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Abstract: Salmonella remains a significant foodborne pathogen globally with S. Typhimurium present-
ing as a frequently occurring serovar. This study aimed to characterize 67 S. Typhimurium isolates
from humans, food, farms, and slaughterhouses collected in Singapore from 2016 to 2017. Using
whole-genome sequencing analysis, the isolates were found to belong to either ST19 (n = 33) or ST36
(n = 34). ST36 predominated in human intestinal and chicken isolates, while human extra-intestinal
and non-chicken food isolates belonged to ST19. Plasmids were predicted in 88.1% (n = 59) of the
isolates with the most common incompatibility group profiles being IncFIB(S), IncFII(S) and IncQ1.
IncFIB(S) (adjusted p-value < 0.05) and IncFII(S) (adjusted p-value < 0.05) were significantly more
prevalent in ST19 isolates, while Col156 (adjusted p-value < 0.05) was more significantly found in ST36
isolates. ST36 isolates exhibited higher resistance to multiple antibiotic classes such as penicillins,
phenicols, folate pathway inhibitors, aminoglycosides, β-lactam/β-lactamase inhibitor combinations,
tetracyclines, and fluoroquinolones. Phylogenetics analysis suggested potential shared routes of
transmission among human, chicken, farm and slaughterhouse environments. Taken together, this
study offers a cross-sectional epidemiological insight into the genomic epidemiology and antimicro-
bial landscape of S. Typhimurium isolates in Singapore, informing strategies for future public health
and food safety surveillance.

Keywords: Salmonella Typhimurium; antimicrobial resistance; salmonellosis; surveillance; food;
human; One Health

1. Introduction

Salmonella ranks prominently among the frequently occurring foodborne pathogens [1]
and is one of the major causes of foodborne diseases in both developing and developed
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countries [2]. Each year, Salmonella is estimated to be associated with 93.8 million incidents
of foodborne illness and 155,000 fatalities globally [1,3], highlighting the significance of
human salmonellosis as a global public health challenge.

Salmonella occurs naturally within environmental ecosystems and is prevalent among
both domestic and wild animal populations [3]. Salmonella primarily inhabits the intestinal
tracts of humans and agricultural animals but can also be found in wild avian species,
reptiles, and occasionally, insects [4]. Additionally, feedstuff, soil, and fecal matter have
also been frequently recognized as origins of Salmonella contamination in agricultural
settings [5–7]. Being a zoonotic etiological agent, the transmission of Salmonella commonly
emanates from food products of animal origin [8]. The occurrence of human salmonellosis is
frequently associated with the consumption of food contaminated with Salmonella. Poultry,
pork, and egg products are frequently identified as primary sources of Salmonella [9]. The
risk for contamination and consequent infections can be further exacerbated by other factors
such as ingestion of raw food, poor personal hygiene practices, inappropriate food storage,
and improper heat treatment [10,11]. Furthermore, the socioeconomic impact resulting from
human salmonellosis extends beyond health-related expenses, which includes additional
costs shouldered by business operators for disposing of contaminated food and facing
trade limitations [12].

S. Typhimurium is one of the most frequently reported Salmonella serovars world-
wide [13,14]. Similar to other non-typhoidal serovars, the clinical manifestations of S.
Typhimurium cover a spectrum of symptoms, including nausea, vomiting, diarrhea and ab-
dominal cramps [2]. Although S. Typhimurium infections typically cause self-limiting gas-
troenteritis [15], it can also lead to bacteremia and focal extra-intestinal infections, including
conditions such as meningitis and osteomyelitis, particularly among children [16,17]. In ad-
dition, the escalating prevalence and spread of antimicrobial resistance within Salmonella [10],
accompanied by the lack of new antimicrobial agents, presents a global concern. One of
the primary causes of antimicrobial resistance is linked to the release of non-metabolized
antibiotics or their residues into the environment through feces, along with the misuse or
overuse of antibiotics in agricultural or farming practices [18]. Consequently, this engen-
ders genetic selection pressure, fostering the emergence of multidrug-resistant bacterial
infections within the community [19]. Resistance to therapeutically relevant antimicrobials
will pose significant public health concerns due to its association with higher rates of
mortality and morbidity [20–22]. Thus, this warrants the need for continuous surveillance
for the tracking of trends in the development of antimicrobial resistance and molecular
subtypes of the strains to develop tailored treatment and control strategies [17,23].

Several studies, focusing on antimicrobial resistance profiles and molecular subtypes,
have been undertaken to characterize S. Typhimurium [17,24,25]. Nonetheless, to our
knowledge, a study to capture the serovar and antimicrobial profiles of S. Typhimurium in
Singapore is currently limited. To address the knowledge gap, we performed antimicro-
bial susceptibility testing and whole genome sequencing on 67 S. Typhimurium isolates
which are all isolates available from human, food, farm and slaughterhouse environmen-
tal samples in 2016 and 2017. Through this study, we identified the prevalent sequence
types, plasmid, and antimicrobial resistance patterns of S. Typhimurium isolates in Singa-
pore. These findings would be useful to inform strategies for foodborne zoonosis disease
surveillance and targeted risk management measures for food safety and public health.

2. Materials and Methods
2.1. S. Typhimurium Isolates Collection

The study included a total of 67 S. Typhimurium isolates, which were available from
different sources including farm and slaughterhouse environments (n = 10), food (n = 38),
and humans (n = 19) between 2016 and 2017. Human isolates were lab-confirmed cases
obtained from KK Women’s and Children’s Hospital, Singapore General Hospital, and Tan
Tock Seng Hospital. Food isolates were obtained from routine surveillance and monitoring
programs, while farm and slaughterhouse environmental isolates were obtained from
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the archived bacterial biobanks of the national environmental health laboratories. The
collected S. Typhimurium isolates were streaked on Tryptic–Soy (Oxoid, Hampshire, UK)
or non-selective nutrient agar for further characterization.

2.2. Phenotypic Antimicrobial Susceptibility Testing

The minimum inhibitory concentration of various antimicrobials was determined with
the MicroScan Neg MIC Panel Type 44 (manufactured by Beckman Coulter, Inc., Brea,
CA, USA), which was performed in accordance with the manufacturer’s instructions. The
antimicrobial susceptibility profiles of each isolate were interpreted based on the latest
versions of the Clinical and Laboratory Standards Institute (CLSI) or EUCAST at the time
of analysis. To prevent the overestimation of resistance, isolates with minimum inhibitory
concentrations (MICs) falling within the intermediate range were classified as susceptible.

All isolates were subjected to antimicrobial susceptibility testing against 28 antimi-
crobials belonging to 13 antimicrobial classes: Amikacin; Amoxicillin/K Clavulanate;
Ampicillin/Sulbactam; Ampicillin; Aztreonam; Cefepime; Cefotaxime; Cefoxitin; Cef-
tazidime; Cefuroxime; Chloramphenicol; Ciprofloxacin; Colistin; Doripenem; Ertapenem;
Fosfomycin; Gentamicin; Imipenem; Levofloxacin; Meropenem; Minocycline; Nitrofu-
rantoin; Norfloxacin; Piperacillin/Tazobactam; Piperacillin; Tetracycline; Tobramycin;
Trimethoprim/Sulfamethoxazole.

2.3. Whole-Genome Sequencing (WGS) and Analysis

All 67 S. Typhimurium were subjected to whole-genome sequencing (WGS), following
previously described protocols [26]. Briefly, 1 mL of each S. Typhimurium overnight culture
in Universal Pre-Enrichment Broth (Acumedia, San Bernardino, CA, USA) was centrifuged.
The bacterial cells were then lysed using enzymatic lysis buffer at 37 ◦C for 45 min, which
was followed by extraction using the DNeasy Blood and Tissue Kit (QIAGEN, Valencia,
CA, USA) according to the manufacturer’s instructions. Genomic DNA was sheared using
an M220 Focused Ultrasonicator (Covaris, Woburn, MA, USA), and library preparation
was carried out using an NEBNext® Ultra™ DNA Library Prep Kit (NEB, Ipswich, MA,
USA). Samples were then sequenced on a HiSeq 4000 sequencer (Illumina, San Diego, CA,
USA) with 151 bp paired-end reads.

All primary sequence analysis was performed by the Genome Institute of Singapore on
the Efficient Rapid Microbial Sequencing Platform (GERMS). The serovar of the isolates was
predicted with the SeqSero programme [27], while MLST was called with SRST2 version
0.1.8 [28] by using reference sequences obtained from the PubMLST database for Salmonella
(http://pubmlst.org/salmonella (accessed on 1 January 2021)). The antimicrobial resistance
genes and virulence were also predicted by SRST2 [28], which makes use of the ARGannot
resistance gene database (accessed on 1 January 2021)) [29] and the Virulence Factors
database (accessed on 1 January 2021) [30] as references, respectively.

Sequencing reads were assembled with Velvet [31] using the VelvetOptimizer helper
script (version 2.2.4), which were then passed into the Centre for Genomic Epidemiol-
ogy (CGE)’s SPIFinder 1.0 (https://cge.food.dtu.dk/services/SPIFinder/ (accessed on 1
January 2021)) and PlasmidFinder 2.1 (https://cge.food.dtu.dk/services/PlasmidFinder/
(accessed on 1 January 2021)) for the identification of Salmonella Pathogenicity Islands (SPIs)
and plasmids respectively.

Draft de novo genomes were used to build the MLST-specific core genome phylogeny
trees using Parsnp version 1.5.3 and HarvestTools version 1.2 with default parameters and
auto-assignment of genome as reference sequence [32]. Pairwise SNPs difference between
isolates were obtained using mummer [33].

2.4. Data Analysis

Statistical significance was calculated using R version 4.2.0. p-values below 0.05 were
considered significant, and where appropriate, Benjamini–Hochberg correction [34] will
be applied. Clustering analysis and heatmaps were generated by the “ComplexHeatmap”

http://pubmlst.org/salmonella
https://cge.food.dtu.dk/services/SPIFinder/
https://cge.food.dtu.dk/services/PlasmidFinder/
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version 2.12.1 package [35], while the “Goplot” version 4.2.3 [36] and “ComplexUpset”
version 4.2.3 [37] packages in R were used to create the chord diagram for plasmid profiling
and Upset plot for SPI profiling, respectively.

Co-occurrence analysis of antimicrobial resistance phenotypes in ST36 isolates was
performed by calculating pairwise correlations using the antimicrobial resistance status
(presence or absence) of each isolate. The resulting correlation matrix was then visualized
with the “Corrplot” version 0.94 package. Correlation analysis was also conducted for
antimicrobial resistance genotypes in ST36 by considering the presence or absence of the
resistance gene. The correlation was then visualized with the “Ggraph” version 2.2.1
package from R, where only nodes with significant correlation above 0.7 or below −0.7
were displayed.

Non-metric multidimensional scaling analysis (NMDS) for antimicrobial resistance
genes was performed using the metaMDS function in the “vegan” version 2.6-8 pack-
age using the Jaccard distance metric, wherein the isolates were grouped by their se-
quence types. Permutational analysis of variance (PERMANOVA) was performed using
10,000 permutations and a Jaccard distance metric.

2.5. Ethical Considerations

No ethics approval was required for this study, as the clinical isolates collected from
the lab-confirmed cases were anonymized in the study.

3. Results
3.1. Prevalence of ST19 and ST36 S. Typhimurium Isolates in Singapore

All S. Typhimurium isolates belonged to two sequence types, ST19 (n = 34, 50.75%)
and ST36 (n = 33, 49.25%) (Figure 1). Most of the human intestinal isolates (14/17, 82.35%)
and chicken isolates (14/16, 87.5%) were found to belong to ST36, while all the human
extra-intestinal isolates (n = 2) and non-chicken food isolates, including duck (n = 11), goose
(n = 2), pork (n = 7), beef (n = 1) and eggs (n = 1), belonged to ST19.
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Figure 1. Distribution of S. Typhimurium isolates included in the study by their sources and respective
sequence types.

3.2. Characterization of Mobile Genetic Factors by Sequence Types

All the S. Typhimurium isolates contained Salmonella pathogenicity islands (SPI) SPI-
1 to SP-2, SP-3, SP-5, SP-9, SP-13, SP-14, and CS54 (centisome 54 pathogenicity island)
(Figure 2A). Only two isolates from human intestinal and beef samples carried SP-12, which
were both belonging to ST19. Although C63PI was only found in 34.4% (23/67) of the
isolates, this pathogenicity island was found on all human extra-intestinal (n = 2) and pork
isolates (n = 7).
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Figure 2. SPI and plasmid profiling. (A) UpSet plot of the isolates with detect SPI. The stacked bar
(top) shows the number of isolates with combinations of detected SPI represented by the matrix
(bottom). The bar plots on the left indicate the number of isolates with the detection of specific
SPI. (B) Chord diagram depicting the detection of the specific plasmid (right) for each isolate (left).
(C) Plasmids profile of the S. Typhimurium isolates.

Of the 67 S. Typhimurium isolates, 59 were found to harbor at least one plasmid, and
the highest detection was found for IncFIB(S) (28/67, 41.8%), IncFII(S) (28/67, 41.8%) and
IncQ1 (19/67, 28.4%) (Figure 2B). Comparison of the ST19 and ST36 isolates revealed a
significant higher occurrence of IncFIB(S) (Chi-square test, adjusted p-value < 0.05) and
IncFII(S) (Chi-square test, adjusted p-value < 0.05) in ST19 isolates, while Col156 (Chi-
square test, adjusted p-value < 0.05) was significantly more prevalent in ST36 isolates
(Figure 2B and Figure S1). Clustering analysis based on the plasmid profiles exhibited a
distinctive sequence type-specific pattern (Figure 2C). The most common plasmid profiles,
IncFIB(S)-IncFII(S) (12/67, 17.9%) and IncQ1-IncFIB(S)-IncFII(S) (10/67, 14.9%), were found
uniquely in the ST19 isolates (Figure 2C).
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3.3. Sequence Type Associated Patterns in Phenotypic Antimicrobial Resistance Profile

Phenotypic antimicrobial resistance to at least one tested antimicrobial class was ob-
served in 74.6% (50/67) of the S. Typhimurium isolates. All the isolates were susceptible to
antimicrobial classes nitrofurans and carbapenem (Figure 3A). Six isolates (6/67, 14.9%),
comprising two ST19 pork isolates, three ST36 chicken isolates and one ST36 human in-
testinal isolate, were phenotypically resistant to polymyxin (colistin) (Figure 3A). Notably,
the only two human extraintestinal ST19 isolates included in the study were suscepti-
ble to all tested antimicrobial classes. The isolates were most predominantly resistant
to β-lactam/β-lactamase inhibitor combination (ampicillin/sulbactam 43.3%), penicillin
(ampicillin 50.7%, piperacillin 49.3%), tetracyclines (minocycline 35.8%, tetracycline 53.7%),
phenicol (chloramphenicol 35.8%) and aminoglycosides (tobramycin 31.3%, gentamicin
29.9%). It is noteworthy that a substantial proportion of the observed antimicrobial resis-
tance was attributed to ST36 isolates, which exhibited significantly higher resistance than
ST19 isolates across a spectrum of antimicrobial classes, including penicillin (Chi-square
test, adjusted p-value < 0.05,), phenicol (Chi-square test, adjusted p-value < 0.05), folate
pathway inhibitors (Chi-square test, adjusted p-value < 0.05), aminoglycosides (Chi-square
test, adjusted p-value < 0.05), β-lactam/β-lactamase inhibitor combination (Chi-square
test, adjusted p-value < 0.05), tetracyclines (Chi-square test, adjusted p-value < 0.05) and
fluoroquinolones (Chi-square test, adjusted p-value < 0.05) (Figure 3B). The number of
multidrug-resistant (resistant to ≥three antibiotic classes) ST36 isolates was also signifi-
cantly higher than those of ST19 isolates (Mann–Whitney U-test, p-value < 0.05) (Figure 3C).

To elucidate the correlation patterns of the antimicrobial classes, we constructed a
pairwise correlation coefficient matrix for the analyzed antimicrobial classes within the ST36
S. Typhimurium isolates (Figure 3D). Corresponding analysis of antimicrobial resistance
correlations was not performed for ST19 isolates due to the low antimicrobial resistance
observed in this group. A high correlation coefficient exceeding 0.7 was obtained between
phenicol and aminoglycosides (R = 0.75, p-value < 0.05), phenicol and folate pathway
inhibitors (R = 0.75, p-value < 0.05), as well as cephalosporins and monobactams (R = 0.81,
p-value < 0.05), implying a high probability of co-occurrence. Because of the relatively
strong correlation between penicillin and tetracyclines (R = 0.68, p-value < 0.05), both
displayed a similar notable correlation with antimicrobial classes including folate pathway
inhibitors, aminoglycosides, phenicol and β-lactam/β-lactamase inhibitor combination. In
fact, as many as 39.4% (13/33) of the ST36 isolates were phenotypically resistant in all the six
antimicrobial classes (penicillin, tetracyclines, folate pathway inhibitors, aminoglycosides,
phenicol and β-lactam/β-lactamase inhibitor combination) (Figure 3A). Among all pairwise
comparisons, only aminoglycosides and fluoroquinolones were significantly negatively
correlated (R = −0.38, p-value = 0.03).

3.4. Characterization of Antimicrobial Resistance Genes and Their Concordance with Phenotypic
Antimicrobial Resistance Profiles

Consistent to phenotypic antimicrobial resistance profile, the number of detected
antimicrobial resistance genes was significantly higher in ST36 than ST19 (Mann–Whitney
U-test, p-value < 0.05) isolates (Figure 4A). Further analysis of the antimicrobial resistance
gene profiles revealed significant differences between the ST19 and ST36 isolates (test,
p-value < 0.05) (Figure 4B).

All 67 analyzed isolates were found to carry at least one antimicrobial resistance gene.
The aac6-laa gene was present in all isolates, while other frequently encountered genes
included those from aminoglycosides (aadA, strA, strB), β-lactam (TEM-1D), trimetho-
prim/sulfamethoxazole (sulI, sulII, sulIII and dfrA). Notably, a colistin resistance gene,
mcr1, was identified in three ST36 chicken isolates, which was also phenotypically re-
sistant to colistin. In alignment with phenotypic findings, significantly higher rates of
antimicrobial resistance gene detection were found in the ST36 isolates (compared to
ST19 isolates), including aac3-Iva (Chi-square test, adjusted p-value < 0.05), aph4-Ia (Chi-
square test, adjusted p-value < 0.05), TEM-1D (Chi-square test, adjusted p-value < 0.05,
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adjusted), cmlA (Chi-square test, adjusted p-value < 0.05), floR (Chi-square test, adjusted
p-value = 1.31 × 10−2,), dfrA (Chi-square test, adjusted p-value < 0.05), sulIII (Chi-square
test, adjusted p-value < 0.05) and sulI (Chi-square test, adjusted p-value < 0.05). Importantly,
the significantly higher levels of antimicrobial resistance gene detection in ST36 isolates
were consistent with the antimicrobial susceptibility testing results of the corresponding
antimicrobial class obtained previously (Figure 3A).
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Figure 4. Phenotypic antimicrobial resistance profiling. (A) Distribution of the number of detected
antimicrobial genes in ST19 and ST36 isolates. * Denotes adjusted p-value < 0.05, Mann–Whitney
U-test. (B) Non-metric multidimensional scaling (NMDS) was performed with the presence and
absence status of the antimicrobial genes from all 67 S. Typhimurium isolates. Each isolate is
represented by a point and colored according to its sequence type. (C) Clustering profile of genotypic
antimicrobial resistance in S. Typhimurium isolates. (D) Correlation networks of the antimicrobial
genes were constructed using the presence and absence status of the antimicrobial genes from all
67 S. Typhimurium isolates. Each node represents a gene and is colored according to its corresponding
antimicrobial class. The edges represent the correlation coefficient and are colored based on the
strength of the correlation. * Denotes a negative correlation coefficient.

Given the significantly higher detection of antimicrobial resistance genes in ST36
isolates, we set out to understand the correlation of antimicrobial resistance genes and
identify multidrug resistance patterns by constructing a co-occurrence network using ST36
isolates. This network was built based on pairs of antimicrobial resistance genes exhibiting
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a significant correlation (p-value < 0.05) and having correlation coefficients greater than 0.7
or less than −0.7. A total of 37 gene pairs belonging to different antimicrobial classes were
identified in our analysis (Figure 4D). Notably, antimicrobial resistance genes aacAad, qnr-A,
catBx, arr, sulIII, tetD and OXA-1 stood out with the highest count of significant correlations
within this list. Positive correlations dominate among all gene pairs, except for the qnr-S
gene, which exhibited negative correlations with aac3-Iva (R = −0.7) and Aph4-Ia (R = −0.7).
This negative correlation was consistent with the findings of the phenotypic co-occurrence
antimicrobial resistance analysis (Figure 3C).

3.5. Phylogeny of the S. Typhimurium Isolates

Phylogenetic analysis using core-genome SNPs revealed two well-defined clades,
which was distinctively separated isolates of the same sequence type (Figure S2). The ST19
duck isolates formed a cluster with the spin-chill water isolates (0 to 244 SNPs difference),
which were in a separate cluster with the human isolates (Figure 5A). In this cluster, 57%
(68/120) of the pairwise analysis were within 10 SNPs difference. The ST36 isolates were
grouped into two clusters (Figure 5B). One cluster was predominantly composed of human
intestinal isolates along with one chicken isolate and one slaughterhouse environment
isolate (4 to 351 SNPs difference). The other cluster comprised eight human isolates
showing close genetic relatedness with 13 of the chicken isolates and four isolates from the
farm and slaughterhouse environment (2 to 495 SNPs difference). Here, only eight out of
224 pairwise analysis were within a 10 SNPs difference with three of them belonging to the
human–chicken comparison.
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4. Discussion

In this study, we characterized 67 locally collected S. Typhimurium isolates, which
belonged to either ST19 or ST36 (Figure 1). Despite limited sequence type diversity within
each food type, the sequence types tended to be associated with food categories. All isolates
sourced from ducks, geese, pork, beef, and eggs belonged to ST36, whereas most of the
chicken isolates (87.5% (14/16)) were from ST19. Interestingly, most of the human intestinal
isolates (14/17) also belonged to ST19, mirroring the predominant sequence type found in
chicken isolates. The findings emphasize the need for the enhanced surveillance of chicken
meat and their products along the food chain. Furthermore, the results also highlight the
importance of implementing appropriate food handling and preparation methods for the
prevention of potential Salmonella contamination to safeguard public health.

ST19 has been widely recognized as the predominant sequence type within S. Ty-
phimurium worldwide [38]. According to the data obtained from the EntroBase database
(http://enterobase.warwick.ac.uk, accessed on 13 August 2023), ST19 and ST36 constitute

http://enterobase.warwick.ac.uk
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66.4% and 3.8%, respectively, of the S. Typhimurium entries [39]. Although this dataset
might not mirror the real-time distribution of sequence types due to its reliance on available
SRA data at time of access and the user voluntary upload of data, it provides a useful esti-
mate of the relative prevalence among sequence types. In contrast, our study demonstrates
an approximately equal proportion of ST19 and ST36 among S. Typhimurium isolates,
which deviates from the proportions reported in the EntroBase database. In addition to
the limited sample size in our study, which may not be fully representative of the S. Ty-
phimurium landscape, the observed phenomenon could be linked to the food consumption
profile in Singapore. We observed a high prevalence of ST36 in chicken, which is the most
consumed meat in Singapore [11]. In fact, our results showed that most of the human
isolates in this study predominantly (14/19) belonged to ST36. The risk of Salmonella
contamination in food and subsequent infections might also be exacerbated by certain food
preparation methods in local cuisine, which tend to involve undercooking chicken for a
desired meat texture. Notably, other studies have indicated a convergence or replacement
of prevalence between ST19 and other sequence types. For instance, in China, ST34 has
gained prominence as one of the most frequent genotypes in clinical samples from pa-
tients with diarrhea, making it one of the two sequence types with the highest prevalence
alongside ST19 [40]. Similarly, in Mexico, ST213 is replacing ST19 as the most frequently
encountered sequence type in both clinical and animal food samples [41]. Changes in the
sequence type distribution in different geographical regions may change the local and
global epidemiology of sequence type prevalence, and potentially even the emergence
of new types that hold considerable epidemiological and public health significance, as
they could lead to variations in characteristics, including disease severity, transmission
dynamics and treatment strategies.

Adding onto the aforementioned areas of changes in sequence type prevalence trends
and the possible emergence of new sequence types with more virulent characteristics, the
presence and spread of these multidrug-resistant strains could further limit the available
therapeutic options [25]. A study was conducted recently to understand the global burden
of antimicrobial resistance by examining 23 pathogens and 88 pathogen–drug combina-
tions across 204 countries and territories. This study estimated that globally in 2019, a
median of 1.27 million deaths (with a 95% uncertainty interval of 0.911–1.71 million) was
directly attributed to resistance, and 4.95 million deaths (3.62–6.57 million) were associated
with bacterial antimicrobial resistance [42]. Additionally, the loss of capital stemming
from antimicrobial resistance is projected to range from USD 300 billion to USD 1 trillion
worldwide by the year 2050 [43].

Six of the isolates exhibited phenotypic antimicrobial resistance to colistin, includ-
ing three ST36 chicken isolates harboring the mcr1 gene (Figure 4C). Additionally, these
three isolates also carried the plasmid lncX4 (Figure 2C), which is associated with the
dissemination of mcr1 gene in Enterobacterales [44]. The presence of the mcr1 gene has
also been reported in other S. Typhimurium studies involving clinical samples [45], pork
offal [46], and an ST19 isolate recovered from a healthy pig in South Korea [47]. As colistin
is considered as one of the last-resort drugs, the emergence of resistance to this antibiotic
raises concerns for public health.

A high rate of tetracyclines resistance was observed among the ST36 isolates (Figure 3A).
Additionally, 35.3% (12/34) of the ST19 isolates carried phenotypic resistance to tetracy-
clines, which is a rate significantly higher when compared to isolates of the same sequence
type. Consistent with our observations, high resistance against tetracyclines has also been
reported in other studies [20,26]. These findings warrant attention due to the widespread
use of tetracyclines in both human healthcare and animal husbandry. This is attributed to
their extensive antibacterial effectiveness, economical production, and absence of severe
adverse effects [48,49]. Taken together, this emphasizes the critical importance of close
surveillance of the usage and antimicrobial resistance trend for these antibiotics.

Through whole-genome sequencing, we were able to perform SNP-based phyloge-
netic analysis to achieve higher resolution, providing greater granularity in differentiating
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isolates of the same sequence type into groups of by their genetic relatedness. The close
phylogeny of the clinical, chicken and farm and slaughterhouse environment ST36 isolates
(Figure 5B) suggest the possibilities of common chains of transmission and zoonotic trans-
mission. The phylogenetic analysis revealed genetically similar isolates across different
sources, suggesting ongoing local transmission events, although the direction of transmis-
sion remains to be elucidated. Additionally, the genomic findings presented suggest that
chicken meat may play a significant role in the epidemiology of S. Typhimurium in Singa-
pore. Taken together, these findings highlight the importance of adopting a One Health
approach in developing effective control strategies to reduce S. Typhimurium transmission.

Our study is, however, limited by the number of isolates analyzed. A more comprehen-
sive analysis could be achieved by incorporating more isolates over an extended research
period. Additionally, including human isolates and data from sporadic cases and outbreaks
would contribute to a more robust understanding of the epidemiology of salmonellosis.

5. Conclusions

S. Typhimurium is one of the most widespread Salmonella serovars reported globally.
This study characterized 67 isolates from human, food, and farm and slaughterhouse
environments in Singapore, identifying two predominant sequence types, ST19 and ST36.
The isolates of each sequence type exhibited distinct plasmid and antimicrobial resistance
profiles. Furthermore, phylogenetic analysis revealed a close genetic relationship between
the isolates from human and chicken and farm and slaughterhouse environments, implying
possible transmission routes. These findings underscore the importance of integrated
surveillance efforts across One Health sectors for gaining comprehensive epidemiological
insights to inform food safety and public health measures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms12091912/s1, Figure S1: Proportion of ST19 and
ST36 isolates with detection of each plasmid; Figure S2: Phylogenetic relationship of S. Typhimurium
isolates.
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