rare variants to “potential” risks,
and the geographical complexities [12] have challenged the genomic utility of the massive
sequencing investments during the pandemic. As the field transitions into the endemic
phase of SARS-CoV-2, we must strategize how our investments in genomics can highlight
aspects of targeted treatment dynamics and understand selective pressures between viral
survival and virulence within each geographical region.

This paper combines our deep evolutionary and structural dynamics of SARS-CoV-
2 [13] with two years of genotyping within a community hospital system. The analysis
integrates the current state of SARS-CoV-2 genomic and structural knowledge, elucidating
opportunities to move forward in the COVID-19 endemic era that other teams can utilize
to transition from phylogenetics into protein impacts and drug targeting.

2. Materials and Methods

This work was approved by the Corewell Health West Institutional Review Board
(IRB #CHW 2020-470). Nasal swabs were obtained from routine clinical testing at Corewell
Health regional hospitals and collection sites throughout Michigan (MI), United States.
Samples positive for SARS-CoV-2 (cycle threshold Ct value ≤ 32) were extracted using a
QIAcube HT (Qiagen, Hilden, Germany) with a QIAamp 96 Viral RNA kit with Offboard
Lysis 1NS-2 protocol. Illumina’s COVIDSeq Test kit was used for sequencing in rounds
of 96-well plates consisting of 94 samples, a positive control, and a no template control
for each run. IDT for Illumina DNA/RNA UD Index sets A through D (96 indexes per
set) were used to identify each unique sample. Individual libraries were pooled per plate,
quantified, and then normalized to 4 nm. Four normalized libraries were pooled together
and sequenced on the NextSeq 500 using a mid-output sequencing cartridge. FASTQ
analysis was performed using Illumina’s DRAGEN COVID Lineage application, and the
flattened FASTA file for each sample was exported to NCBI and GISAID with collection
dates for further protein annotations. NCBI processing of sample uploads as the routine
part of NCBI virus annotations yielding updated Pangolin and protein annotations [14].

FASTA files for each SARS-CoV-2 protein of all sequenced samples were exported from
NCBI Virus tool and aligned with the Kalign algorithm [15] using UGENE tools [16] with
the gap open penalty set to 54.95, gap extension penalty at 8.52, terminal gap penalty at 4.42,
a bonus score of 0.02, and the standard genetic code option. Only missense variants were
assessed for the sequenced samples, with all synonymous changes of the viral genomes not
analyzed in the current study. Following alignments within the UGENE tool, the consensus
of all aligned sequences for each protein was calculated using the default consensus mode
set to a threshold of 10%. The consensus sequence was added to each alignment as the
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top listed sequence, and alignments were transformed into matrix positioning using Mega
software (version 5) [17]. Within the matrix, any sequences with uncertain base calls (N
to ? annotation in FASTA files) over the protein resulted in that entire protein sequence
being removed, yielding a highly curated alignment with uncertain error removed. After
sequence removal, a unique list of amino acids at each position was calculated from the
matrix, and the percent of sequences with the same amino acid as the consensus was
calculated, with one minus that number serving as the drift rate for each amino acid.

The Protein Data Bank (PDB) [18] was quired on 3/14/2024 for all structures deposited
containing the species “SARS-CoV-2”. Results were extracted for the per-molecule species
annotations and manually curated for the protein annotations of human and SARS-CoV-2
molecules to fix uncommon annotation use. The Spike-ACE2 integrated structure [13], nsp7-
14 complex (PDB file 7egq) [19], nsp3-ISG15 (6xa9) [20], and nsp5-Nirmatrelvir (8b2t) [21]
files were used to map variants using YASARA software (version 24) [22]. In short, each
molecule of SARS-CoV-2 was homology modeled from the source PDB file using the protein
consensus sequence above. Coloring of amino acid drift was done using YASARA python
coding. Data for all USA and international genotypes were extracted for SARS-CoV-2
(taxon ID 2697049) using NCBI Virus on 24 July 2024. Each variant identified in structures
was annotated to lineages using the NCBI Virus mutation tool.

3. Results

Corewell Health clinical sites are in a mixed community of a city (Grand Rapids) with a
regional triage center and additional hospitals that service areas of rural Michigan, USA. The
state of Michigan has ranked as one of the top geographical areas for SARS-CoV-2 genomes
(Figure 1E, red), with a median density of genomes relative to the population size (Figure 1F,
red). Corewell Health is an extensive hospital system that serves over 1.3 million health
plan members. Corewell Health sequenced 7518 SARS-CoV-2 genomes from December
2021 through December 2023 that passed quality control with >90% coverage and a median
of 500 reads (Figure 2A). These samples were all used to process genome annotations with
the NCBI standard SARS-CoV-2 workflow. There were a few delta strains throughout the
two years of sample/data collection and sequencing, but most of the sequencing was of
various omicron annotations (Figure 2B). The genotyping data were 82% concordant with
national data (USA) over the study period based on a per genotype per month annotation
of NCBI SRA data relative to Corewell Health samples (Figure 2C). This suggests that our
genotyping data represent similar trends to national data for month-over-month sampling
and genotype calls, opening the door for variant and protein analyses using our subset
of data.

As large volumes of samples (in the millions) are computationally limiting due to the
volume, random sampling is often used to assess viral drift that is not centered on ultra-rare
variant detection. Utilizing four months throughout the sampling, we further compared
the breakdown of Pangolin annotations at Corewell Health relative to all samples in the
state of Michigan, the USA, and any deposited sample (internationally) to determine the
utility of a single hospital system analysis. The absence of alpha and low levels of delta
observed early in the study are in concordance with the level of USA cases (Figure 2D).
Corewell Health accurately reflects the genotyping in the state of Michigan and USA, while
the international data do have some difference in timing, likely the result of migration of
genotypes being different over geographical regions month-to-month. In the case of this
work, the high correlation of the Corewell Health month-to-month genotype levels is in
high agreement with NCBI USA data and thus represents a sampling strategy for variants
arising over lineages and not focusing on the ultra-rare changes that occurred throughout
the pandemic.
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Figure 2. Corewell Health COVID-19 sequencing data. (A) Sequencing statistics for samples an-
alyzed at Corewell Health using Illumina chemistry. (B) SARS-CoV-2 genotypes per month from
December 2021 through December 2023. The “*” indicates months with further processing in panel
D. (C) Correlation analysis of the Pangolin annotation each month from the USA (with <100 am-
biguous N’s per sequence) relative to Corewell Health. (D) Bar plots for the percent of samples
each of four months (starred in panel (D)) for data from Corewell Health, the state of Michigan, the
USA, and any NCBI deposited sample (Internationally). Data are shown with the percent of the top
20 Pangolin annotations (top 5 labeled), with the % listed next to the stacked plot representing how
many of the total samples are covered by the top 20. Colors correspond to panel (B) annotations for
higher-level genotypes.

Each protein of SARS-CoV-2 was aligned at an amino acid level and assessed for
coverage and drift relative to the consensus sequence (Figure 3). Extensive parsing of
ambiguous protein sequences was used to remove uncertain sequences, resulting in vari-
ability for each protein coverage. The ORF1ab protein was broken into the various protein
cleavage products nsp1-nsp16. A total of 166,741 protein sequences for 9634 amino acids
were assessed, yielding 64,979,205 positions assessed in our genotyping. The envelope
protein (E) has a drift rate of 1.21% per amino acid, followed by ORF6a (0.90%) and Spike (S,
0.76%), representing the proteins with the most changes relative to the consensus sequence
of each protein. Many of the nonstructural proteins have a low drift rate, including nsp7
(0.01%), nsp10 (0.02%), and nsp5 (0.02%). Spike (S) has 20 different amino acids with >10%
drift from the consensus, which, when normalized for protein size, is the highest along
with ORF6a (Figure 3A). Proteins such as nsp2, nsp5, nsp7, nsp8, nsp9, nsp10, nsp14, nsp16,
ORF7a, ORF8, and ORF10 had no amino acid variants with >10% frequency (Figure 3B). A
total of 43 amino acids has a drift rate of >10% relative to the consensus (Table 1). Spike,
ORF6a, E, nsp1, and nsp6 had the highest frequency of variants over 10% of samples.

To identify variant outcomes relative to known protein structures, we curated the
known structural knowledge of SARS-CoV-2 within the RCSB PDB as of 14 March 2024
(Figure 4). The RCSB PDB is the main repository for all solved protein structures [23]. A
total of 4501 SARS-CoV-2 unique molecules have had a structure determined, including
2878 human proteins bound to them (Figure 4A). Other species bound are primarily based
on antibody molecules produced in non-human organisms. Of the SARS-CoV-2 molecules
with structures, Spike is the most prevalent, followed by the two proteases nsp3 and nsp5
(Figure 4B). Of the human-bound proteins, the majority were antibodies or MHC complexes
(Figure 4C), with a few Spike-ACE2 structures and several large ribosome complexes.
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Table 1. Amino acids that have the highest drift rate from each protein’s consensus sequence.

Protein
Complete

Sequences for
Protein

Amino Acid
Number Consensus Amino Acids Used Amino Acids Used % Drift

surface glycoprotein 5102 483 F 6 FPSAVI 73.11

membrane
glycoprotein 3617 3 D 4 DHNG 62.37

surface glycoprotein 5102 449 R 5 RLMWQ 53.21

ORF6 7405 61 L 5 LIDFP 49.99

surface glycoprotein 5102 66 H 5 H-YFS 47.53

surface glycoprotein 5102 67 V 3 V-I 47.43

surface glycoprotein 5102 343 R 5 RTISK 46.37

NSP4 7365 438 L 3 LFY 46.06

surface glycoprotein 5102 457 N 5 NKISY 41.40

surface glycoprotein 5102 141 Y 2 Y- 36.50

surface glycoprotein 5102 443 G 5 GSTDV 35.59

surface glycoprotein 5102 210 G 4 GERV 34.77

surface glycoprotein 5102 336 D 5 DHVYG 33.83

surface glycoprotein 5102 442 V 8 VPSHALIF 31.145

surface glycoprotein 5102 143 H 7 HQK-YPL 29.60

surface glycoprotein 5102 487 F 3 FSP 29.38

surface glycoprotein 5102 80 V 2 VA 29.09

surface glycoprotein 5102 365 L 2 LI 29.09

surface glycoprotein 5102 180 Q 6 QEVHKL 28.68

NSP12 7233 671 G 3 GSV 28.61

surface glycoprotein 5102 249 G 3 GVD 26.81

envelope protein 7437 11 T 3 TAM 26.45

NSP1 6468 47 K 2 KR 25.57

surface glycoprotein 5102 490 Q 2 QR 24.52

NSP13 7231 36 S 2 SP 24.31

NSP1 6468 135 R 4 RSKN 18.69

NSP3 6434 1892 A 3 ATG 17.28

NSP4 7365 264 F 2 FL 17.05

NSP4 7365 327 I 4 ITVF 17.03

ORF3a 7465 223 I 2 IT 17.03

nucleocapsid
phosphoprotein 7016 410 R 5 RLSHC 17.00

NSP15 7426 112 I 3 ITN 16.89

NSP13 7231 392 C 2 CR 16.60

NSP3 6434 24 I 2 IT 16.52

NSP3 6434 489 S 2 SG 16.47

NSP3 6434 38 K 2 KR 15.99

NSP3 6434 1265 S 2 S- 15.96

NSP3 6434 1266 L 3 LIV 15.96

NSP6 7472 105 L 2 LF 15.91

NSP6 7472 186 I 2 IV 15.79

NSP6 7472 257 L 3 LFH 12.17

surface glycoprotein 5102 441 K 5 KTNRM 11.00

surface glycoprotein 5102 453 F 3 FLV 10.80
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molecules for various species in the Protein Databank (PDB) as of 14 March 2024. (B) The number of
unique structures for each of the SARS-CoV-2 proteins (cyan). (C) The number of human structures
(red) interacting with SARS-CoV-2 proteins.

Structure files were used to align the genomic variants of SARS-CoV-2 for Spike-
ACE2 (Figure 5A), the multi-protein nsp7-nsp14 SARS-CoV-2 co-transcriptional complex
(Figure 5B), nsp3-ISG15 (Figure 5C), and nsp5- nirmatrelvir (PAXLOVID, Figure 5D) struc-
ture files. Spike has multiple variants within the ACE2 interaction region (Figure 5A). A
cluster of variants at amino acids 495, 498, and 502 contact ACE2 but maintain functional
conservation. Amino acid 495 uses arginine (R) or glutamine (Q), while 498 uses tyrosine
(Y) or asparagine (N), all of which maintain hydrogen bonding to ACE2 sites. Amino
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acid 502 uses histidine and tyrosine, maintaining aromatic ACE2 pi orbital interactions.
Additional functional conservation can be found for ACE2 interactions at amino acids 400
(R or K), 490 (Q or R), 453 (F, L, or V), and 483. Amino acid 483 transitions throughout
the two years of sequencing from phenylalanine (F) to valine (V) to proline (P), which
all maintain the hydrophobic ACE2 interactions. This variant also correlates to changing
lineage annotations with this as position 486 of BA.5.1 with a valine and XBB.1.5 with a
proline. The proline has previously been suggested as a variant of concern due to risks in
increasing binding affinity to ACE2 [24,25].
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Figure 5. Genomic drift mapped to SARS-CoV-2 protein structures. (A) Analysis of variants in Spike
(S) at the interface of ACE2 interaction. (B) Analysis of variants for the SARS-CoV-2 co-transcriptional
complex. (C) Analysis of variants for the nsp3 papain-like protease with the human ISG15 interaction
site. (D) Analysis of variants for the nsp5 SARS-CoV-2 protein with nirmatrelvir (PAXLOVID) bound.
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In contrast to the high drift of Spike, the entire multi-protein SARS-CoV-2 co-transcriptional
complex (Figure 5B) only contains two variants of potential alteration impact. The nsp12
amino acid 671 transitions from a glycine (G) to a serine (S) in early 2023, allowing for the
flexible bend angle near the RNA contact points. This variant (RDRP: G671S) represents 2%
of the GenBank deposited samples from 2/2024 to 7/2024 with the highest frequency in
un-assignable and GE.1.2.1 lineages according to the NCBI Virus mutation tool. The most
impactful change within the complex occurs at nsp13 amino acid 392, where in early 2022, it
changed from an arginine (R) to cysteine (C). This location falls near the nsp7 and nsp8 inter-
action sites and thus could potentially alter interactions. Within GenBank, 99% of deposited
samples from 2/2024 to 7/2024 contain this change over all major annotated lineages.

The top studied drug target sites are the proteases nsp3 (Figure 5C) and nsp5 (Figure 5D)
of ORF1ab, where no variants above 1% of our sequenced samples are found at the tar-
getable active sites. Those variants that are above 1% all fall on nonfunctional sites such as
822, 1001, and 1039 of nsp3 or 24, 90, or 132 of nsp5.

4. Discussion

As any virus continues to drift and change over time, there is a critical need to focus on
the biological outcomes of the changes rather than over-focusing on genotypes. Although
genotypes can inform the kinetics of viral propagation, yielding insights into how a virus’s
geographical and temporal movements happen [26], they can also result in confusion and
fear when at the forefront of the conversation about a pandemic or endemic. As the COVID-
19 pandemic became so focused on genotypes and the rapid changes of SARS-CoV-2, the
general population and policymakers often over-reacted [27,28]. As the current work shows,
many SARS-CoV-2 proteins have had few changes outside Spike, with even fewer that
are functional relative to our known structural knowledge and dynamics [13] of the virus.
At the onset of the pandemic, groups such as ours called for drug development based on
shared function with other Coronaviruses [13,29,30]. However, international investments
in Spike-based therapies far outpaced that of other protein complexes. Although viruses
such as HIV have high levels of protein changes throughout based on replication dynamics
that make drug development complex [29], more focus should be placed on genotypes’
structural impacts, molecular outcomes, and drug-targeting dynamics for each virus.

A simple word search of relevant terms to this paper shows that surface glycoprotein
and Spike terms far outnumber any of the other proteins of SARS-CoV-2 (Table 2). The
general terms for the virus, such as COVID-19 and SARS-CoV-2, are higher in Google
relative to both PubMed and Google Scholar. Surface glycoprotein is the highest returned
term within PubMed and far outpaces other proteins in both PubMed and Google Scholar,
suggesting that, as noted above, there is an overfocus on surface glycoprotein (Spike, S) that
does not match the genotyping conservation discussed within the current work. A search
of “SARS-CoV-2 mutations” and “Spike” returns 4920 returns on Google Scholar, while
“SARS-CoV-2 mutations” and “ORF” or “nsp” returns only 929 and 598 hits. Both ORF and
nsp represent multiple proteins, further highlighting the contrast relative to Spike. This
highlights a fundamental issue with our current genotyping interpretation and overfocus
on genomic changes relative to conservation analysis.

It is well known that Spike continues to drift, which has led to the iterative devel-
opment of changes to COVID-19 vaccines, a likely never-ending process based on the
current genotyping insights. The changes in Spike were a major factor for the elevation of
pathogenicity for SARS-CoV-2 over other coronaviruses [31], and several of the amino acid
changes observed in Omicron Spike also modulate ACE2 and immune evasion [32,33]. As
our data show, what is less appreciated is the functionally conserved changes happening at
the ACE2 binding site, while no other protein shows such levels of functional drift. The
data suggest that pressure for Spike changes is not found in other SARS-CoV-2 coded
proteins. These insights are highly relevant to moving forward in the virus’s treatment and
public health dynamics in the endemic phase, suggesting a significant need to transition
from Spike-based therapies to other proteins. Others have noted that this drift makes it very
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challenging also to target the Spike-ACE2 interaction with drugs [34]. As we continue to
engage the arms race of Spike antibody targeting with Spike drift for ACE2 interactions, it is
feasible to drive selective pressure to elevate Spike dynamics that could enhance virulence,
viral dynamics, and increase binding affinity [35]. This suggests pivoting to non-Spike
therapies and strategies [36].

Table 2. A search for relevant words from SARS-CoV-2 in various databases. Each database was
searched on 24 July 2024.

PubMed (All) PubMed
(Since 2020)

Google Scholar
(All)

Google Scholar
(Since 2020) Google (All)

Ratio Google to
PubMed

(Since 2020)

surface
glycoprotein 788,636 92,484 1,840,000 26,700 45,000,000 487

Membrane
glycoprotein 786,289 91,863 1,920,000 24,200 38,400,000 418

COVID-19 438,172 292,493 5,040,000 1,020,000 6,400,000,000 21,881
pandemic 274,892 171,320 4,220,000 683,000 1,510,000,000 8814

SARS-CoV-2 231,386 186,717 2,500,000 781,000 459,000,000 2458
viral genome 117,243 19,241 4,220,000 30,400 120,000,000 6237

viral genotype 64,224 10,674 2,130,000 16,700 23,500,000 2202
Envelope protein 52,391 5939 2,110,000 23,900 46,300,000 7796

RNA-directed
RNA polymerase 38,009 4142 35,100 7190 40,200,000 9705

Helicase 36,622 7834 332,000 25,200 19,500,000 2489
Nucleocapsid 28,311 5146 208,000 27,500 7,970,000 1549

surface
glycoprotein

spike
9146 2269 91,900 18,200 1,210,000 533

papain like
protease 2031 574 95,100 17,000 776,000 1352

3C like protease 1580 986 850,000 16,300 8,810,000 8935
Nucleocapsid

phosphoprotein 1452 694 19,700 6350 131,000 189

nsp2 1180 302 20,800 8450 459,000 1520
nsp1 1124 324 26,600 12,400 428,000 1321
nsp3 1049 377 20,500 11,700 269,000 714
nsp4 949 203 17,000 6880 208,000 1025

ORF1ab 676 448 17,900 17,400 307,000 685
ORF6 542 131 16,700 7070 192,000 1466
nsp12 483 329 10,600 8830 470,000 1429
nsp5 478 174 11,600 6780 212,000 1218

ORF3a 380 240 8840 8040 145,000 604
nsp14 301 169 7940 6430 235,000 1391
nsp13 256 154 7280 6080 540,000 3506
nsp10 254 136 6640 4640 176,000 1294
2′-O-

methyltransferase 237 65 130,000 18,500 16,800,000 258,462

nsp16 230 123 6880 5690 169,000 1374
nsp15 215 118 6030 4910 224,000 1898
nsp7 205 114 6920 5260 189,000 1658
nsp9 200 96 5350 3500 189,000 1969
nsp8 191 116 6850 5170 136,000 1172

ORF10 190 67 8350 4450 73,900 1103
ORF7a 189 114 5350 4830 96,300 845

Guanine-N7
methyltrans-

ferase
175 34 2230 1070 53,700 1579

nsp6 170 89 7660 4880 152,000 1708
Uridylate-specific
endoribonuclease 86 58 745 480 17,200 297

So why does Spike have amino acid drift at a rate so different from many other viral
proteins? The answer is likely that the surface proteins need not be maintained for a
virus to replicate; they are only required for spreading [37–39]. All a virus needs the
surface proteins to do is evade immune detection and get inside a cell, and there are many
proteins they can find to get inside a cell with many ways to evade immune detection.
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Viruses are always finding new cell epitopes with which to integrate. As the protein
sequences change on surface proteins like Spike, there may be some selection of binding
surfaces, as we have shown for ACE2-Spike interactions in SARS-CoV-2, while changes also
enhance immune evasion and confirm selective benefit [40]. It is uncertain and unlikely
vaccinations impact drift of the surface proteins as this drift is already naturally occurring.
Even without vaccinations, the freedom of the surface protein to change due to its limited
role in viral replication, the proteins behave much as any protein with reduced selective
pressure [41]. If the protein changes enough, selection finds another protein partner in
the host to enter a cell, as evolution has shown often in large evolutionary changes that
give rise to new viral species. This is a similar concept throughout evolution when large
genomic segments duplicate and reduce the selective pressure of one of the two copies of
paralogs to give radiant evolution potential [42]. However, when the sequence changes
for the inner machinery of proteins in a virus, like the proteases and polymerases, the
virus cannot survive and the change is quickly lost to subsequent viral replications due
to selective pressures [43]. In the process of the constant viral turnover, these pressures
on protein drift can be seen and are likely the result of protein-centric genotyping insights
from our work.

A genome is only a coding material for the biological functions manifested from
protein structures. In virology, the focus has often been the DNA/RNA sequence, as
the material is more straightforward to observe and make sense of. That gives rise to
assessments of biology using phylogenetics and explaining viral drift at DNA/RNA level
where the genotypes make it appear a virus rapidly changes. As the work here shows, the
drift of DNA often looks chaotic, while the proteins look stable. Thus, the use of genomes in
drug design has a view of chaos and constant change. As most of our drugs target proteins,
the assessment of viral drift requires a protein-centric assessment. The research field did
this well throughout the pandemic for Spike, but the rest of the SARS-CoV-2 proteome was
left overlooked.

One of the most prolific examples of protein structural drug design is that of HIV,
where the use of structures and the rapid drift have opened up a toolbox of drugs [44]. As
viruses such as HIV rapidly change due to the reverse transcriptase process, these viruses
highlight how challenging it is to treat, where focus on the conserved mechanisms that,
when drifted, impact the viral function are strategic targets of our emerging drugs [45].
As viruses often share these critical protein mechanisms, the drugs that target conserved
protein pockets can often open rapid treatment approaches for emerging viruses, as was so
well done in targeting the proteases of SARS-CoV-2 that originated from the structure-based
design within SARS-CoV [46]. The structure-based drug design can be seen emerging in
dengue [47], Zika [48], Hepatitis [49], and influenzas [50], to name a few.

Our data are supported by the real-world continued and growing success of the
antiviral medication nirmatrelvir-ritonavir (brand name Paxlovid) and nsp5-targeting,
whose efficacy has not been impacted by the two years of viral drift [51,52]. Our early
work in viral evolution for SARS-CoV-2 relative to other coronaviruses suggested the
same outcomes [13], and the current genotyping data also highly support non-Spike
therapies. It also suggests that some T-cell receptor and antibody-active proteins, such as
the nucleocapsid, may represent more sustainable models for public health vaccinations.

As epidemiology begins to decipher the long-term risks of SARS-CoV-2, including in
non-severe COVID-19 [53], and as the virus becomes endemic, similar to Epstein Barr virus
with rare risks to populations [54], we need to consider the role of viral drift heavily in our
future therapy strategies against SARS-CoV-2. We must also enhance our knowledge of
proteins that are not drifting and conserved across multiple Coronaviruses. For example,
the role of NSP3 and other proteins in immune suppression [29], which remain unchanged
throughout the SARS-CoV-2 drift and are present in many patients’ blood responses [55],
yet have largely been ignored and underfunded. Suppose we were to invest as heavily
into these unknown mechanisms that remain highly conserved within the SARS-CoV-
2 proteins as we did for Spike and vaccine strategies. In that case, it is likely that we
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would transform not only the knowledge and treatments for COVID-19 but also make
major strides for numerous other viruses that share mechanisms. Continuous integrated
surveillance systems and research are necessary to monitor the virus’s evolution, evaluate
the effectiveness of vaccines and treatments, and rapidly respond to emerging variants to
ensure public health safety.
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