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Identification of Hypoxia-ALCAMhigh Macrophage-
Exhausted T Cell Axis in Tumor Microenvironment
Remodeling for Immunotherapy Resistance

Zhenzhen Xun, Huanran Zhou, Mingyi Shen, Yao Liu, Chengcao Sun, Yanhua Du,
Zhou Jiang, Liuqing Yang, Qing Zhang, Chunru Lin,* Qingsong Hu,* Youqiong Ye,*
and Leng Han*

Although hypoxia is known to be associated with immune resistance, the
adaptability to hypoxia by different cell populations in the tumor
microenvironment and the underlying mechanisms remain elusive. This
knowledge gap has hindered the development of therapeutic strategies to
overcome tumor immune resistance induced by hypoxia. Here, bulk,
single-cell, and spatial transcriptomics are integrated to characterize hypoxia
associated with immune escape during carcinogenesis and reveal a
hypoxia-based intercellular communication hub consisting of malignant cells,
ALCAMhigh macrophages, and exhausted CD8+ T cells around the tumor
boundary. A hypoxic microenvironment promotes binding of HIF-1𝜶 complex
is demonstrated to the ALCAM promoter therefore increasing its expression
in macrophages, and the ALCAMhigh macrophages co-localize with exhausted
CD8+ T cells in the tumor spatial microenvironment and promote T cell
exhaustion. Preclinically, HIF-1ɑ inhibition reduces ALCAM expression in
macrophages and exhausted CD8+ T cells and potentiates T cell antitumor
function to enhance immunotherapy efficacy. This study reveals the
systematic landscape of hypoxia at single-cell resolution and spatial
architecture and highlights the effect of hypoxia on immunotherapy
resistance through the ALCAMhigh macrophage-exhausted T cell axis,
providing a novel immunotherapeutic strategy to overcome hypoxia-induced
resistance in cancers.
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1. Introduction

The immune system plays a central role
in the surveillance and elimination of ma-
lignant cells[1] Nascent malignant cells es-
cape immunosurveillance through diverse
mechanisms, including reduced antigenic-
ity that decreases recognition by the im-
mune system, upregulation of immunoin-
hibitory molecules, such as PD-L1, CTLA-
4, and TIM-3,[2–4] recruitment of immuno-
suppressive cells, such as tumor-associated
macrophages (TAMs), myeloid-derived sup-
pressor cells (MDSCs), and regulatory T
cells (Tregs).[5–8] Multiple immune check-
points (e.g., PD-1, CTLA-4) can inhibit func-
tional T cell activation[9] Current devel-
opments in immune checkpoint blockade
(ICB) have shown promising clinical ef-
fects and suggested a number of antibod-
ies targeting inhibitory checkpoints that
might exhibit anti-tumor immunity.[10–12]

However, the overall response rate is gen-
erally less than 40%.[13–15] Selection of
proper immune checkpoint inhibitors that
are most suitable for certain cancer types
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remains elusive. Therefore, it is necessary to explore character-
istics of the tumor microenvironment (TME) of patients and de-
velop stratified immunotherapies to achieve enhanced therapeu-
tic effects.

Hypoxia is a state of insufficient oxygen availability that occurs
in solid tumors and is one of the most important TME features[16]

Rapid proliferation of tumor cells exerts stress on the oxygen
supply, leading to hypoxic regions within the TME[17] Cells can
adapt and survive in the hypoxic state through intercellular regu-
lation, including altered protein synthesis, energy metabolism,
mitochondrial respiration, and nutrient utilization[18] A recent
study demonstrated that hypoxia-inducible factor (HIF) can alter
the ratio of CD4+ T cell subsets and their cytokine secretion[19]

CD8+ T cells in different stages show various level of hypoxia[20]

Moreover, TAMs massively infiltrate the hypoxic region, showing
vessel formation function and immunosuppressive phenotype[21]

These studies demonstrate that immune cells are affected by hy-
poxia. However, most studies on the effects of hypoxia on the
TME are focused on tumor cells or only a few cell types, thus ne-
glecting the effects on various cell types and the complex crosstalk
among cells in the TME. Single-cell sequencing (scRNA-seq) and
spatial transcriptomics (ST) provide a unique opportunity to char-
acterize the functional roles of hypoxia in the TME at single-cell
resolution and spatial architecture[22] thus allowing for a better
understanding of the heterogeneity of each cell type in a hypoxic
TME and the hypoxia-based crosstalk of different cell types.

In this study, we integrated bulk, spatial, and single-cell
transcriptomics to characterize the dynamic alterations of
hypoxia status and the TME during tumorigenesis or under
immunotherapy. We revealed that hypoxia is associated with
the activated leukocyte cell adhesion molecule (ALCAM)high

macrophages enrichment and CD8+ T cell exhaustion around
the tumor boundary in the tumor spatial microenvironment.
Hypoxia can induce Hif1a binding at the ALCAM promoter to
increase ALCAM expression in macrophages and is associated
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with exhausted CD8+/CD4+ T cell differentiation. Preclinically,
we demonstrated that EZN-2968, an antisense oligonucleotide
inhibitor of hypoxia-inducible factor-1 alpha (HIF-1𝛼)[23] can
reduce ALCAMhigh macrophages and restore exhausted CD8+ T
cells, therefore demonstrating synergistic effects when combined
with PD-1 mAb in the treatment of melanoma and triple-negative
breast cancer (TNBC) immune competent mouse models. Our
study highlights hypoxia-associated immunotherapy resistance
through the ALCAMhigh macrophage-exhausted T cells (Tex) axis
and provides a novel therapeutic strategy in immunotherapy.

2. Results

2.1. Characterization of the Dynamic Alterations of Tumor
Hypoxia and Immune Microenvironment in Tumorigenesis and
Immunotherapy Resistance

To investigate the functional roles of hypoxia in microenviron-
ment remodeling in tumorigenesis, we collected spatial tran-
scriptomics data of a patient’s prostate tumor mid-gland axial
section covering the tumor from initiation to progression (Table
S1, Supporting Information). The section was divided into sev-
eral cubes and histologically graded following the Gleason grad-
ing system including benign, and the Gleason score ranges from
Grade Group (GG)1 to GG5 (a higher score means that the cube
looks more likely to be abnormal tissue). We calculated the hy-
poxia score as in our previous study[25] in each spot (see Meth-
ods), and we found a higher hypoxia score in more aggressive
tissues (Figure 1a). Further, we collected two datasets of mRNA
expression with continuous morphological stages of the carcino-
genesis of lung squamous cell carcinoma (LSCC; GSE33479)[26]

and prostate cancer (GSE6099)[27] (Table S2, Supporting Informa-
tion). For LSCC, there are 122 carefully annotated biopsies from
77 patients with nine morphological stages, ranging from stages
0 and 1 that represent bronchial mucosa with normal histology,
which had normal and low fluorescence, respectively, to stage
8 that represents segregated invasive tissue from premalignant
lesions (see Methods for details). We observed that the hypoxia
score gradually increases in carcinogenesis of LSCC, from stage
0 to stage 8 (Figure 1b). In addition, we observed a similar grad-
ually increased hypoxic pattern in prostate cancer progression,
ranging from stromal nodules of benign prostatic hyperplasia
(STROMA), prostatic intraepithelial neoplasia (PIN), to prostate
carcinoma (PCA), and metastatic prostate cancer (MET) (Figure
S1a, Supporting Information). These results demonstrated in-
creasing hypoxia status in tumorigenesis.

Hypoxia has been suggested to be involved in immune
resistance[28] but the crosstalk between hypoxia and the TME dur-
ing tumorigenesis and the potential underlying molecular mech-
anisms remain elusive. We found that total tumor infiltration
immune cells (Infiltration Score, see Methods) increased during
LSCC carcinogenesis (Figure S1b, Supporting Information), and
the infiltration score was correlated with the hypoxia score (Rs
= 0.4; p = 4.8 × 10−6. Figure S1c, Supporting Information). To
further characterize the immune response and immune escape
from the immune infiltration and to understand the interactions
between hypoxia status and various immune cell populations, we
estimated the abundance of 24 immune cell types including 18
T-cell subsets and B cells, macrophages, monocytes, neutrophils,
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dendritic cells (DC), and natural killer (NK) cells. We found that
the hypoxia score negatively correlated with the abundance of 11
immune cell populations (Figure 1c,d; Figure S1d,e, Supporting
Information), and these populations tend to be involved in the ac-
tivation of the immune response, including CD4 T cells (CD4 T;
Rs = −0.71; p = 4.4 × 10−20), CD8 T cells (CD8 T; Rs = −0.31; p =
4.5 × 10−4), and NK T cells (NKT; Rs =−0.31; p = 5.7 × 10−4). The
hypoxia score positively correlated with the abundance of seven
immune cell populations (Figure 1c,d; Figure S1d,e, Supporting
Information), which are associated with immune escape, includ-
ing natural regulatory T cells (nTreg; Rs = 0.55; p = 7.6 × 10−11),
type 1 regulatory cells (Tr1; Rs = 0.23; p = 0.01), exhausted T cells
(Tex; Rs = 0.18; p = 0.047) and macrophages (Rs = 0.52; p = 1.2
× 10−9). A previous study showed the activation of immune es-
cape through inhibitory immune checkpoints[26] and we further
calculated the correlation between the hypoxia score and expres-
sion of 20 known inhibitory immune checkpoints[29] We found
the hypoxia score to be positively correlated with most immune
checkpoints, including CD276 (Rs = 0.55; p = 3.46 × 10−11), PVR
(Rs = 0.50; p = 3.40 × 10−9), and CD274 (PD-L1; Rs = 0.42; p =
1.67 × 10−16) (Figure 1e). Taken together, our results suggest that
hypoxia is associated with immune escape in carcinogenesis.

To dissect the crosstalk of hypoxia and the infiltration of dif-
ferent types of immune cells across different cancer types, we as-
sessed the correlation between the hypoxia score and the abun-
dance of the above 24 immune cell populations across 32 solid
tumors from The Cancer Genome Atlas[30] (Table S2 and Figure
S2a, Supporting Information). We observed that hypoxia status
positively correlated with inhibitory immune cell populations
(Figure S2a, Supporting Information). For example, the hypoxia
score is positively correlated with the abundance of macrophages
in 19 cancer types and with the abundance of Tex in 14 cancer
types. In contrast, hypoxia status negatively correlated with stim-
ulatory immune cell populations. For example, the hypoxia score
is negatively correlated with the abundance of CD4 T cells in 27
cancer types and with central memory T cells (Tcm) in 20 cancer
types. This result suggests that the hypoxic TME may increase
the infiltration of inhibitory immune cells and reduce the infil-
tration of effective immune cells. To systematically assess tumor
immunogenicity, we further calculated the immunophenoscore
(IPS), developed in a previous study, to present the overall score
for immune response[31] based on the expression of the gene sets
or representative genes for four immune categories, including
effector cells, suppressor cells, major histocompatibility complex
(MHC) molecules, and immunomodulators (see Methods). We
observed that IPSs were significantly negatively correlated with
the hypoxia score (Figure 1f).

To further understand the effect of hypoxia on the efficacy
of immunotherapy, we obtained RNA-seq and scRNA-seq data
with ICB treatment response (Table S3, Supporting Informa-
tion). We examined the hypoxia score between non-responders
(NR), defined as progressive disease (PD), and responders,
defined as partial/complete responders (PR/CR), in two skin
cutaneous melanoma (SKCM) patient cohorts with anti-PD-1
treatment[32,33] and a bladder cancer patient cohort with anti-PD-
L1 treatment[34] observing that the hypoxia score is significantly
lower in responders (Figure 1g). Meanwhile, the high hypoxia
score group experienced unfavorable overall survival (Figure 1h).
Next, we calculated the alteration of the hypoxia score from

on-treatment to pre-treatment and compared the difference in
the hypoxia score between non-responders and responders. We
found that the hypoxia score tended to be down-regulated in re-
sponders, while being up-regulated in non-responders (Figure 1i;
p= 0.015). Tumor-infiltrating lymphocytes (TILs) were negatively
correlated with the hypoxia score in both pre-treatment (Figure
S2b, Supporting Information; Rs = −0.36) and on-treatment
(Figure S2c, Supporting Information; Rs = −0.51) samples. We
further found that hypoxia score alteration negatively correlated
with the abundance of CD4+ T cells (Figure S2d,e, Supporting In-
formation; Rs = −0.58; p = 4.8 × 10−5) and positively correlated
with the abundance of nTreg (Figure S2d,f, Supporting Informa-
tion; Rs= 0.31; p= 0.048), which was associated with immune es-
cape. The number of TCR 𝛽-chain complementarity determining
regions (CDR3s) also showed negative correlation with the hy-
poxia score in both pre-treatment (Figure S2g, Supporting Infor-
mation; Rs =−0.36, p = 0.06) and on-treatment (Figure S2h, Sup-
porting Information; Rs = −0.47, p = 0.013) samples. We further
examined the effect of hypoxia on the efficacy of immunotherapy
at single-cell resolution. NR had higher hypoxia scores in T cells
than responders in both pre- and on-treatment samples at single-
cell resolution (Figure 1j,k). Taken together, the integration of
bulk, scRNA-seq, and spatial transcriptomics reveals that hypoxia
status is associated with suppression of the immune microenvi-
ronment in tumorigenesis and resistance to anti-PD-1 therapy.

2.2. High Hypoxia Status Around Tumor Boundary Recruits
ALCAMhigh Macrophages

The hypoxia status of tumor cells were well described in pre-
vious studies,[25,35–37] but the hypoxia heterogeneity landscape
in the tumor spatial microenvironment (TSME) has yet to
be fully presented. Particularly, as the tumor boundary con-
nects malignant and non-malignant cells, it represents a highly
heterogeneous region involving the interaction of cancer cells
with various cell types, including immune and stromal cells.
Here, based on our developed tool Cottrazm[38] we delineated the
tumor boundary (black circle in Figure 2a), connecting points
of malignant and non-malignant cells in tumor tissue and as-
sessed the spatial distribution of the hypoxia score for five can-
cer types, including breast cancers (BRCA), colorectal cancer
(CRC)[39] squamous cell carcinoma[40] (SCC), ovarian cancer
(OC), and clear cell renal cell carcinoma[41] (ccRCC). We further
extended our analysis of spatial distribution of hypoxia score to
67 slides with clear tumor boundary across 14 cancer types,
we found that in the majority of samples, the malignant spots
had the highest hypoxia score, while boundary spots had sig-
nificantly higher hypoxia scores than the non-malignant spots
(Figure 2a,b), suggesting hypoxic characteristics around the tu-
mor boundary. To assess the association of hypoxia status with
cellular composition in TSME, we then deconvoluted the cellular
composition of CRC tissues in these three regions by Cottrazm[38]

and compared different compositions among the malignant, tu-
mor boundary, and non-malignant region (Figure 2c–e). We cal-
culated the cellular composition of 67 ST slides from 14 can-
cer types and we took CRC and BRAC tissue as examples to
visualize the cellular composition in the entire ST slides. Our
analysis indicated a predominant infiltration of macrophages
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Figure 1. Dynamics of hypoxia and immune microenvironment during tumorigenesis and immunotherapy. a) Spatial feature plots show hypoxia status
at different stages of prostate cancer in spatial transcription data (n = 10,5 × 5 mm). The samples with Benign annotation were totally histologically
graded as benign, while samples annotated as GG1, GG2, GG4 Cribriform were consistent with malignant cells and partial benign cells. b) Continuous
shift in hypoxia score (upper panel) during lung carcinogenesis. Results are displayed as mean ± s.d. Heat maps (bottom panel) show the expression
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in the tumor boundary compared to both malignant and non-
malignant regions in most ST slides (Figure 2c–e; Figure S3a–c,
Supporting Information). This result suggests that macrophage
enriched in the tumor boundary is an important characteristic
in TME among cancer types, which consistent with our previ-
ous results.[39,42] We further found that ALCAM was highly ex-
pressed in the macrophages enriched in the tumor boundary
(Figure 2f, Figure S3d, Supporting Information). ALCAM was re-
ported contributing to the migration of macrophages and DCs.
ALCAM macrophages were related to T cell proliferation[43] and
T cell-mediated responses through ALCAM-CD6 interaction[44]

We further annotated the cell subtypes of DC/macrophages and
divided them into three subtypes in CRC tissue: ALCAMhigh

macrophages, ALCAMlow macrophages, and DC/monocytes
(Figure 2g). Compared with malignant and non-malignant re-
gions, ALCAMhigh macrophages were enriched in the tumor
boundary, while ALCAMlow macrophages tended to be en-
riched in non-malignant regions and Mono/DC cells tended to
be enriched in the region surrounding the tertiary lymphoid
structure (TLS; Figure 2h; Figure S3e, Supporting Informa-
tion). ALCAMhigh macrophages had the highest hypoxia score
among the subtypes (Figure 2i). In addition, we identified that
ALCAMhigh macrophages with higher hypoxia scores were en-
riched in the tumor boundary in BRCA (Figure S3f,g, Supporting
Information). Furthermore, the immunosuppressive function
score was calculated by immune-related signatures[40] and we
observed that ALCAMhigh macrophages contribute much more
than ALCAMlow macrophages to immune suppression in CRC
patients (Figure 2j). To quantify the distribution of ALCAMhigh

macrophages, we calculated the enrichment of ALCAMhigh

macrophages across six cancer types with at least five samples, in-
cluding CRC (n = 6), BRCA (n = 8), SCC (n = 6), OC (n = 6), RCC
(n = 5), and HCC (n = 14). We found ALCAMhigh macrophages
significantly enriched or have the enrichment tendency in the tu-
mor boundary (Figure S3h, Supporting Information). These re-
sults suggest that the hypoxic state around the tumor boundary
may recruit ALCAMhigh macrophages.

2.3. Hypoxia Increases ALCAM Expression in Macrophages
Through HIF1A Regulation

To investigate the regulation of hypoxia in macrophages with AL-
CAM expression, we evaluated the hypoxia score in macrophages
at single-cell resolution and stratified the macrophages into hy-
poxia score high (hypoxiahigh) and low (hypoxialow) groups based
on the median expression of the hypoxia score in multiple
scRNA-seq datasets obtained from TISCH[45] database. We found

ALCAM to be significantly expressed in hypoxiahigh macrophages
(Figure 3a). We then validated that ALCAM is expressed on
macrophages in human and mouse tumor tissues (Figure 3b).
Then, flow cytometry and western blot experiments revealed in-
creased expression of ALCAM on macrophages under hypoxic
stimulation (Figure 3c,d; Figure S4a, Supporting Information).
When knocked down (KD) or inhibited Hif1a in macrophage,
Alcam significantly decreased under hypoxic condition (Figure
S4b,c, Supporting Information). Since Hif1a is a master tran-
scriptional regulator of cellular response to hypoxia, we hypoth-
esized that Hif1a can bind to the promoter region of ALCAM to
regulate its expression. We predicted two potential Hif1a binding
regions and performed chromatin immunoprecipitation-qPCR
(ChIP-qPCR) under hypoxic and normoxic conditions. We vali-
dated that Hif1a can bind to the promoter of ALCAM and en-
hance the binding efficacy under hypoxic conditions (Figure 3e).
To confirm that the Hif1a binding region contributes to down-
stream gene expression, we performed the luciferase reporter
assay to validate that Hif1a can bind to the promoter of Al-
cam and enhance the binding efficacy under hypoxic conditions
(Figure 3f). These results suggest that hypoxia increases AL-
CAM expression in macrophages through HIF1Ai binding at the
ALCAM promoter.

2.4. Hypoxia Is Associated With Both Exhausted CD8+ T and
CD4+ T Cell Differentiation in Cancers

The exhaustion of T cells is significantly associated with hy-
poxia (Figure 1c,d). To further explore the relationship of hy-
poxia and immunosuppressive cells with exhausted T cells,
we collected publicly available scRNA-seq data that include
38 CD8+ T cell datasets (Table S4, Supporting Information).
After embedding these scRNA-seq data into a T cell refer-
ence atlas, we divided CD8+ T cells into five subpopula-
tions: CD8_NaiveLike, CD8_EarlyActiv, CD8_EffectorMemory,
CD8_Tpex and CD8_Tex[46] We grouped CD8+ T cells into hy-
poxia score-high and -low groups and compared the composition
of T cell subsets between these two groups. We found T cells with
high hypoxia score have significantly higher proportions in both
CD8 Tex and CD8 Tpex than those T cells with low hypoxia score
in all CD8+ T cell datasets (Figure 4a), which suggests that CD8+

T cells gradually present exhausted phenotypes under hypoxia.
To explore the association between hypoxia status and CD8+ T

differentiation, we performed trajectory analysis of CD8+ T cells
to place all cells along a trajectory corresponding to cell differ-
entiation (see Methods, Figure 4b,c)[47] T cells developed from a
naïve state to an exhausted state in the TME (Figure 4c,d). The

level of 15 genes of hypoxia signature for each stage. c) The estimation of immune-cell abundance of CD4 T, NKT, Tex, and macrophages, shows the
evolving immune contexture for each developmental stage. Abbreviations: GG: Grade Group; NKT, natural killer T cells; nTreg, natural regulatory T cells;
Tr1: type 1 regulatory cells; Tex: exhausted T cells. d) Spearman’s correlation of hypoxia score with the abundance of 24 immune cell types (including
18 T-cell subsets, 6 other important immune cells) from transcriptome data. Black circle indicates p < 0.05. e) Spearman’s correlation between hypoxia
score and the mRNA expression of 20 inhibitory immune checkpoints. Black circle indicates p < 0.05. f) Spearman’s correlation of hypoxia score and
immunophenoscore. Blue dots indicate p < 0.05. g) Hypoxia score difference between responders and non-responders with treatment of PD-1 or PD-
L1 inhibitors in three independent datasets, GSE78220, GSE91061, and IMvigor210 cohorts. h) Kaplan–Meier curves showing patients with higher
hypoxia score are associated with worse overall survival in GSE91061 and IMvigor210 cohorts. n; number of patients. i) Alteration in hypoxia score
between on-treatment and pre-treatment samples in responders and non-responders. j,k) Hypoxia score difference between all cells of responders and
non-responders with PD-1 inhibitors both in pre-treatment and on-treatment in single-cell transcriptomics, including GSE120575 and GSE123813. A
two-sided log-rank test was used to assess statistical significance in (h). An unpaired two-sided Wilcoxon signed-rank test was performed in (g, and i–k).
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Figure 2. Hypoxia status around tumor boundary recruits ALCAMhigh macrophages. a) Spatial feature plots of signature scores of hypoxia status in
breast cancer (BRCA), colorectal cancer (CRC), squamous cell carcinoma (SCC), ovarian cancer (OC), and clear cell renal cell carcinoma (ccRCC). A
spot with a black or white circle indicates the location of the tumor boundary. b) Heatmap showing the normalized hypoxia scores in each spatial region
of each sample, including BRCA (n = 8), CRC (n = 9), ependymoma (EPN, n = 3), gastrointestinal stromal tumor (GIST, n = 1), hepatocellular carcinoma
(HCC, n = 14), head and neck squamous cell carcinoma (HNSC, n = 1), lung adenocarcinoma (n = 2), metastatic brain tumor (MB, n = 1), OC (n = 6),
pancreatic ductal adenocarcinoma (PDAC, n = 2), prostate adenocarcinoma (PRAD, n = 4), ccRCC, n = 8, squamous cell carcinoma (SCC, n = 6), and
skin Cutaneous Melanoma (SCKM n = 2). c) Spatial scatter pie plots representing the proportions of the seven cell types predicted by Cottrazm in whole
CRC ST slide spots. d) Bar plots representing the proportions of the seven cell types predicted by Cottrazm in spots from malignant, tumor boundary,
and non-malignant regions. e) Spatial scatter pie plots representing the proportions of the seven cell types predicted by Cottrazm in tumor boundary
spots. The colors in (c–e) indicate the cell types. f) Volcano plot exhibiting the differentially expressed genes from the macrophage tumor boundary
and other remaining regions combined Bdy macrophages and other macrophages from three CRC samples (n = 3). g) The characteristics of myeloid
subtypes in the ST dataset. The UMAP projections of subtypes of myeloid cells in CRC, including ALCAMhigh macrophage, ALCAMlow macrophage, and
monocyte/DC. h) Predicted proportion within each capture spot for ALCAMhigh macrophage and ALCAMlow macrophage in CRC. i) Boxplots showing
the hypoxia score among ALCAMhigh macrophages (red), ALCAMlow macrophages (blue), and monocyte/DC (orange) in two CRC ST slides. j) The
immune suppressive scores of ALCAMhigh and ALCAMlow macrophages in CRC samples (n = 3). The boxes in (i,j) showed the median ±1 quartile, with
the whiskers extending from the hinge to the smallest or largest value within 1.5× the IQR from the box boundaries. A two-sided Wilcoxon signed-rank
test was used to assess the statistical significance in (i,j).
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Figure 3. Hypoxia increases ALCAM expression in macrophages through HIF1A. a) Violin plot showing RNA expression of ALCAM in macrophages
with hypoxia score-high and -low groups in five independent single-cell transcriptomics datasets. b) Representative mIHC images indicated ALCAM is
expressed on macrophages in human and mouse tumor tissues. Scale bars, 50 μm. c,d) Flow cytometry analyzing the expression of ALCAM on primary
human (c) and mouse (d) macrophages under hypoxic stimulation. e,f) ChIP-qPCR (e) and Luciferase reporter assay (f) validated that the binding site of
two predicted binding regions in Alcam promoter under 21% O2 and 1% O2 condition. The boxes in (f) show the median ±1 quartile, with the whiskers
extending from the hinge to the smallest or largest value within 1.5× the IQR from the box boundaries. Statistical analysis was performed by two-side
Wilcoxon signed-rank test in (a,e,f). Statistical analysis was performed by unpaired t-test in (c,d).
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Figure 4. Association between hypoxia status and CD8+ T cell differentiation. a) Bar plot showing the fold change for CD8+ T cell subset proportion
between hypoxia score-high and -low groups in 38 single-cell transcriptomics datasets. b) UMAP plot showing subclusters of breast cancer (BRCA)
CD8+ T cells and CD4+ T cells, includingCD8_NaiveLike, CD8_EarlyActiv, CD8_EffectorMemory, CD8_Tpex, CD8_Tex, CD4_NavieLike, Th1, Tfh and
Treg. c) Differentiation trajectory of CD8+ T cell subsets inferred by Monocle2. d) BRCA CD8+ T cells ordered by pseudotime. e) Dynamic alteration of
hypoxia score during BRCA CD8+ T cell differentiation. f) Box plot with hypoxia score for CD8+ T cell subsets in an increasing order. g) Heatmap of gene
differential expression along with CD8+ T cell differentiation. h) Pie plot showing the proportion of datasets in which TFs are positively, negatively, or
non-significantly related with hypoxia score. The boxes in (f) show the median ±1 quartile, with the whiskers extending from the hinge to the smallest
or largest value within 1.5× the IQR from the box boundaries. A two-sided Wilcoxon signed-rank in (a) and a one-way ANOVA test was performed in (f).
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hypoxia score is progressively increased with the trajectory of
CD8+ T cell differentiation (Figure 4c–f). In addition, we no-
ticed naïve CD8+ T cell-related regulators (e.g., SELL, TCF7)
were down-regulated in this differentiation process while ex-
hausted CD8+ T cell-related regulators (e.g., TIGIT, LAG3,
CTLA4, PDCD1, HAVCR2) and hypoxia signatures (e.g., LDHA,
VEGFA, SLC2A) were upregulated (Figure 4g). To explore poten-
tial transcription factors (TFs) driving CD8+ T cell differentiation
induced by hypoxia, we obtained 20 TFs whose expression gradu-
ally increased along with the differentiation process (Figure 4g).
Most TFs are enriched with functions in T cell development. For
example, MBD2 abrogation causes impaired induction of mem-
ory CD8+ T cells[48] RBPJ-dependent Notch signaling plays an
important role during T cell differentiation[49] Meanwhile, we
observed that these TFs were positively correlated with hypoxia
scores in most of the datasets (Figure 4h), suggesting a potential
regulatory role of hypoxia on these TFs.

Similarly, to perform a parallel analysis of CD8+ T cells, we
divided CD4+ T cells into four subpopulations, CD4_NavieLike,
Th1, Tfh, and Treg, in 34 CD4+ T cell datasets and found suppres-
sive immune cells at the end of differentiation, including Tfh and
Treg, to be enriched in the hypoxia score-high group (Figure S5a,
Supporting Information). The hypoxia score is progressively in-
creased with the trajectory of CD4+ T cell differentiation in cancer
patients (Figure S5b–e, Supporting Information). The hypoxia-
related top 20 TFs also showed an increasing trend during the
cell differentiation trajectory (Figure S5f,g, Supporting Informa-
tion).

We also collected mouse scRNA-seq data to verify whether the
function of hypoxia in mice tumors is conserved for subsequent
experimental validation. The result in colon cancer or melanoma
bearing mice showed high degrees of similarity with that in hu-
mans (Figures S6 and S7a–e, Supporting Information). Mean-
while, the majority of hypoxia marker genes, such as ALDOA,
ENO1, PGAM1, and TPI1, showed a significant increasing ten-
dency during the differentiation of CD4+ T cells (Figure S7f, Sup-
porting Information). All these results suggest that the hypoxic
tumor environment may be associated with the T cell differentia-
tion in the exhaustion status and is associated with the immuno-
suppressive microenvironment, thus, inhibiting the efficacy of
ICB treatment.

2.5. ALCAMhigh Macrophages Associated With the Exhaustion of
T Cells Around the Tumor Boundary

To further explore the association of hypoxia status and T cell
status, based on sub-spot gene expression profiles reconstructed
by Cottrazm[38] we performed unsupervised graph-based cluster-
ing and used marker-based annotation to define the cell types.
We annotated the cell subtypes of T cells and divided them into
three subtypes in BRCA tissue: T_EarlyActive, T_Effector, and
Tex (exhausted CD8 T cells). Compared with malignant and non-
malignant regions, Tex was enriched in the tumor boundary,
while T_Effector and T_EarlyActive tended to be enriched in non-
malignant regions (Figure 5a,b). Tex had the highest exhaus-
tion score and hypoxia score among these three T cell subtypes
(Figure 5c,d). Furthermore, there are three T cell subtypes iden-
tified in CRC TSME (Figure S8a,b, Supporting Information). Tex

in CRC has higher exhaustion signature and hypoxia score and is
localized around the tumor boundary (Figure S8c, Supporting In-
formation), which is consistent with T subtypes in BRCA TSME.

Both ALCAMhigh macrophages and Tex tend to be enriched
at the tumor boundary and hypoxia can induce the expression
of ALCAM in macrophages. We therefore investigated the lo-
calization between these two cell types and other cell types.
We compared the co-localization of ALCAMhigh macrophages
with T cell sub-clusters (Tex, T_Effector, T_EarlyActive) and
other cell types. We also calculated the co-localization propor-
tion of ALCAMlow macropahges and Tex. We found that a
high proportion of spots with Tex infiltration are co-localized
with ALCAMhigh macrophages (Figure 5e,f; Figure S8d,e, Sup-
porting Information). Further, Tex co-localized to ALCAMhigh

macrophages showed significantly higher exhaustion scores than
those far away from ALCAMhigh macrophages (Figure 5g), Tex
showed high cell interaction with hypoxiahigh macrophages or
ALCAMhigh macrophages but not hypoxialow macrophages or
ALCAMlow macrophages (Figure 5h,i; Figure S8f, Supporting
Information), suggesting that the colocalization of ALCAMhigh

macrophages and Tex may be associated with the exhaustion
of T cells. Cell-to-cell interaction analysis showed strong in-
teraction among hypoxiahigh or ALCAMhigh macrophages, Tex
cells, and malignant cells (Figure 5h,i; Figure S8g, Support-
ing Information). In addition to the macrophage migration in-
hibitory factor (MIF) signaling pathway, which is a well-known
HIF-1𝛼-dependent pathway[50] we found the ALCAM signaling
pathway network presented between hypoxiahigh or ALCAMhigh

macrophages and Tex (Figure S8g, Supporting Information).
Therefore, we investigated whether ALCAMhigh macrophages
may facilitate the exhaustion of T cells. The cell interaction
between ALCAMhigh macrophages and Tex revealed by Nich-
eNet analysis[51] showed high ICAM2, CCL8, and ALCAM lig-
and activity (Figure 5j), which interacted with receptors on Tex,
resulting in the expression of target genes that are enriched
in T cell exhaustion-related pathways, including BCL3, CISH,
CSRP1, APP, and TF BHLHE40 (Figure 5j–l). These TFs were
positively correlated with the hypoxia score in our scRNA-seq
analysis (Figure 4h). In addition, these target genes were also
highly enriched in pathways of cytokine-cytokine receptor in-
teraction, HIF-1 signaling pathway, and exhausted related path-
ways in immunologic signature gene sets (Figure 5m). Taken to-
gether, our findings suggest that hypoxia promoted ALCAMhigh

macrophages interacted with Tex to promote T cell exhaustion.

2.6. Inhibition of Hypoxic State Reduces ALCAMhigh

Macrophages and Exhausted CD8+ T Cells to Enhance the
Therapeutic Efficacy of PD-1 Blockade

To overcome the hypoxia effect on immunotherapy, we de-
veloped the syngeneic mouse tumor model using 4T1 and
B16F10 cells and treated them in different treatment strate-
gies (Figure 6a). In brief, 6-week-old female BALB/cJ mice were
injected with 4T1 cells into the right inguinal fat pad (5 ×
104), or 8-week-old female C57BL/6 mice were injected subcu-
taneously with B16F10 tumor cells (5 × 104). Afterward, mice
with tumors reaching ≈100 mm3 in size were randomized into
four groups with different treatment strategies: scramble (IgG),
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Figure 5. ALCAMhigh macrophage crosstalk with exhausted CD8 T cells in tumor spatial microenvironment, a) The characteristics of T cell subtypes
in the ST dataset. The UMAP projections of subtypes of myeloid cells in BRCA, including T_Effector, T_EarlyActive, and Tex (exhausted CD8 T cells).
b) Predicted proportion within each capture spot for T_Effector, T_EarlyActive, and Tex in BRCA. c,d) The exhaustion score (c) and hypoxia score (d)
among T_Effector, T_EarlyActive, and Tex. e–g) Spatial scatter pie plots (e) showing the proportions of the eight cell types for spots with co-localization
of ALCAMhigh macrophages and Tex; and bar plots (f) showing proportion of Tex spots colocalized with or without ALCAMhigh macrophages. (g) Box
plots showing the exhaustion score between Tex spots colocalized with or without ALCAMhigh macrophages. h,i) Circle plot visualizing the cellular
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treatment with anti-PD-1 antibody, treatment with HIF1 LNA
(EZN-2968), and the combination treatment of anti-PD-1 and
HIF1 LNA. Treatments with anti-PD-1 (ICB) were administered
every 3 days and treatments with HIF1 LNA were administered
every other day until tumor capture, and tumor growth was
measured every week. HIF1 LNA alone substantially extended
the overall survival time (median survival: 50 versus 33 days;
p < 0.001, log-rank test) of 4T1 tumor-bearing mice, and com-
bined with ICB, enhanced the survival benefit (median survival:
> 91 versus 33 days; p < 0.0001; Figure 6b). The B16F10 model
showed similar results (Figure 6c). In the 4T1 or B16F10 tumor-
bearing mice decreased tumor growth after HIF1 LNA or ICB
treatment, while a combination treatment of HIF1 LNA and
ICB achieved better efficacy (Figure 6d,e). To verify the func-
tion of ALCAMhigh macrophages, we isolated ALCAMhigh and
ALCAMlow macrophages from human and mouse tumor tissues
and then co-cultured them with CD8 T-cells. We found that com-
pared to ALCAMlow macrophages, ALCAMhigh macrophages in-
creased the expression of CD8 T-cell exhaustion genes PD-1 and
Lag3 (Figure 6f,g; Figure S9a,b, Supporting Information). Next,
we examined the proliferative ability of the T cells co-cultured
with ALCAMhigh or ALCAMlow macrophages using the CellTrace
labeling and dilution assay and found that T cells co-cultured
with ALCAMhigh macrophages proliferated much less than with
ALCAMlow macrophages compared to ALCAMlow macrophages
(Figure 6h,i). To validate the alteration of immune features in
the enhanced therapeutic efficacy of HIF1 LNA, we investigated
the tumor-immune microenvironment of B16F10 tumor-bearing
mice treated with HIF1 LNA and ICB in combination or alone.
Then, the mIHC analysis showed that HIF1 LNA significantly re-
duced HIF1𝛼 expression, ALCAM expression, and the infiltration
of macrophages and TIM3+ CD8+ T cells, and the combination
treatment enhanced this efficacy (Figure S9c, Supporting Infor-
mation). Further, mIHC analysis showed that HIF1 LNA reduced
the expression of PD-L1 (Figure S9d,e, Supporting Information).
Further, the mRNA expression level of HIF1A was found to be
positively correlated with mRNA expression PD-L1 (CD274) in a
variety of cancer types in the TCGA cancer patient dataset (Figure
S9f, Supporting Information). HIF1 LNA increased the popula-
tion of tumor infiltrating CD8+ T cells and their activity in the
tumor and combination treatment enhanced this efficacy (Figure
S9g,h, Supporting Information), further supporting that hypoxia
status influences T cell differentiation and function. Taken to-
gether, the combination of HIF1 LNA and ICB demonstrated sig-
nificant reduction in ALCAMhigh macrophages and exhaustion
CD8+ T cells, and improvement in tumor burden, survival rate,
and cytolytic activity. Therefore, these findings suggest that in-
hibition of HIF1A could be associated with the reduce of tumor
progression and resistance to ICB treatment. Further, hypoxia-
associated ALCAMhigh macrophages might be related to the im-

munosuppressive state of T cell subsets which may limit the ef-
ficacy of ICB treatment.

3. Discussion

The TME undergoes remodeling when adapting to a hypoxic
environment[16] However, dynamic alteration and remodeling
during tumorigenesis is unclear, especially for non-tumor cells,
including immune cells in the TME that suffer from serious
oxygen insufficiency. We integrated bulk, single-cell, and spatial
transcriptomics to dissect the regulatory roles of hypoxia in im-
mune evasion through the ALCAMhigh macrophage-Tex axis in
single-cell and spatial resolutions.

TAMs have been reported to stimulate tumor progression
through various mechanisms, such as promoting tumor cell inva-
sion and promoting tumor cell angiogenesis[52] Hypoxic regions
can attract immunosuppressive TAMs through releasing an in-
creasing gradient of migratory stimulating factors and then fix-
ing them in tumor compartments[53] In our study, we identified
that macrophage infiltration is most positively correlated with hy-
poxia level across 32 cancer types in TCGA and further identified
that ALCAMhigh macrophages were significantly enriched around
the tumor boundary under a hypoxic microenvironment. The tu-
mor size might confound for this result, but unfortunately, all
datasets in this study were obtained from public datasets without
clinical information for tumor size, which prevent us to adjust the
effect of tumor size. Further, we demonstrated that hypoxia can
induce the expression of ALCAM in macrophages through the
binding of HIF1A on the ALCAM promoter. The ALCAM signal-
ing pathway is an important regulatory interaction between hy-
poxia score-high macrophages and exhausted CD8+ T cells, con-
sistent with specific expression of ALCAM in hypoxia score-high
macrophages, which suggests that hypoxia may induce ALCAM
expression, thus interact with exhausted CD8+ T cells and finally
lead to a suppressive immune microenvironment.

Besides macrophages, the differentiation of T cells is also af-
fected by hypoxia. A recent study discovered that antigen stim-
ulation under hypoxia renders T cell exhaustion in mice[20] but
whether this is the situation in cancer patients is unclear. Here,
we demonstrated that hypoxia score consistently increased with
the differentiation trajectory of both CD8+ T cells and CD4+ T
cells. The hypoxia score is gradually increased from naïve T cells
to effector T cells and then to the exhausted state, and hypoxia
status was also significantly correlated with transcription factors
that are related to T cell differentiation and exhaustion. Among
these TFs, YY1,[54] E2F1,[55] MAZ,[56] ZEB2,[57] BHLHE40,[58] and
CERS2[59] were reported to be induced by HIF1A. Further inves-
tigation is warranted to validate whether the hypoxic tumor mi-
croenvironment drives the TF changes and T cell differentiation.
Overall, these results suggest hypoxia status is associated with

communication of cell types among malignant cells, ALCAMhigh macrophages, ALCAMlow macrophages, T_Effector, T_EarlyActive, and Tex cells. Circle
sizes are proportional to the number of cells in each cell group, and thickness of the flow represents the interaction weight. j) Top-ranked ligands
inferred to regulate exhausted CD8+ T cells by ALCAMhigh macrophages by NicheNet. k) Ligand-receptor pairs showing interaction between ALCAMhigh

macrophages and exhausted CD8+ T cells ordered by ligand activity (j). l) Heatmap showing regulatory potential of top 15 ranked ligands (j) and the
downstream target genes in exhausted CD8+ T cells. m) Representative KEGG pathways and related exhausted pathway enrichment of the predicted
target genes expressed in exhausted CD8+ T cells. The boxes in (c,d,g) show the median ±1 quartile, with the whiskers extending from the hinge to the
smallest or largest value within 1.5× the IQR from the box boundaries. A two-sided Wilcoxon signed-rank test was used to assess statistical significance
in (c,d,g), Fisher’s test in (m).
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Figure 6. Synergistic therapeutic effect of anti-HIF1 combined with PD-1 blockade, a) Graphic illustration of syngeneic models established from 4T1
and B16F10 cells for combinatorial treatment. b,c) Kaplan–Meier survival analysis of syngeneic 4T1 mice model treated with scramble or HIF1 LNA
(treated with EZN-2968), immune checkpoint blocks (ICB) alone or in combination (n = 8, 8, 8, 11 animals) (b), log rank test. (c) Kaplan–Meier survival
analysis of syngeneic B16F10 mice model treated with scramble or HIF1 LNA, immune checkpoint blocks (ICB) alone or in combination (n = 8, 8, 8, 10
animals). d,e) Tumor volumes of syngeneic 4T1 (d) and B16F10 (e) mice model treated with scramble or HIF1 LNA, ICB alone or in combination. f,g)
Flow cytometry analyzing the expression of PD-1 and Lag3 in ALCAMhigh and ALCAMlow macrophages from human (f) and mouse tumor tissues (g).
h,i) CellTrace dilution assay to assess the division of CD8 T cell co-cultured with ALCAMhigh and ALCAMlow macrophages from human (h) and mouse
tumor tissues (i). A two-sided unpaired t-test was used to assess statistical significance in (f–i).
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T cell differentiation and is highly correlated with exhausted T
cells. Additionally, hypoxia related ALCAMhigh macrophages in-
teracted with CD8+ T cells may promote T cell exhaustion.

Blockades targeting immune checkpoints that have been ap-
proved for the treatment of human cancers have shown con-
siderable clinical effects[60] Hypoxia induces a series of biolog-
ical changes that contribute to tumorigenesis and is a critical
issue that leads to resistance to a broad range of therapeutic
options, including immunotherapy[37] Therefore, understanding
the effect of hypoxia on immune features is crucial to improv-
ing the outcomes of cancer immunotherapy. Our research re-
vealed successively increased hypoxia status in morphological
stages during carcinogenesis and identified hypoxia-associated
immune features in tumors before and after immunotherapy.
Hypoxia is negatively associated with effective immune cells or
immune features (e.g., TCR), and positively associated with T cell
exhaustion. Hypoxia-associated ALCAMhigh macrophages may
crosstalk with T cells to regulate the exhaustion status, we com-
pared the exhaustion scores of Tex co-localized to ALCAMhigh

macrophages versus Tex distant from ALCAMhigh macrophages,
and found Tex co-localized to ALCAMhigh macrophages showed
higher exhaustion scores (Figure 5e–g). In addition, the cell-to-
cell interactions analysis also showed strong interaction among
ALCAMhigh macrophages and Tex (Figure 5h,i). To prove that
the co-localization promotes T cell exhaustion, we co-cultured
ALCAMhigh macrophages and ALCAMlow macrophages from hu-
man or mouse CRC tumor with T cells separately, then using
FACS to assess the expression levels of exhaustion markers (PD-
1 and LAG3) in T cells. The results showed that T cells co-cultured
with ALCAMlow macrophages express higher level of exhaus-
tion marker (PD-1 and LAG3, Figure 6f,g). Therefore, we re-
vealed that remodeling of the tumor immune suppressive mi-
croenvironment via the hypoxia-ALCAMhighmacrophage-Tex axis
may contribute to immunotherapy resistance. Preclinically, the
inhibition of HIF1a by EZN-2968 enhanced the therapeutic effi-
cacy of PD-1 blockade in the treatment of both melanoma and
TNBC by reducing the infiltration of ALCAMhigh macrophages
and exhausted CD8+ T cells and promoting anti-tumor immu-
nity. Three out of eleven 4T1 tumor-bearing mice and two out
of ten B16F10 tumor-bearing mice showed complete disappear-
ance of tumors within 9–10 weeks after combination treatment,
which provides a novel strategy for EZN-2968 and ICB ther-
apy to enhance immunotherapy efficacy. Taken together, our
work reveals the hypoxia-based intercellular communication hub
through the hypoxia-ALCAMhighmacrophage-Tex axis in single-
cell and spatial levels that supports immune evasion. Thus, ther-
apeutic strategy that inhibits the hypoxic state can break the
ALCAMhighmacrophage-Tex axis and be combined with ICB treat-
ment to improve the efficacy of immunotherapy.

4. Experimental Section
Data Collection, Process, and Analysis—Bulk RNA-Seq Datasets: Gene

expression profiles of 122 biopsies at successive morphological stages
during lung squamous carcinogenesis were obtained from Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/; GSE33479). The 122
biopsies were distributed according to histology and fluorescence status
as follows: 13 biopsies with normal histology and normal fluorescence,

14 with normal histology and hypo-fluorescence, 15 with hyperplasia, 15
with metaplasia, 13 with mild dysplasia, 13 with moderate dysplasia, 12
with severe dysplasia, 13 with carcinoma in situ, and 14 with squamous
cell carcinoma. The process of carcinogenesis was divided into 9 stages,
ranging from stage 0 and 1, representing bronchial mucosa with normal
histology, which had normal and low fluorescence, respectively, to stage
2, which was hyperplasia, stage 3, which was comprised metaplasia, stage
4 and 5, which were mild and moderate dysplasia, respectively, stage 6,
which was combined severe dysplasia, stage 7, which was in situ carci-
noma into “high-grade” lesions, and stage 8, which represents segregated
invasive characteristics from premalignant lesions. Gene expression pro-
files of biopsies at successive stages during prostate carcinogenesis were
obtained from GSE6099, including 12 with benign prostatic hyperplasia,
13 with prostatic intraepithelial neoplasia (PIN), 32 with prostate carci-
noma (PCA), and 20 with metastatic prostate cancer (MET). Normalized
gene expression data of 32 cancer types was downloaded from TCGA data
portal (https://portal.gdc.cancer.gov/).

Spatial Transcriptomics: The prostate spatial transcriptomic data, in-
cluding count matrices and images, were provided by Andrew Erick-
son et al. from the Mendeley database[24] Spatial transcriptomics of
CRC were obtained from Genome Sequence Archive with accessible
ID HRA000979[39] BRCA and OC spatial transcriptomic data were ob-
tained from 10X genomics official website (https://support.10xgenomics.
com spatial-gene-expression/datasets), ccRCC (GSE175540)[41] and SCC
(GSE144240)[61] Spatial transcriptomics of 67 tumor tissues with covering
14 cancer types and with clear tumor boundaries were collected from the
web available portal SpatialTME (https://www.spatialtme.yelab.site/)[62]

Single-Cell Transcriptomics: Thirty-five single-cell transcriptomics
datasets with metadata, 38 CD8+ T cells datasets and 34 CD4+ T cells
datasets were obtained from Tumor Immune Single-cell Hub (TISCH)[45]

To analyze T cell trajectory, we obtained human single-cell gene expression
matrices from European Genome-phenome Archive (EGA) under study
no. EGAS00001004809 and no. EGAD00001006608[63] For mouse T cells,
we used single-cell expression matrices collected by Massimo Andreatta
et al.[46] (https://github.com/carmonalab/ProjecTILs_CaseStudies).

Single-cell data to compare hypoxia score across cell types and PD1
treatment response were processed by TISCH[45] including GSE123813
and GSE120575. Molecular profiles for patients with ICB treatment were
obtained from GEO, including GSE78220 and GSE91061. IMvigor210 co-
hort with the expression data and detailed clinical information were down-
loaded from http://research-pub.gene.com/IMvigor210CoreBiologies.

Hypoxia Score Calculation: We calculated the “hypoxia score” by us-
ing gene set variation analysis[64] based on a 15-gene signature[65] which
has been used in recent papers to classify the hypoxia status across
multiple TCGA cancer types.[66,67] These 15 hypoxia related genes in-
clude ACOT7, ADM[68] ALDOA[69] CDKN3, ENO1[70] LDHA[71] MIF[72]

MRPS17, NDRG1[73] P4HA1[74] PGAM1[75] SLC2A1[76] TPI1, TUBB6, and
VEGFA[77] all of which associated with HIF1A as described in previous
studies. Furthermore, a recent study systematically assessed the robust-
ness of different hypoxia signatures and suggested that the hypoxia sig-
nature we used was the best performing signature[78] Scoring hypoxia
scores of single-cell data was conducted as previously described[79] (https:
//www.github.com/cssmillie/ulcerative_colitis). In brief, the gene signa-
ture score for each cell was calculated by the mean scaled expression
across all genes in the signatures.

Spatial Transcriptomics Data Analysis for 10X Genomics ST Platform “1k”:
Visualizing and analyzing spatial transcriptomics data of prostate cancer
was generated with R package STutility[80] These ten cubes were all se-
quenced by 10X genomics ST platform “1k”. The data were loaded and un-
derwent filtering, including (1) keeping genes that were found in at least
5 capture spots and have a total count value > = 100; (2) keeping the
capture-spots that contain > = 500 total transcripts. Next, we projected
the hypoxia score on them with ST.FeaturePlot.

Definition of Tumor Boundary-Based ST Data: The malignant (Mal) re-
gion, tumor boundary (Bdy), and non-malignant (nMal) regions of the
ST slides (BRCA, n = 2; CRC, n = 2; OC, n = 1; and ccRCC, n = 1)
were defined by the method as previous study[38] shown. Malignant re-
gions were the ST spots occupy malignant cells while tumor boundary
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was spots connecting malignant and non-malignant cell spots in tumor
tissues. “BoundaryDefine” function was used in Cottrazm package38to de-
lineate the tumor boundary. Initially, based on neighboring spot informa-
tion and morphological distances of HE-staining images, Cottrazm nor-
malizes ST gene expression data to obtain a morphologically adjusted ex-
pression matrix. Then clustered by k-nearest neighbor (KNN) algorithm,
clusters were identified using copy number variation by InferCNV which
define the core spots of malignant cells. Further, Cottrazm arranged spatial
spots on hexagonal systems, extrapolated layer by layer from core spots of
malignant cells and determined the identity of spots according to UMAP
distance to tumor centroid as Malspots or Bdy spots. When all neighbors
of Mal spots were not classified as tumor tissue, the extrapolation was
completed. Remaining spots were therefore labeled as nMal spots. The
boundary macrophage-specific genes were obtained by “FindDiffGenes”
function of the Cottrazm package.

Deconvolution and Reconstruction of ST Spots: The cellular compo-
sition of spatial spots was calculated using the “SpatialDecon” func-
tion, and pie plots and bar plots of deconvolution were generated with
“DeconPieplot” and “DeconBarplot” functions in the Cottrazm package.
The reconstruction results at sub-spot levels of CRC and BRCA slides
were obtained by the “SpatialDecon” function of the Cottrazm package,
then the Seurat package was used to normalize, scale, and obtain sub-
clusters of myeloid cells and T cells. Subsequently, based on the re-
construction result, we filtered macrophages and T cells. In the recon-
struction result of macrophages, we divided macrophages in BRCA into
ALCAMhigh macrophages and ALCAMlow macrophages based on the me-
dian value of normalized ALCAM expression; in CRC data, we first de-
fined ALCAMhigh macrophages based on normalized ALCAM expression,
then define Mono/DC based on differential expression genes. In the re-
construction result of T cells, we divided T cell subsets based on signa-
ture genes, for example PDCD1, LAG3, HAVCR2, CD8A, CD8B, CD3E,
ENTPD1, TGAE, BATF, NR4A1 for Tex. The function “find_neighbors” in
the Cottrazm package was used to identify the first outer circle of co-
localized spots of Tex and ALCAMhigh macrophages.

Cell-To-Cell Communication Analysis: First, we projected ALCAMhigh

macrophages and Tex to spatial based on barcodes, when a spatial
spot contains ALCAMhigh macrophages and Tex simultaneously, the
spot was denoted as ALCAMhigh macrophages and Tex co-localization.
Then, CellChat[51] (version 1.1.1) was used to analyze cell-to-cell com-
munication. First, a cellchat object was created by grouping in defined
clusters. The ligand-receptor interaction database we used for analysis
was “CellChatDB.human” without additional supplement. Preprocessing
steps were all conducted with default parameters. Then, computeCom-
munProb and computeCommunProbPathway were performed to infer the
network of each ligand-receptor pair and each signaling pathway sepa-
rately. A hierarchy plot, circle plot and heatmap were used as different
visualization forms.

NicheNet[51] was used to infer the mechanisms of interaction between
macrophages and T cells of the reconstruction results. For ligand and re-
ceptor interactions, clustered cells with gene expression over 10% were
considered. The top 300 ligands and top 2000 targets of differentially ex-
pressed genes of “sender cells” and “affected cells” were extracted for
paired ligand-receptor activity analysis. When evaluating the regulatory
network of macrophages on T cells, Tex was considered as the receiver
cells and other T cell sub-cluster cells were used as reference cells to check
the regulatory potential of ALCAMhigh macrophages on Tex.

Analysis of Immune Cell Infiltration: The abundance of 18 T-cell sub-
sets (CD4+ naïve, CD4+ T, CD8+ naïve, CD8+ T, central memory T [Tcm],
effector memory T [Tem], [Tr1], induced regulatory T cells [iTreg], natu-
ral regulatory T cells [nTreg], T helper 1/2/17 cells [Th1/2/17], T follicu-
lar helper cells [Tfh], cytotoxic T cells [Tc], mucosal-associated invariant T
cells [MAIT], exhausted T cells [Tex], gamma delta T [𝛾𝛿 T], and NKT cells
and six other important immune cells (B cells, macrophages, monocytes,
neutrophils, dendritic cells [DC] and NK cells) were estimated using Im-
muCellAI (http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/)[81]

Dimension Reduction and Clustering Analysis: For SKCM/GSE123139
Seurat, we scaled data with the features calculated by function FindVari-
ableFeatures. To remove the batch effects of different samples, we used

the RunHarmony method in R package harmony[82] For clustering and vi-
sualization, we applied FindCluster() in Seurat to obtain cell clusters in var-
ious resolutions and reduced the dimensionality of the data using Uni-
form Manifold Approximation and Projection (UMAP) implemented in
RunUMAP function with the setting: reduction = “harmony”, dims = 1:10.

T Cell Classification with ProjectTILs: ProjectTILs was an algorithm that
could accurately divide scRNA-seq data into nine broad T cell subtypes:
CD8_NaiveLike, CD8_EarlyActive, CD8_EffectorMemory, CD8_Effector,
CD8_Tpex, CD8_Tex, CD4_NaiveLike, Tfh, Th1 and Treg[46] After sub-
mitting a list of Seurat objects downloaded from TISCH, the ProjectTIL
make.projection function was applied to normalize scRNA-seq data by us-
ing a log-transform, automatically removing non-T cells and projecting
the datasets onto a reference map of cellular states. Then, we used the
cellstate.predict function to annotate each cell. These two functions were
conducted with default parameters.

T Cell Trajectory Analysis Using Monocle and in Line with Hypoxia Score:
Monocle (version 2.14.0) was used to illustrate the differentiation of CD4+

T cells and CD8+ T cells in human and mouse tissues[83] First, we loaded
the normalized count matrices and meta.data information to create a new
CellDataSet object. Since the count matrices had been normalized, we
used the setting: expressionFamily = uninormal. During construction of
the single-cell trajectories, we first used the VariableFeatures function in
Seurat (versions 3.2.1) to filter a list of gene ids to be used for defining
progress. Then, dimensional reduction was performed using the DDRTree
method. Finally, we ordered cells with the state of NaïveLike cells as the
root. By means of function plot_cell_trajectory, with color_by = “Define-
Types”, “Pseudotime” or “Hypoxia Score”, the result could be visualized.
Function plot_genes_branched_pseudotime enabled observation of the al-
teration of hypoxia signatures along with cell trajectory.

Analysis of T Cell Differentiation-Related and Hypoxia-Related TFs: To
identify TFs whose differential expression could play a role in T cell devel-
opment, the differentialGeneTest function in monocle was applied to CD4+

T and CD8+ T Cell Dataset objects, respectively. TFs with p-value < 0.05
and q-value < 0.05 were defined as T cell differentiation-related genes. At
the same time, we excluded the TFs whose expression declined along with
pseudotime by filtering out those with higher expression at the starting
state than at the end state. Moreover, to ensure the consistency of a con-
nection between these TFs and T cell differentiation, we kept TFs that had
consistent function in half of all the datasets, which meant 19 CD8+ T cell
datasets and 17 CD4+ T cell datasets. For all the remaining TFs, the Spear-
man test was used to calculate their correlation with the hypoxia score.

Analysis of Hypoxia-Associated Immune Features: The value of aneu-
ploidy, mutation rate, the richness of TCR/BCR, and neoantigen load
were obtained from Thorsson et al.[84] (https://gdc.cancer.gov/about-
data/publications/panimmune). The immunophenogram score (IPS) was
estimated as previously described[85] There were four categories that con-
tributed to IPS, including effector cells (activated CD4+ T cells [acCD4+],
activated CD8+ T cells [acCD8+], effector memory CD4+ T cells [Tem
CD4+], and effector memory CD8+ T cells [Tem CD8+]), suppressive cells
(Tregs and MDSCs), 10 MHC-related molecules, and 10 checkpoints or im-
munomodulators. For each determinant, a sample-based Z score was cal-
culated from the gene expression data. For these six cell types, the average
Z-score from the corresponding metagene was calculated. If the determi-
nant was positive to immune response, the Z-score was weighted with 1,
including each MHC molecule, ICOS, CD27, acCD4+, acCD8+, Tem CD4+,
and Tem CD8+. If the determinant was negative to immune response, the
Z-score was weighted with −1, including PD-1, CTLA4, LAG3, TIGIT, TIM3,
PD-L1, PD-L2, Tregs, and MDSCs. We averaged the weighted Z-score for
the respective category leading to four values, then summed these four
averaged weighted Z-scores, which was considered as IPS.

We used Spearman’s correlation to assess the relationship between hy-
poxia score and immune features, including the abundance of immune cell
populations, the silent/non-silent mutation rate, aneuploidy score, neo-
antigen load, the richness and evenness of TCR/BCR, IPS, and considered
false discovery rate (FDR) < 0.05 as significant correlation.

Evaluation of the Effect of Hypoxia on Immunotherapy: The im-
munotherapy response was evaluated by RECIST criteria and classified
into complete response (CR), partial response (PR), progressive disease
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(PD) and stable disease (SD)[86] For SKCM anti-PD1 treatment RNA-
seq datasets, we compared the hypoxia score between PD (non-response
group) and PRCR (response group). In IMvigor210 cohort, PRCR and sta-
ble disease (SD) were pooled as a response group, while progressive dis-
ease (PD) was used for the non-response group. Statistical analysis was
performed by two-sided Student’s t-test. Spearman’s correlation was used
to perform association analysis of the dynamic alterations of the hypoxia
score and immune features for both pre- and on-treatment patient sam-
ples.

Survival Analysis: We used the maxstat.test in the R package maxstat to
divide all samples into hypoxia score-high and hypoxia score-low groups,
based on the optimal cutpoint. Kaplan–Meier comparative survival analy-
ses for prognostic analysis were generated, and the log-rank test was used
to determine the significance of the differences.

Cell Lines and Culture Conditions: Raw264.7 cells were obtained
from American Type Culture Collection (#TIB-71, ATCC) and main-
tained in complete growth medium of ATCC-formulated Dulbecco’s Mod-
ified Eagle’s Medium (#30-2002, ATCC) with 10% fetal bovine serum
(#A4766801, Gibco) and 1% Penicillin–Streptomycin (#15140122, Gibco).
Cells were split into either 6-well plates or 10 cm dishes and allowed to
grow to 70–80% confluence prior to the start of the experiments. For the
RNAi experiments, cells were transiently transfected by ON-TARGETplus
Mouse Hif-1 alpha siRNA Pool (#L-040638-00-0005, Dharmacon) or ON-
TARGETplus Non-targeting Pool (#D-001810-10-05, Dharmacon) for 48 h
with Lipofectamine 3000 (#L3000015, Invitrogen) according to the in-
structions. For the treatment of HIF-1 alpha inhibitors, cells were treated
with 1 nM of Echinomycin (#ab144247, Abcam) or vehicle for 48 h.

Induction of Hypoxia: Hypoxia was induced in a CO2/O2 incubator for
hypoxia research (The InvivO2 hypoxia workstation, LAF Technologies).
Briefly, cells were cultured in 10 cm dishes at 1% O2 for the time peri-
ods specified. Control cells were maintained in normoxic conditions in the
same incubator and harvested at the specified times.

Measurement of mRNA Levels Using Quantitative Real Time PCR
(qRT-PCR): Total RNA was isolated from Raw264.7 cells in each ex-
perimental condition using Quick-RNA Miniprep Plus Kit (#R1058,
Zymo) by following the manufacturer’s protocol, and the extracted
RNA was quantified using NanoDrop 2000/2000c Spectrophotome-
ters (#ND2000CLAPTOP, Thermo Fisher Scientific, Inc). Total RNA
(2–5 μg) was reverse transcribed to cDNA using the iScript Reverse
Transcription Supermix for RT-qPCR (#1708841BUN, Bio-Rad) accord-
ing to the manufacturer’s recommendation. The cDNA (50–100 ng)
was used for real-time PCR analysis in a final volume of 20 μl
containing, iTaq Universal SYBR Green Supermi (#1725125, Bio-Rad)
and specific gene primers for Alcam (Forward: 5′- AGGAACATGGCG-
GCTTCAACGA −3′; Reward: 5′- ACACCACAGTCGCGTTCCTACT −3′)
or Gapdh (Forward: 5′-CATCACTGCCACCCAGAAGACTG-3′; Reward: 5′-
ATGCCAGTGAGCTTCCCGTTCAG-3′). qPCR was performed using the CFX
Connect Real-time PCR system (Bio-Rad, United States). Fold changes in
expression were calculated using the 2−ΔΔCt method (PMID: 35577506).
Each reaction was run in duplicate or triplicate and Gapdh was used as a
normalization control.

Western Blotting: The procedures were performed as described
previously[87] The primary antibodies used were HIF-1𝛼 (#ab228649, Ab-
cam (1:1000)), CD166 (#ab109215, Abcam (1:1000)), and beta actin
(#3700, Cell Signaling Technology (1:1000)). After the washing steps,
the membranes were incubated with Goat Anti-Rabbit IgG (H + L)-
HRP Conjugated- (#1706515, Bio-Rad, 1:10000) or with Goat Anti-Mouse
IgG (H + L)-HRP Conjugated (#1706516, Bio-Rad, 1:10000) secondary
antibodies and detected using Novex ECL Chemiluminescent Substrate
Reagent Kit (#WP20005, Invitrogen).

Chromatin Immunoprecipitation (ChIP)-qPCR Assays: We predicted
the binding motifs 2 kb upstream and downstream of ALCAM TSS by
webtool MEME (https://meme-suite.org). ChIP assays were performed
with HIF1𝛼 antibodies according to the EZ-Magna ChIP A/G Chromatin
Immunoprecipitation Kit’s protocol (#17-10086, Sigma). Briefly, 5 × 106

Raw264.7 cells were crosslinked with 1% formaldehyde for 10 min. Cell
pellets were incubated in Cell Lysis Buffer for 10 min, and pellet nuclei
were harvested by centrifugation at 2000× g and digested in Nuclear Lysis

Buffer containing 25 units micrococcal nuclease per IP for 20 min at 37
°C, followed by pulsed ultrasonication to shear cellular DNA and cleared
by centrifugation at 12000× g for 10 min. Equal amounts of chromatin
were incubated overnight at 4 °C with primary antibody. The following
antibodies were adopted: HIF1𝛼 (#ab228649, Abcam, 4 μg/IP) and IgG
(17-614, Millipore, 4 μg/IP). DNA pulled down by the antibodies was
purified by spin columns, and purified DNA was quantitated by qPCR
using CFX Connect Real-time system (Bio-Rad). ChIP-qPCR specific
primers for Alcam (Primer#1 Forward: 5′-TTAGGCTGGCTGCAGTTTGA-
3′; Reward: 5′- AGGCTAAATGCTAGGGGCAA-3′) or (Primer#2
Forward: 5′-ACTCTCCCTTAGACAAGGTTTCC-3′; Reward: 5′-
AACAGTATGTGATTGTGCTGGG-3′).

Animal Experiment: All animal experiments were performed in accor-
dance with guidelines approved by MD Anderson’s Institutional Animal
Care and Use Committee. BALB/c and C57BL/6 were purchased from Jack-
son Laboratories (Bar Harbor, ME, USA). For establishment of the syn-
geneic cancer model, 4T1 cells (5×104) and B16F10 cells (5×104) mixed
with matrigel were injected into the right inguinal fat pad (4T1) of 6-week-
old female BALB/cJ mice or into the subcutaneous tissue (B16F10) of 8-
week-old female C57BL/6 mice. One week after injection, mice were ran-
domly assigned to treatment groups and injected with combinations of
the following drugs: scramble or HIF1 LNA (5 mg k−1g, SubQ, every other
day, QIAGEN) and anti-PD-1 (BioXcell, clone RMP1-14) as ICBs, 100 μg
every 72 h, or isotype control antibody (BioXcell, clone LTF-2) 200 μg ev-
ery 72 h. Tumors were measured two times per week, and mice were eu-
thanized once the ethical end point was reached. After treatment, mice
tumors were collected for immunofluorescence analysis.

Multiplex Immunohistochemistry: Four μm thick sections of formalin
fixed and paraffin embedded (FFPE) tumor tissue on super frost plus
slides were de-paraffinized and rehydrated by serial passage through
changes of xylene and graded ethanol. All slides were subjected to a pri-
mary heat-induced epitope retrieval (HIER) in 1 mM EDTA buffer, pH 8.0 at
125 °C for 3 min. Subsequent HIERs were dependent on antibody used and
performed in the microwave at 90 °C, 10% power for 15 min. Endogenous
peroxidase in tissues was blocked by incubation of slides in 0.3% hydro-
gen peroxide solution. Antibodies used included rabbit monoclonal CD8
(#98941, Cell Signaling Technology, 1:200), PD-L1 (#64988, Cell Signaling
Technology, 1:200), CD3 (#78588, Cell Signaling Technology, 1:200), CD68
(#26042, Cell Signaling Technology, 1:200), CD4 (#25229, Cell Signaling
Technology, 1:200), F4/80(#70076, Cell Signaling Technology, 1:200), Ep-
CAM (#93790, Cell Signaling Technology, 1:200), ALCAM (#ab109215, Ab-
cam, 1:200), HIF1𝛼 (#ab228649, Abcam, 1:200), and TIM3 (#83882, Cell
Signaling Technology, 1:200). Immunofluorescent signal was visualized
using the Opal Polaris 7 Color IHC Detection Kits (#NEL871001KT, Akoyo
Biosciences), TSA dyes 480, 520, 570, 620, 690, and 780, counterstained
with Spectral DAPI. Color separation, tissue and cell segmentation, and
cell phenotyping were performed on inForm Software v2.2 (Perkin Elmer,
MA) to extract image data. All slides were scanned at 10× magnification in
order to select for high-powered imaging at 20× (resolution of 0.5 μm per
pixel) using Phenochart (Perkin Elmer, MA) or imaged with confocal mi-
croscope (Zeiss). Cell segmentation was done based on all cells counter-
stained with DAPI.

Cell Separation: To separate the cells, the gentleMACS Dissociator
from Miltenui Biotec Inc. and the Tumour Dissociation kit from Miltenui
Biotec were utilized. This allowed for the isolation of individual cells from
the tumor samples. In the case of mouse lymphocytes, the spleen was
used as the source for isolation. The EasySep Mouse CD8+ T Cell Isolation
Kit was employed to specifically isolate CD8+ T cells. For human PBMCs
(peripheral blood mononuclear cells), they were extracted from blood us-
ing Lymphoprep. To specifically isolate human CD8+ T lymphocytes, the
EasySep Human CD8+ T Cell Isolation Kit was utilized.

Flow Cytometry: Human and Mouse tumors: human and mouse tu-
mors were dissociated as a single cell using the gentleMACS Dissocia-
tor (Miltenui Biotec Inc) with the Tumor Dissociation Kit (Miltenyi Biotec,
130-095-929) or mouse Tumor Dissociation kit (Miltenui Biotec), after
lysis of red blood cells (RBC Lysis Buffer, BioLegend), single-cell sus-
pensions were blocked with anti-CD16/32 (BioLegend) for 10 min on
ice and then incubated with appropriate antibodies for 30 min on room
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temperature. Flow cytometry was performed on an CytoFLEX (Beckman
Coulter), and data were analyzed using Cytexpert 2.4. Flow cytometry anti-
bodies were used in the experiments, including CD45 (#304062, Biole-
gend, diluted 1:100), CD166 (#343906, Biolegend, diluted 1:100; #17-
1661-82, Invitrogen, diluted 1:100), PD-1 (#329952, Biolegend, diluted
1:100; #APC-65142, Proteintech, diluted 1:100), Lag3 (#369306, Biole-
gend, diluted 1:100; #125208, Biolegend, diluted 1:100), CD68 (#333806,
Biolegend, diluted 1:100), and F4/80 (#123130, Biolegend, diluted 1:100).

Assessment of Proliferation Function: Isolated human and mouse CD8+

T were washed and resuspended with 1 ml PBS containing 5% FBS in
15 ml tubes. 1 μl of 5 mM carboxyfluorescein succinimidyl ester (CFSE)
solution (Biolegend) was directly added into the cell suspension followed
by 5 min incubation at RT in the dark. Centrifuge the cells at 300 g for
5 min to remove the sediment after washing them with ten volumes of
20 °C PBS containing 5% FBS. After staining, 2 × 105 CFSE-labeled cells
were seeded into each well and co-cultured with ALCAMhigh and ALCAMlow

macrophages from human and mouse tumor tissues. Finally, analyze the
CFSE-labeled cells using flow cytometry.

Luciferase Reporter Assay: The luciferase reporter assay was conducted
using the Dual-Luciferase Reporter Assay System. The cells were co-
transfected with firefly luciferase reporter plasmid (CD166WT, CD166-
Δ1, CD166-Δ) and renilla luciferase reporter vector pGL-3 using Lipofec-
tamine2000 from Invitrogen when they reached 70% confluence. Follow-
ing transfection, the cells were incubated for 24 h. Subsequently, the firefly
and renilla luciferase activities were measured using the Dual-Luciferase
Kit from Beyotime Biotechnology (RG027-1) and the measurements were
performed according to the manufacturer’s instructions.
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