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Abstract: Brazil is one of the countries most affected by COVID-19, with the highest number of
deaths recorded. Brazilian Health Institutions have reported four main peaks of positive COVID-
19 cases. The last two waves were characterized by the emergence of the VOC Omicron and its
sublineages. This study aimed to conduct a retrospective surveillance study illustrating the emergence,
dissemination, and diversification of the VOC Omicron in 15 regional health units (RHUs) in MG,
the second most populous state in Brazil, by combining epidemiological and genomic data. A total
of 5643 confirmed positive COVID-19 samples were genotyped using the panels TaqMan SARS-
CoV-2 Mutation and 4Plex SC2/VOC Bio-Manguinhos to define mutations classifying the BA.1,
BA.2, BA.4, and BA.5 sublineages. While sublineages BA.1 and BA.2 were more prevalent during
the third wave, BA.4 and BA.5 dominated the fourth wave in the state. Epidemiological and viral
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genome data suggest that age and vaccination with booster doses were the main factors related to
clinical outcomes, reducing the number of deaths, irrespective of the Omicron sublineages. Complete
genome sequencing of 253 positive samples confirmed the circulation of the BA.1, BA.2, BA.4, and
BA.5 subvariants, and phylogenomic analysis demonstrated that the VOC Omicron was introduced
through multiple international events, followed by transmission within the state of MG. In addition to
the four subvariants, other lineages have been identified at low frequency, including BQ.1.1 and XAG.
This integrative study reinforces that the evolution of Omicron sublineages was the most significant
factor driving the highest peaks of positive COVID-19 cases without an increase in more severe cases,
prevented by vaccination boosters.

Keywords: VOC Omicron; SARS-CoV-2; subvariants; epidemiological scenario; genomic surveillance

1. Introduction

In Brazil, from January 2020 to June 2023, there were nearly 38 million confirmed
cases and 700,000 deaths [1]. The epidemic’s progression in Brazil has been marked by
four significant waves, each characterized by a continuous rise in case numbers, leading
to new epidemiological situations [1]. These waves or peaks of infections are linked
to the emergence of new variants that provide the virus with certain advantages, such
as increased transmissibility, virulence, or an improved ability to evade the immune
system [2–4].

The initial wave peaked in July 2020, resulting from the virus’s introduction in Brazil
and the circulation of lineages B.1.1.28 and B.1.1.33 [5,6]. The second wave, reaching its peak
in March 2021, had significant repercussions, particularly in Amazonas state, attributed
to the emergence of the Gamma variant, designated a “variant of concern” (VOC) [7]. In
April 2021, the Delta variant surfaced in the country, eventually supplanting the Gamma
variant and becoming the predominant strain nationally by November 2021 [8,9]. Notably,
despite the introduction of the Delta variant amidst high immunization rates (both natural
and vaccine-induced), it did not lead to a substantial surge in new cases [9]. Consequently,
by the beginning of 2021, Brazil reported the lowest number of new cases and deaths
up to that point, which contributed to the relaxation of preventive measures, creating a
conducive environment for the rapid spread of the Omicron VOC upon its introduction in
December [10].

The third wave peaked in January 2022 following the introduction of Omicron
BA.1 [11,12]. Since this subvariant emerged, the virus has undergone further evolution,
resulting in numerous descendant and recombinant lineages associated with the in-
creasing number of COVID-19 cases. The epidemiological situation experienced further
changes from March 2022 onward due to the circulation of the BA.2 sublineage. Despite
the continued circulation of new lineages, the number of cases and deaths decreased
due to the increase in vaccination rates in Brazilian cities [12,13]. After this period, two
new waves altered the epidemiological landscape once more, driven by the circulation
of new sublineages of the Omicron variant. The fourth wave, starting in June 2022,
was caused by the circulation of the BA.4 and BA.5 sublineages [14]. The fifth wave
commenced in November 2022 with the introduction of recombinant lineages BQ.1 and
BE.9 [14], followed by the circulation of the XBB variant, a recombinant of the Omicron
variant, giving rise to other subvariants. Currently, the variant of interest (VOI) JN.1
and its sublineages, the recombinant XDR, and the VOI XBB.1.5 prevail in the Brazilian
epidemiological scenario [15].

Genomic monitoring of circulating viruses becomes essential to investigate the variants’
diversity, distribution, and evolutionary patterns, estimate transmission rates, and assist
in tracking outbreaks. This information, when associated with epidemiological data,
can provide strategic tools for public health authorities and influence decisions towards
combating COVID-19. In addition, genomic information is remarkably important during
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periods of intense viral circulation and rapid increase in the number of cases, which are
conducive to the emergence and selection of new mutations and possibly new variants
associated with more severe cases and vaccine escape [10,12].

In Minas Gerais (MG) state, grappling with the spread of SARS-CoV-2 and the circu-
lation of VOCs have posed a significant challenge for public health policies addressing
the COVID-19 pandemic. As one of the country’s most populous and expansive states,
MG has faced unique difficulties. Its extensive population, vast territory, and numerous
international passenger destinations throughout the pandemic have made it a complex
arena for managing the impact of COVID-19. Additionally, the state ranked as the third
most affected during the COVID-19 pandemic [5,16]. Furthermore, MG is the Brazilian
state with the highest number of municipalities (853 counties), making it an excellent model
for evaluating the spread of the COVID-19 epidemic to inland areas. Herein, we present a
retrospective study showing the dissemination and diversification of VOC Omicron in MG,
combined with epidemiological and genomic data.

A total of 5643 samples from 15 regional health units (RHUs) (covering almost 54% of
the state) were genotyped during the Omicron waves. An increase in the number of cases
was observed near the introduction date of new Omicron lineages. However, despite the
rise in cases, the number of deaths did not increase, which may be attributed to vaccination
and booster doses in the population. A total of 253 new genomes were used to estimate the
introduction date of the four subvariants in the state. Different lineages were identified,
indicating the diversity of Omicron VOC lineages circulating in the state. The results found
in this study enable public health entities to monitor the spread of COVID-19 in the state
and facilitate decision making to contain its advancement.

2. Materials and Methods
2.1. Genomic Surveillance Observatory and Study Design

The Observatório de Vigilância Genômica do Estado de Minas Gerais (OViGen) is a real-time
monitoring project of circulating SARS-CoV-2 in MG. The OViGen is a partnership among
Minas Gerais State Health Secretary (SES/MG) and other public and private laboratories:
the state reference laboratory Fundação Ezequiel Dias (FUNED), Laboratório de Biologia
Integrativa (LBI), and The Núcleo de Ações e Pesquisas em Apoio Diagnóstico (NUPAD) from
the Universidade Federal de Minas Gerais (UFMG).

We conducted a longitudinal study from 10 October 2021 to 28 August 2022 using
nasopharyngeal swabs with positive SARS-CoV-2 RT-qPCR samples (between the epidemi-
ological weeks 41/2021 and 33/2022) collected in different regional health units (RHUs).
Fifteen of the twenty-eight RHUs of MG state were included in our study. The RHUs Belo
Horizonte, Coronel Fabriciano, Diamantina, Januária, Juiz de Fora, Manhuaçu, Montes
Claros, Pedra Azul, Pirapora, Pouso Alegre, São João Del Rei, Teófilo Otoni, Uberaba, Unaí,
and Varginha were selected due to their geographic location, since they can border other
states or have a large population flow or transport traffic (Figure 1A).

Our study was approved by the Research Ethics Committee (CAAE: 33202820.7.1001.5348).

2.2. Genotyping and SARS-CoV-2 Whole-Genome Sequencing

A total of 5,643 positive samples collected between the 41st (2021) and 33rd (2022) EW
were genotyped using specific primers for mutations localized in the Spike gene. At the
beginning of our study, the mutations N501Y and L452R, from the TaqMan SARS-CoV-2
Mutation Panel (Thermo Fisher, Waltham, MA, USA), were used to classify samples as Delta
variant (see [9]). Samples not amplified for the L452R position were also tested for specific
mutations found in the Omicron variant. In that case, the genotyping was conducted
using the 4Plex SC2/VOC Bio-Manguinhos (Fiocruz, Rio de Janeiro, RJ, Brazil) kit, with
the primer for the Spike polymorphisms DelH69 and V70 [17], capable of distinguishing
between the Omicron sublineages BA.1 (deleted) and BA.2 (nondeleted).
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Figure 1. The epidemiological status of SARS-CoV-2 in the state of MG. (A) Regional health units
(RHUs) from MG state sampled in our study. Two RHUs were sampled only in the third wave (orange
color). (B) Number of cases, deaths, and vaccination status per epidemiological week (EW) in MG
during the study period. (C) Samples retrieved by RHUs with SARS-CoV-2 lineages classification by
on our genotyping strategy.

One sample by region and by EW was selected for whole-genome sequencing. All
DNA libraries were assembled using the QIAseq SARS-CoV-2 Primer Panel—QIAGEN
(Hilden, Germany), with the ARTIC primer pools: V4.0 and V4.1 [18,19], quantified by the
QIAseq Library Quant Assay kit—QIAGEN and sequenced on the MiSeq (Illumina, San
Diego, CA, USA) platform with v3 (600 cycles) cartridges.

All sequencing data went through a custom pipeline for processing and to generate
the consensus genome as described by [20]. Low-depth bases (less than 20× sequencing
depth) were not considered for further analysis as well as sequences with less than 70%
genome coverage. Sequences that fulfill all requirements were classified using Pangolin
v.4.1.1 [21] or Nextclade v.2.4.2 [22] tools.

2.3. Phylogeographic Reconstructions

In this study, we constructed five different datasets to confirm lineage classification
and further contextualize the dynamics of the introduction of Omicron BA.1 (Nextclade
21K), BA.2 (Nextclade 21L), BA.4 (Nextclade 22A), and BA.5 (Nextclade 22B) clades in MG.
The first dataset comprised all genomes generated in our study and all public reference
genomes classified by NextStrain as Omicron clades (accessed on 2 January 2023), totaling
1750 genomes. This dataset was aligned using Minimap2 [23], and a maximum likelihood
phylogeny was generated in IQ-tree v2.0.3 [24] with the GTR + F + I + G4 nucleotide
substitution model and the “---polytomy” flag to collapse short branches. The tree was
rooted in the oldest sequence present in the dataset.

The other datasets pertained to the dynamics of the introduction of these subvariants
in MG. First, for each dataset, we included all BA.1, BA.2, BA.4, or BA.5 sequences from



Microorganisms 2024, 12, 1745 5 of 15

Nextstrain builds (accessed on 23 May 2023: BA.1 = 4968, BA.2 = 3443, BA.4 = 2617, and
BA.5 = 6156). Second, we selected random genomes from each Brazilian state (26 states)
proportionally to the number of estimated Omicron weekly cases during our study pe-
riod [9]. The number of cases per week from each state was collected from the https:
//opendatasus.saude.gov.br database (accessed on 9 November 2023). Whenever sampling
gaps were detected, all available data were included. The number of genomes and cases, as
well as the proportion of Omicron cases each week, are available in Supplementary Table S1.
The third step for phylogenetics was to construct maximum likelihood phylogenies for
each subvariant dataset, as described previously [2,9]. Each tree was submitted to TempEst
v1.5 [25] to identify genomes with inconsistent temporal signals. Outliers with residuals
deviating 1.5-fold from the interquartile range were excluded. The genomes with consistent
temporal signals were used in the next steps of the analysis.

The fourth step involved using the BEAST Thorney for molecular clock phylogenetic
reconstruction. The analysis was performed considering the replacement model HKY + G4,
a strict molecular clock model, and the previous skygrid tree prior. For each dataset,
multiple Markov chain Monte Carlo (MCMC) runs were performed with 200 million
generations, sampling every 20,000 steps, removing 10% of chains as burn-in. The software
Tracer v1.7.1 was used to evaluate the convergence of the tree (effective sample size > 200).
Logs and trees were combined with logcombiner.

The final step was to perform phylogeographic reconstruction of each sublineage (BA.1,
BA.2, BA.4, and BA.5) in MG. This was carried out using a discrete asymmetric model
with nine different states: four Brazilian geographic regions (north, northeast, midwest,
and south), and four states from the southeast region (Espírito Santo, Minas Gerais, Rio de
Janeiro, and São Paulo) and international sequences from the Nextclade. For each dataset,
independent analyses were carried out until a good convergence was achieved. Maximum
clade credibility trees were inferred for all datasets with TreeAnnotator v1.10.2.

2.4. Epidemiological and Clinical Data Analysis

Epidemiological data were obtained from SES-MG using the databases E-SUS, Sistema
de Informações de Vigilância Epidemiológica (SIVEP-gripe), and Sistema de Informações do
Programa Nacional de Imunizações (SI-PNI) in compliance with patient data protection laws.
Data related to sex, age, clinical outcome, vaccine strategy, and vaccination doses and
dates were used in our analyses. The number of COVID-19 cases, deaths, and vaccinations
were obtained from coronavirus https://coronavirus.saude.mg.gov.br/dadosabertos and
https://saude.gov.br (accessed on 10 May 2023).

3. Results
3.1. Epidemiological Status of SARS-CoV-2 in MG State

We monitored the epidemiological situation of COVID-19 in 15 RHUs of MG from EW
41 (2021) to EW 33 (2022) (Figure 1A). In EW 41, the number of vaccine doses administered
was the highest in the entire study period. After that week, the number of cases and
deaths was the lowest in the series studied. By that time, the Delta lineage was the most
prevalent described in MG. However, in the last two EWs of 2021, we observed an increase
in the number of cases and deaths, which may be related to the emergence of BA.1 in MG.
Similarly, another increase in cases can be correlated with the appearance of BA.4 and
BA.5 in the state (Figure 1B). During our study, we aimed to retrieve as much data and as
many samples as possible per RHU and EW in MG to assess the dispersion of Omicron
subvariants. However, in some RHUs, it was not possible to find samples in all EWs. The
RHU with the highest number of samples was Belo Horizonte, the state capital, while other
RHUs, such as Januária and São João Del Rei, had few samples evaluated (Figure 1C).
The absence of samples in some RHUs per EW may be due to a reduction in COVID-19
diagnoses and the increase in vaccination rates.

https://opendatasus.saude.gov.br
https://opendatasus.saude.gov.br
https://coronavirus.saude.mg.gov.br/dadosabertos
https://saude.gov.br
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Moreover, there was a variation in number of samples per EW (Figure 1C), with the
highest number of samples found in EW 1 to 8 of 2022. This pattern corresponds to the
confirmed cases curve, with the highest number of samples being collected during the
period of the highest number of cases. We also observed that these numbers of samples
varied by RHU (Figure 1A), with the Belo Horizonte RHU having the highest number of
samples (32.9%). The RHUs of Januária, Pirapora, São João Del Rei, Unaí, and Varginha
had fewer than 100 samples analyzed.

3.2. Delta to Omicron Replacement and Its Sublineages in MG

Our results showed a shift from Delta to Omicron in MG during the EWs 50/2021
to 01/2022 (Figure 2A). The first Omicron samples were identified in EW 50/2021 in the
RHUs of Belo Horizonte, Juiz de Fora, and Pouso Alegre, suggesting that the introduction
of the variant occurred during this period in the state. In the following weeks (51/2021 to
01/2022), there was a turnover between the Delta and Omicron variants. In EW 52/2021,
the VOC Omicron accounted for 70% of the samples classified in the RHU Belo Horizonte,
90% in the RHU Varginha, and 100% in other RHUs with positive samples during this
period (Figure 2B). In the EW 03/2022, the VOC Omicron accounted for 100% of the
positive COVID-19 cases in MG (Figure 2A). The increase in Omicron cases between EWs
50/2021 and 01/2022 coincides with the change in the epidemiological scenario depicted
in Figure 1B.
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Figure 2. Distribution of SARS-CoV-2 lineages in MG. (A) Replacement of Delta to Omicron in MG
state. The color orange represents Delta, while purple represents VOC Omicron. (B) Replacement
period between Delta and VOC Omicron by RHU per EW. Blank spaces indicate the absence of
samples in that RHU and EW. The orange color represents the VOC Delta, while the purple represents
VOC Omicron. (C) Frequency of the H69/V70 deletion present in the samples investigated throughout
the study. Transition periods between the predominance of BA.1 to BA.2 and from BA.2 to BA.4/BA.5
are indicated by the overlapping colors.
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After Omicron became prevalent in all RHUs analyzed, new mutations and the emer-
gence of subvariants were recorded. To identify the circulation of subvariants in the state,
we performed genotyping for the presence of VOC Omicron-specific mutations. During
EWs 50-08, the BA.1 subvariant was predominant throughout the state. In the first EWs
of 2022, the BA.2 subvariant was also identified. However, this subvariant was detected
in 100% of the samples only in EW 14 (April 2022) and continued to be detected, albeit at
lower rates until EW 25, alongside other subvariants. From EW 25 onwards, an increase in
the frequency (above 80%) of subvariants BA.4 and BA.5 was observed until the end of the
study period. BA.1 and BA.2 circulated for more than 18 weeks in the state, making them
the subvariants with the longest circulation period among Omicron lineages (Figure 2C).
Information about each genotyped sample is available in Supplementary Table S2.

3.3. Epidemiological Scenario during the Turnover of Variants and Subvariants

We had access to the clinical outcomes of 3481 patients whose samples were genotyped
and sequenced in our study. Of these, 591 were classified as VOC Delta, 351 as BA.2, and
2493 as possible BA.1, BA.4, or BA.5 (referred as “no BA.2” in Table 1). The majority of
samples were from females (n = 2.029—59%) and classified in subvariants BA.1, BA.4, and
BA.5. The majority of cases evaluated were aged between 30 and 60 years (n = 1.776—52%),
followed by the group aged 0 to 29 years (n = 885—26%) concentrated in the group of
subvariants BA.1, BA.4, and BA.5 (“no BA.2”). The group with the highest death rate was
from subvariants BA.1, BA.4, and BA.5 (“no BA.2”) (n = 45—1.8%), followed by VOC Delta
(n = 41—6.9%). A summary of epidemiological data evaluated is available in Table 1.

Table 1. Number of SARS-CoV-2 cases classified by sex, age, clinical outcome, and subvariant.

Lineages

Characteristic Overall. N = 3.435 No BA.2. N = 2.493 BA.2. N = 351 Delta. N = 591 p-Value2

Sex 0.152
Female 2.029 (59%) 1.491 (60%) 210 (60%) 328 (55%)
Male 1.406 (41%) 1.002 (40%) 141 (40%) 263 (45%)
Death for SARS 86 (2.5%) 45 (1.8%) 0 (0%) 41 (6.9%) <0.001
Age groups 0.060
>60 774 (23%) 530 (21%) 95 (27%) 149 (25%)
0–29 885 (26%) 657 (26%) 84 (24%) 144 (24%)
30–60 1.776 (52%) 1.306 (52%) 172 (49%) 298 (50%)

Age groups

Characteristic Overall. N = 3.482 0–29. N = 891 30–60. N = 1.798 >60. N = 793 p-Value2

Sex <0.001
Female 2.055 (59%) 525 (59%) 1.127 (63%) 403 (51%)
Male 1.427 (41%) 366 (41%) 671 (37%) 390 (49%)
Death for SARS 86 (2.5%) 1 (0.1%) 13 (0.7%) 72 (9.1%) <0.001

n (%); Pearson’s Chi-squared test.

Regarding the clinical outcome, most genotyped cases recovered from COVID-19, with
84.23% recovered without any worsening, 13.27% recovering despite having severe acute
respiratory syndrome (SARS), and 2.49% being fatal cases (Figure 3A). The main factor
contributing to clinical outcome was age. Most cases classified in the recovered group
that developed SARS were individuals aged 61 or over (n = 301—65%), and individuals
who died (n = 73—83.9%). Furthermore, most individuals aged 61 or older who died had
received at least two doses of vaccine (n = 48—55.1%) (Figure 3B). Nevertheless, the number
of deaths was small compared to the number of samples evaluated (2.5%), indicating that
vaccination effectively reduces the number of deaths and the development of severe clinical
conditions, even in the presence of Omicron subvariants.
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3.4. Omicron Lineages in Circulation in MG State

A total of 253 new whole genomes were generated in our study. Genome coverage
varied from 66.35% to 99.75% (median = 95.51%), and mean sequencing depth varied
from 3.418× to 900.388× (median = 448.802×). According to Pangolin, Nextclade, and our
phylogenetic analysis (Figure 4A), we identified 126 samples from 10 different lineages from
21K clade (Omicron BA.1), 38 samples from 5 different lineages from 21L clade (Omicron
BA.2), 8 samples from 3 different lineages from 22A clade (Omicron BA.4), and 76 samples
from 2 distinct lineages from clade 22B (Omicron BA.5). Additionally, three samples were
classified as recombinant (XAG lineage). Metrics, lineage classification for each sample,
and GISAID accession number are available in Supplementary Table S3.

The genomic diversity of Omicron has been reported in many studies. Nevertheless,
few studies have demonstrated the diversity of synonymous mutation in this variant. Con-
sidering our dataset (n = 253), we analyzed this diversity and categorized the synonymous
mutations into two groups (Figure 4B). The group of low-frequency mutations (purple
circles) and high-frequency mutations (orange circles). In total, 858 mutations were found,
although 30 synonymous mutations were present at high frequency in all samples evalu-
ated. Four synonymous mutations were found in all assessed genomes. These mutations
are found in the ORF1ab genes (C3037T, C10029T, and C14408T) and Spike (A23403G). The
results indicate that, despite the high diversity of synonymous mutations, few were fixed
across all lineages.

3.5. Omicron Introduction in MG State

Bayesian analyses based on molecular clocks estimated the origin of each of the
four Omicron subvariants evaluated in our study (see original trees in Supplementary
Files S1–S4). According to our analysis, BA.1 appeared worldwide in late July 2021 (95%
HPD: 30 May 2021 to 3 September 2021) and was described circulating in various locations
in Brazil by November. BA.2 appeared worldwide in early July 2021 (95% HPD: 27 May
2021 to 10 October 2021) and was circulating in the country by November. BA.4 appeared
worldwide in early November 2021 (95% HPD: 15 April 2021 to 23 January 2022), and by
July 2022, this subvariant was already circulating in Brazil. BA.5 emerged on 31 November
2021 (95% HPD: 5 June 2021 to 21 April 2022), and by July 2022, it was also already
circulating in Brazil (Supplementary Files S1–S4).
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Figure 4. Diversity of Omicron subvariants in MG state. (A) Maximum likelihood phylogeny using
the VOC Omicron NextStrain Global dataset as reference. The circles represent the genomes generated
in our study (n = 253) according to the Omicron wave which they were collected. Each Omicron
sublineage (BA.1, BA.2. BA.4, and BA.5) is represented by a different color. (B) Synonymous mutation
profile of the sequenced genomes. More than 858 mutations were identified. Orange circles represent
synonymous mutations found in at least 70% of the genomes, with only four presented in all genomes
(100%). The mutations are labeled next to the circles. Purple circles represent mutations found at low
frequency in the genomes generated. The gray shading indicates the position of the Spike gene in the
SARS-CoV-2 genome.
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Our phylodynamic analysis demonstrates that the emergence of Omicron subvariants
was primarily driven by international events of importation in MG. For instance, more than
150 events were reported in our phylodynamic analysis. BA.1 introductions in MG were
mainly due to international events (28 events), followed by introductions from the state
of São Paulo (SP) and the northern region of Brazil (15 and 10 introductions, respectively).
BA.2 introductions in MG were predominantly from international events (27 events),
followed by the state of SP (12 events). BA.4 introductions in MG were also mainly
from international sources (30 events), with additional introductions from SP and the
northern region of the country (15 and 10 events, respectively). BA.5 was introduced
into MG through multiple events, especially from international sources (35 events), and
less frequently from the south and northeast regions (eight and four events, respectively).
MG export events were also detected, mainly to the Brazilian midwest region (Figure 5).
Our results reinforce that VOC Omicron was introduced by multiple international events,
followed by interstate transmission. Furthermore, except for the BA.5 subvariant, MG did
not play a significant role as an Omicron exporter to other Brazilian regions, despite its
proximity to several states.
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Figure 5. Correlation plot showing the profile of importations and exportation events for each
Omicron subvariants (BA.1, BA.2, BA.4, and BA.5) in the state of Minas Gerais as evaluated in our
study. Blue colors represent a lower number of events, while red colors represent a higher number
of events.
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4. Discussion

Genomic surveillance systems have been used throughout all waves of the COVID-19
pandemic to monitor the emergence, growth, and displacement of SARS-CoV-2 variants
and lineages [26]. Tracking SARS-CoV-2 variants allowed for near-real-time monitoring
of circulation and changes in the number of cases and/or deaths in various regions of the
world [27]. Brazil was one of the countries most affected by COVID-19; however, it also
had one of the highest vaccination rates against the disease [28,29]. For instance, while the
VOC Delta led to an increase in cases and deaths globally, Brazil experienced a different
trend, with significant reductions in cases and deaths due to vaccination [9]. In late 2021,
another VOC emerged in South Africa and drew attention from various organizations due
to its high number of mutations and the subsequent rise in cases [30]. The VOC Omicron
was first reported in Brazil in early November 2021 (GISAID—accessed on 19 December
2023) in the state of Rio Grande do Sul, the southern region of the country. Following its
introduction, there was a significant increase in COVID-19 cases. In this study, we aimed to
evaluate the spread of VOC Omicron in the state of Minas Gerais (MG), one of the most
populous and interconnected states in the country (southeast region).

In MG, the rapid replacement of Delta VOCs by Omicron occurred at the end of 2021
and the beginning of 2022. The variant shift caused an increase in the number of COVID-19
cases, with EW 03 in which the Omicron VOC reached 100% of cases across the state.
However, the number of deaths did not show substantial change, which may be related to
the state’s vaccination profile, with nearly 90% of the population having received at least
two doses of the vaccine [31].

Omicron stood out for its remarkable speed of dispersion and higher rate compared to
previous variants, due to a greater number of mutations, 30 of which are in the S protein
alone [32,33]. Consequently, several subvariants of Omicron emerged and were described
in different parts of the globe [33,34]. To monitor the appearance of different Omicron
lineages in MG, we employed a genotyping strategy to classify the samples as BA.1, BA.2,
and then BA.4/BA.5 subvariants. The BA.1 was predominant for the longest period in
the state. BA.2, while detected early in the year in MG, only saw a significant in cases in
April (EW 14), as reported in a previous study [2]. In the middle of the year (EW 25), MG
experienced another surge in cases, associated with the high frequency of two subvariants
(above 80%), BA.4 and BA.5. Despite the different subvariants described in MG, the number
of deaths and severe complications, such as SARS, remained low throughout the study
period. This could be attributed to the vaccination status of the MG population, with the
majority of cases being vaccinated with at least one booster dose (n = 1635—50%).

Our genotyping approach was limited in distinguishing BA.4 and BA.5 subvariants
due to specific primers targeting mutations shared by both subvariants. Therefore, we
performed whole-genome sequencing of a subset of positive samples from the beginning
of our study, generating a total of 253 genomes. Most genomes were classified as BA.1,
BA.2, BA.4, or BA.5, but three recombinant samples were reported between BA.1 and BA.2.
The recombinant XAG has already been described in previous studies, circulating at low
frequency in MG [2,35].

Given the extensive repertoire of mutations in Omicron, we analyzed the frequency of
synonymous mutations in all genomes generated in our study. More than 250 mutations
were found, but only four were fixed in the genomes evaluated. Synonymous mutations do
not alter the encoded amino acid and are typically not considered for variants and lineages
classification. However, recent studies have suggested that these mutations may play a
critical role in the virus’s evolution, enhancing its adaptation to host codons and increasing
the efficiency of protein synthesis used in viral particles during infection [36,37]. Previous
studies have demonstrated that mutations in VOC Omicron may contribute to vaccine
resistance, monoclonal antibodies evasion, and increased transmissibility [38,39].

COVID-19 vaccines facilitate the production of neutralizing antibodies and may also
increase titers in individuals with a history of infection. As neutralization titers decrease
over time and protective immunity acquired from a prior SARS-CoV-2 infection is not
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assured with the emergence of Omicron, concerns about vaccine effectiveness have risen.
Studies have observed a decrease in neutralizing antibodies, suggesting reinfections and
reduced effectiveness and treatment with monoclonal antibodies and vaccine. Nevertheless,
vaccines continue to provide protection against moderate and severe cases [40,41]. In Brazil,
the reinfection rate during Omicron wave was six times higher than in previous waves
(compared with the variants Gamma, Zeta, and Delta). This highlights the need for
continuous booster doses to enhance and prolong protection against the disease. The age
group between 25 and 60 years had the highest frequency of reinfections, potentially due
to the vaccination schedule and virus exposure [42].

Our phylogenetic analyses revealed the influence of the state of São Paulo (SP), and
international introduction events in the establishment and spread of Omicron subvariants
in MG. For BA.1 and BA.2, a previous study [2] also found SP and international events to
be crucial for the establishment of these variants in MG. The increase in people movement
between countries and between states through various means of transportation is a major
factor facilitating the spread and establishment of distinct lineages in MG, along with
the reduction in individual protection measures such as the mandatory mask usage and
frequent use of 70% ethanol in public environments. In this context, genomic surveillance
is a valuable tool for monitoring the lineage establishment and spread in regions with high
traffic of people, goods, and services, such as the case of MG.

Our study has some limitations. It was not possible to characterize samples from all
EWs in all RHUs used. Additionally, the synonymous mutations profile was based on a
smaller fraction of genomes compared to those available in public databases. Despite these
limitations, the integration of epidemiological and genomic surveillance enabled real-time
monitoring of Omicron subvariants in MG. The results described in our study were also
shared in real time with the Minas Gerais State Health Department.

5. Conclusions

Our study assessed the epidemiological situation based on genomic data in 15 RHUs
in the state of Minas Gerais through PCR-genotyping, whole-genome sequencing, and
phylodynamics analysis. A total of 3481 samples were genotyped, allowing us to monitor
almost in real time the detection of the first cases of each Omicron subvariants and their
dissemination throughout the state (BA.1, BA.2, BA.4, and BA.5). Epidemiological data
showed that most cases had been vaccinated with at least two doses, which may be
associated with a reduction in the number of deaths and the development of severe cases
of the disease. We sequenced 253 new genomes, revealing the presence of other lineages at
low frequency, as well as the genomic diversity of more than 250 mutations in the Omicron
subvariants. Finally, the phylogenetic analysis indicated that international events were
primarily responsible for the introduction and dispersion of Omicron subvariants in the
state. The results of this retrospective study are essential for understanding the evolutionary
dynamics of SARS-CoV-2 and for establishing public health policies and epidemiological
interventions in the state.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12091745/s1, Supplementary Table S1. Dataset
composition for each phylogeographic inference. The inference for each subvariant (BA.1, BA.2,
BA.4, and BA.5) was made using a proportional set of sequences of each Brazilian geographic region
and the genomes generated in our study. Supplementary Table S2. Genotyping and epidemiolog-
ical information about the samples used in our study. Supplementary Table S3. Sample informa-
tion, metrics sequencing, and GISAID accession number for the genomes generated in our study.
Supplementary File S1. BA.1 phylogeographic inference. Supplementary File S2. BA.2 phylogeo-
graphic inference. Supplementary File S3. BA.4 phylogeographic inference. Supplementary File S4.
BA.5 phylogeographic inference.
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