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Abstract: The incidence of breast implant illness (BII) and BII-related explant procedures has not
decreased with current surgical and treatment techniques. It is speculated the main underlying
cause of BII complications is the result of chronic, sub-clinical infections residing on and around
the implant. The infection, and subsequent biofilm, produce antagonistic compounds that drive
chronic inflammation and immune responses. In this study, the microbial communities in over
600 consecutive samples of infected explant capsules and tissues were identified via next-generation
sequencing to identify any commonality between samples. The majority of the bacteria identified
were Gram-positive, with Cutibacterium acnes and Staphylococcus epidermidis being the dominant
organisms. No correlation between sample richness and implant filling was found. However,
there was a significant correlation between sample richness and patient age. Due to the complex
nature, breast augmentation failures may be better addressed from a holistic approach than one of
limited scope.
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1. Introduction

Biofilms are combinations of bacterial cells and an extracellular matrix, which is
composed of various substances such as proteins, lipids, carbohydrates, and extracellular
DNA [1]. Bacterial biofilms impact a wide range of industries and are one of the main
targets for various cleaning and sterilization procedures [2,3]. Within the medical field,
biofilms are linked to oral dysbiosis, diabetic wounds, surgical complications, respiratory
infections, and reactive arthritis [4–7]. The commercial and consumer goods industry
is also plagued by biofilms, causing pipe fouling, food safety recalls. Even equipment
malfunctions aboard the International Space Station have fallen victim [8–10]. Biofilms
can also serve beneficial functions. These include bioremediation, wastewater treatment,
agrobiology, and biomanufacturing applications [11–13].

With the adaptability and wide-spread nature of bacterial biofilms, their potential
impact on the success rate of breast reconstructive surgery should not come as a surprise.
Breast reconstruction has multiple applications that range from cosmetic enhancements to
reshaping post-tissue loss resulting from cancer. Due to the uplifting physical and psycho-
logical impact these procedures can have on the patient population, breast augmentation
remains one of the most common plastic surgery procedures performed among women,
with over 2 million procedures performed in 2019 alone [14,15]. These procedures do
not come without risk [16]. Up to 2.5% of these procedures will have some degree of
complications related to infections from microorganisms that result in revising or removal
of the prosthesis. The transfer of skin microbiota into the incision or onto the prosthesis
can seed the initial infection. The topographical nature of the prosthesis also has an impact.
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Originally smooth in nature, silicone mammary implants are now available in an array
of macrotexture varieties. The macrotexture variants were designed to minimize implant
slipping and twisting, which often lead to capsular contractions. However, the textured
surface also provides a point of adhesion for bacteria, and thus, biofilm formation [17–19].
The cascade of inflammatory events following biofilm formation results in a system-wide
response to the prosthesis, which has been shown to accelerate implant degradation and
rupture [20,21].

The microbial composition of the biofilm may impact the long-term success rate
of breast reconstructive surgery. Multiple genera and species have been identified that
are known to be either pathogenic or opportunistic pathogens [22,23]. Frequently isolated
organisms include Staphylococcus epidermidis, Staphylococcus aureus, and Cutibacterium acnes, all
of which have been associated with chronic inflammation and immune responses [22,24,25].
It should be noted that the frequency, severity, and correlation of infection with specific
species or even genus of bacteria are often inconsistent and contradicting.

Unlike traditional bacterial infections, chronic and sub-clinical infections are difficult to
identify. Recent studies have shown that up to 48% of patients who have undergone explant
surgery for breast implant illness develop a subclinical infection [25]. The researchers also
reported that Cutibacterium acnes, a biofilm-producing bacteria, was the dominant organism
present and a key contributor to chronic inflammation [25].

The following Internal Review Board (IRB)-approved retrospective study analyzed
of over 600 consecutive samples of infected explant capsules and tissues to establish the
incidence of sub-clinical microbial communities/biofilms and their potential association
with breast prosthesis failure

2. Materials and Methods
2.1. Sample Collection and Institutional Review Board Statement

The chart review was performed from February 2019 to September 2022. All subjects
gave their informed consent for inclusion before they participated in this study. This
study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of ADVARRA IRB, CR00487631. On the day of surgery,
all the patients underwent capsulectomies, as biospecimens were collected as part of the
surgical plan. Capsule tissue removed from the patients was photographed in the operating
room by the operating surgeon and sent within 24 h for routine histological analysis. Data
collection by the operating surgeon included details about the implant shell (i.e., textured
or smooth) and whether the implant was silicone or saline, when available. Changes in the
shell of the device were also noted. A piece of capsule and tissue were sent for 16S rRNA
gene sequencing at MicroGen DX, Lubbock, TX, USA.

2.2. Microbial Profiling

The samples were shipped overnight to MicroGen DX (Lubbock, TX, USA), a CAP-
accredited and CLIA-licensed clinical diagnostic laboratory, for microbiological profiling
via targeted next-generation sequencing (NGS), similar to previous studies [26–28]. Briefly,
the commercial assay included two targets for targeted NGS (16s rRNA V1–V2 and ITS3-4)
for comprehensive profiling of bacteria. In order for a sample to be sequenced for either
target, amplicons were evaluated using endpoint PCR for evidence of positive amplification
prior to paired-end 250 base pair sequencing using an Miseq system (Illumina, San Diego,
CA, USA). The laboratory-developed test also included a multi-species qPCR panel and
multitarget antibiotic resistance gene panel [27,29]. Prior work suggests that although
partial 16s analysis cannot fully resolve all bacterial lineages [30], the underlying V1–V2
region used is among the most informative for classifying the species [31,32], and species-
level calls are generally reproducible when using appropriately curated databases [33]. The
analyses were based on the microbial findings provided in clinical reports, which were
reported to the species level where possible, as in previous work.
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2.3. Statistical Analysis

The patients whose samples were positive were selected for descriptive analysis of
the bacteria identified via targeted 16S rRNA profiling. The samples were described in
terms of the bacteria detected and summarized according to the number of species (i.e.,
richness) detected in each specimen. An analysis of variance (ANOVA) was used to screen
the available demographic features against richness, with an emphasis on determining
whether breast implant filling or texture was related to richness and using backward feature
selection to remove non-significant variables from the final model. An additional partial
regression model to adjust for confounding factors within the ANOVA was included. A
partial regression model was applied in three steps to estimate the relationship of gel filling
with species diversity when removing variance confounded by age. First, gel filling was
regressed on age and other metadata. Second, species richness was regressed on age and
metadata other than gel filling. Third, a final model to estimate the impact of gel filling
on species richness independent of age was performed by regressing richness residual
variance on gel filling residual variance. Dominant species were determined based on the
highest observed species in each patient.

3. Results

From June 2019 through August 2022, a total of 694 samples were submitted for
NGS microbial profiling, and 203 (29%) returned positive microbiological findings. These
203 positive samples were included in the descriptive analysis (see Table 1 for cohort demo-
graphics) and revealed 103 unique species. Gram-positive lineages including Cutibacterium
(formerly Propionibacterium), Staphylococcus, and Corynebacterium were the most frequently
detected (Figure 1), though a few Gram-negative lineages were found in 8% and 6% of
the samples, such as Pseudomonas and Enterobacter, respectively. Relatively few species
tend to be dominant; however, an emphasis was placed on identifying those species by
counting the number of times a species was observed to be dominant (i.e., most abundant
species observed). The most dominantly reported species again belonged to the same three
genera as before, with C. acnes, S. epidermidis, and C. tuberculostearicum being the most
dominant (Figure 2). One Gram-negative species was reported among the most dominant,
Enterobacter cloacae.
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Table 1. Specimen characteristics of the samples taken.

Characteristic N = 203

Median age 43 (Q1 = 37, Q3 = 50)
Left capsule 103 (51%)

Implant texture

Smooth 60 (71%)
Textured 25 (29%)
Missing 118

Implant filling

Gel 65 (49%)
Saline 67 (51%)

Missing 71
Ruptured 13 (6.4%)
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Next, species richness can be a useful measure for reducing a complex species profile
into a single estimate that is sometimes associated with differences in patient characteristics.
Here, richness was assessed with the aim of determining whether the type of breast implant
had any apparent association with the microbial profile recovered upon removal. A median
of 3 species (Q1 = 2, Q3 = 5) were detected, with 72% having fewer than 5 species reported
(Figure 3). Implant texture was not found to have any apparent association with richness
(Table 2, p > 0.05); however, implant filling type and age were associated with richness
(p < 0.05).
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Table 2. ANOVA assessing relationship sbetween specimen characteristics and species richness.

Df Sum Sq Mean Sq f-Value p-Value R2 Sig

Texture 1 0.90 0.90 0.56 0.465 0.003
Filling 1 9.26 9.26 5.75 0.028 0.027 *

Age 1 17.65 17.65 10.96 0.004 0.051 **
Patient 57 291.55 5.11 3.17 0.004 0.837 **

Residuals 18 29.00 1.61

Df = Degrees of freedom; * denotes significance with p < 0.05; ** denotes significance with p < 0.01.

However, there was concern that age and filling may be confounded, leading to a
spurious association of filling with age. To test this, a partial regression approach was
used to first account for the variation explained by age and then to test the importance of
filling type against that residual variation, which was no longer statistically significant after
accounting for age (p > 0.05, Figure 4). In simpler terms, implant filling may be related to
the number of species observed, but the statistical association disappears when attempting
to control for the confounding influence of patient age. Patient age was the only factor
considered significant after all testing (Figure 5).
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4. Discussion

Bacterial biofilms have an impact on multiple industries, and their dynamic nature
makes them difficult to combat. Their robustness is due to the complex extracellular ma-
trix they use to adhere and protect themselves from external threats. This extracellular
polymeric substance (EPS) protects vegetative cells from antibiotics, disinfectants, and
extraneous organisms by slowing diffusion, the sequestering or inactivation of compounds,
and acting as a physical barrier [34–37]. Enzymatic removal, chemical signaling, bacterio-
phages, and physical disruption have all been proposed as methods for the elimination and
control of bacterial biofilms. The various macromolecules that comprise the EPS matrix,
such as carbohydrates, nucleic acids, proteins, dead bug bodies, etc., are often the target
for the enzymatic removal of biofilms. Hydrolyzing the key structural components, in
theory, would help with the removal of biofilms. Various nucleases, lipases, proteases,
and carbohydrases have been studied; however, the use of enzymes is often limited to
treating surfaces and equipment, and their potential use for treating implant infections
is negligible [38–42]. The same can be said for the use of bacteriophages. Though quite
successful for surfaces and food, the use of viruses for the successful treatment or mitigation
of biofilms related to breast implants has yet to be demonstrated [43–45].

The dominant organisms found in this reflective study align with previous findings;
however, the sample size presented is significantly larger than most previous studies, which
allows for deeper insights into a complex problem. As highlighted in Figure 3, the microbial
richness was small, with most patients having fewer than five species. Though this has only
identified the presence of the microbiota, the correlation between the species identified and
their role in biofilm-related breast augmentation failure has been well established in the
literature [46–51]. No correlation between fill type was found; however, patient age did
have an impact on diversity. It is well established that the skin microbiome changes over
the course of our lives. For example, the maturation of an infant’s microbiome starts at
birth with the mother’s vaginal microbiome during a vaginal birth or a combination of skin
and environmental bacteria during a cesarean birth [52,53]. From there on, external factors
drive microbiome diversification. As children progress through adolescence and into
adulthood, hormonal factors start to influence sebum production on the skin. This results
in a dramatic shift in the skin microbiome. Once predominantly Firmicutes, Bacteroidetes,
and Proteobacteria, the increased sebum levels drive the proliferation of Cutibacterium acnes
and Staphylococcus epidermidis [54–58]. The rapid growth often results in skin dysbiosis,
acne, and an increase in inflammation. Depending on a person’s skin type, lifestyle, and
overall well-being, the impact of the shift may be lifelong. This may shed light on why
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Cutibacterium acnes and Staphylococcus epidermidis, both of which are known to form robust
biofilms in vivo, were the most prevalent organisms found in this study.

Due to their complex nature, bacterial biofilms continue to plague the medical field,
including both cosmetic and reconstructive breast augmentation. Biofilm proliferation, and
the innate immune response triggered by it, has been associated with capsular contracture,
subclinical infection, and breast implant-associated anaplastic large cell lymphoma (BIA-
ALCL) [59–62]. Attempts to prevent bacterial biofilm formation and subsequent infections
using antibiotic washes and acidic solutions have been unsuccessful [63–67]. These meth-
ods are only effective at the time of insertion of breast implant(s) and offer no protection
during the lifetime of the implant from subsequent bacterial exposure. A simple break in
the skin barrier creates a bacterial entry point that can cause an immune response at the im-
plant site or drive biofilm formation, with or without the development of cellulitis [68–70].
This was demonstrated by two recent randomized prospective studies that highlighted that
48% and 29% of infected implants had measurable biofilms [71–73]. In both studies, the
predominant organism was Cutibacterium acnes; however, other biofilm-related organisms
such as Staphylococcus epidermidis and Enterobacter spp. were also prevalent. Additionally,
a recently published study found that breast implant illness (BII) patients who have ad-
vanced systemic symptoms were shown to have an increased abundance of biofilm biomass
and elevated levels of oxylipin 10-HOME [74]. Oxylipin 10-HOME is a unique fatty acid
metabolite that is produced from bacterial biofilms [74,75]. Interestingly, this compound
was found to accumulate on the surface of implants and elicited an immune response to
the implant and surrounding tissues [74]. These findings demonstrate how subclinical
infections drive immune response and prosthesis degradation. Yet, this would suggest
that the surgical removal of the entire scar capsule and the device would alleviate BII in its
entirety. Additionally, follow-up treatments options would focus on restoring the immune
function of each patient. The inherited ability to process toxin exposure is individualized;
therefore, a personalized approach must be taken [76–78]. Though this is known, it is still
unclear when one’s genetic ability to process toxins has reached a saturation point [76].
For example, a single-nucleotide polymorphism (SNP) in the methylenetetrahydrofolate
reductase gene (MTHFR) can lead to prolonged inflammation and exacerbate toxin interac-
tions [79,80]. A host of genes involved in methylation and cellular detox processes in both
animals and plants are often suppressed in the presence of toxins, and their overall impact
on the detoxification process is reduced [81–84].

There have been numerous studies exploring how to minimize the incidence of biofilm
formation and capsular contraction, yet no effective solution has been found. A retrospec-
tive cohort study comparing 27 patients who received a triple-antibiotic pocket irrigation
containing cefazolin, gentamicin, and bacitracin showed the capsular contraction rate was
the same as the 28-patient control group [85,86]. Another group showed that antibiotic
irrigation had a significant impact on capsular contraction on both textured and smooth
implants [87]. Outside of antibiotics, the use of povidone–iodine is another option. A
retrospective study including 3002 patients showed that the use of povidone–iodine signifi-
cantly reduced the risk of infection following breast augmentation surgery [88]. The results
of that trial were not surprising, since a randomized, double-blinded trial performed in
1986 showed a similar outcome [89]. The incidence of capsular contraction was reduced from
41% to 18% with a instillation of a 5% povidone–iodine solution [89]. The lack of consistency
around antibiotic irrigation has resulted in the use of povidone–iodine and triple-antibiotics
for both pocket irrigation and for soaking breast implants pre-surgery [90–92]. Out of all the
techniques used to minimize the incidence of capsular contraction, the non-touch funnel
has proven impactful [93,94]. Minimizing the number of contact points with the implant
significantly reduces microbial transfer, and when combined with pocket pH treatments, it
appreciably increases the success rate of an implant procedure [95,96].

It should not go unnoticed that lifestyle and overall wellbeing have been shown
to significantly impact the skin microbiome and the body’s ability to respond to inflam-
mation [97,98]. A sub-clinical persistent localized bacterial infection induces a chronic
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inflammatory response that could have a cumulative negative impact systemically [99].
The ability to control or mitigate the results is dependent on genetic predisposition and
intentional choices made throughout a lifetime. One such choice that is often disregarded as
a driver of skin dysbiosis and systemic inflammation is diet. There is strong evidence that
diet impacts hormone balance and sebum production, both of which impact skin dysbiosis
and inflammation [100–102]. The “Western diet”, high in red meats and ultra-processed
foods, has specifically been shown to negatively impact the skin and gut microbiome while
further promoting inflammation and dysbiosis of the gut [103–107]. Overall, there is a
strong correlation between microbial communities/biofilms, chronic inflammation, and
implant failures. However, the role of external drivers of those key points, such as diet,
lifestyle, genetic predisposition, and overall approach to wellness, is often not included
in the equation. The persistence of breast augmentation failures may be better addressed
from a holistic approach than one of limited scope.
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