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Abstract: Drug prediction and treatment using bioinformatics and large-scale modeling have emerged
as pivotal research areas. This study proposes a novel multi-level collaboration framework named Syn-
COM for feature extraction and data integration of diseases and drugs. The framework aims to explore
optimal drug combinations and interactions by integrating molecular virtuality, similarity clustering,
overlap area, and network distance. It uniquely combines the characteristics of Chinese herbal
medicine with clinical experience and innovatively assesses drug interaction and correlation through
a synergy matrix. Gouty arthritis (GA) was used as a case study to validate the framework’s reliability,
leading to the identification of an effective drug combination for GA treatment, comprising Tamaricis
Cacumen (Si = 0.73), Cuscutae Semen (Si = 0.68), Artemisiae Annuae Herba (Si = 0.62), Schizonepetae Herba
(Si = 0.73), Gleditsiae Spina (Si = 0.89), Prunellae Spica (Si = 0.75), and Achyranthis Bidentatae Radix
(Si = 0.62). The efficacy of the identified drug combination was confirmed through animal experiments
and traditional Chinese medicine (TCM) component analysis. Results demonstrated significant
reductions in the blood inflammatory factors IL1A, IL6, and uric acid, as well as downregulation of
TGFB1, PTGS2, and MMP3 expression (p < 0.05), along with improvements in ankle joint swelling
in GA mice. This drug combination notably enhances therapeutic outcomes in GA by targeting key
genes, underscoring the potential of integrating traditional medicine with modern bioinformatics for
effective disease treatment.

Keywords: formula design; drug combination; similarity clustering; artificial intelligence; synergy
index; gouty arthritis

1. Introduction

The identification of medical diagnostic and prognostic markers, as well as the screen-
ing of possible drug candidates, have greatly increased in recent decades due to the integra-
tion of multi-omics, various AI methods, and data-driven technologies [1,2]. Researchers
have devised various computational methods such as machine learning algorithms, deep
learning, virtual screening techniques, pharmacophore modeling, knowledge graphs, and
advanced computing technologies and software to enhance the identification of potential
drug candidates [3,4]. These methods are necessary due to the intricate, diverse, and
multi-dimensional nature of disease-related datasets [5]. Furthermore, these methods are
fundamental for comprehending the structural properties of certain molecules and to reveal
the biological functions of target genes. However, these methods primarily depend on
processing large raw-data inputs to predict drug combinations based on dose effects. They
are widely used in Western medicine and have also been shown to be effective in predict-
ing the results of Chinese herbal therapies [6,7]. TCM uses the term “Fangji” to describe
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prescriptions for herbal entities, or formulas, which can have coordinating or synergistic
effects when several herb medications are combined. These prescriptions contain diverse
active chemical components that target various therapeutic sites, potentially serving as
key factors in disease treatment. Therefore, using various bioinformatics techniques, we
can screen and predict the treatment of ailments with TCM. That enables us to discover
new combinations or pairs of TCMs that are different from those mentioned in the ancient
literature and frequently used in clinical practice. Drug prediction is crucial for improving
the efficiency of drug discovery by minimizing resource consumption, and it is particularly
important for the development of compound herbal formulae [8].

Gouty arthritis (GA) is a widespread metabolic condition characterized by joint in-
flammation that is closely linked to hyperuricemia [9]. Epidemiological data show that the
occurrence of GA in China increases annually; genetic factors as well as age, gender, and
socioeconomic status contribute to this [10]. Although acute episodes normally recover
spontaneously within 7–10 days, repeated attacks, combined with long-term accumulation
of urate crystals, may trigger permanent bone damage that leads to disability and has a
substantial impact on the quality of life of patients. Existing clinical interventions primarily
target the reduction of pain and inflammation related to this condition. While colchicine
along with nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin, cele-
coxib, or meloxicam are commonly used for management, long-term use may have adverse
effects on liver or kidney function [11]. Consequently, investigating new pharmacother-
apeutic drugs is a different strategy meant to improve the outcome treatment for GA
patients. Traditional Chinese medicine (TCM) has a long history of effectively treating
GA by utilizing a comprehensive system that includes identifying the causes, establishing
differential diagnoses, and implementing pattern-based interventions [12]. This approach
provides significant relief from patient discomfort through holistic adjustments that com-
bine internal and external treatment methods. TCM also has a superior safety profile and
minimal adverse effects compared with conventional treatments for GA [13].

Previous bioinformatics analyses have discovered diverse immune cell characteristics
and potential mechanisms of action in GA [14,15]. Nevertheless, there is a need for the
screening, anticipation, and methodical analysis of combined objectives in the advance-
ment of diseases and associated compound herbal formulae. In order to fill this void,
we developed an innovative approach named Syn-COM that integrates bioinformatics,
computer-aided drug design, and analysis of existing studies to identify optimal dose-
independent drug combinations for disease treatment. This approach employs a multi-layer
scoring framework based on overlap rate, network distance, similarity clustering, and sin-
gular value decomposition (SVD). Unlike previous studies, this framework can be applied
not only to TCM but also to enable a deeper analysis of interactions between selected drug
combinations. Figure 1 illustrates the basic operation of this framework. We used GA as a
case study to provide a reliable method for TCM treatment of GA. Further analysis of the
compound herbal formulation and subsequent animal experiments suggest that this herbal
combination holds significant potential for future GA treatment.
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Figure 1. (A) The whole research’s experimental technical road map. (B) Detailed methodology for
the screening model of drug combinations.

2. Results
2.1. Discovering Advantage Genes

A total of 724 DEGs were discovered, including 159 up-regulated and 565 down-
regulated genes (Figure 2A). Furthermore, 29 gene modules were found by building a TOM
with a soft threshold power of 16 and using hierarchical clustering and dynamic tree-cut
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function to identify and exclude aberrant samples (Figure 2B). Seven modules—15, 19, 21,
23, 24, 26, and 27—were chosen as crucial modules, obtaining a total of 282 genes using
Z-summary < 1, ME < 10, and rank-sum ratio < 0.5 as thresholds. Following DEGs merging
with genes in critical modules and deduplication, 999 potential GA-related genes were
identified. Following screening and PageRank sequencing, 210 genes were discovered to
be significant in GA (Figure 2C).
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Figure 2. The hub genes related to GA (Hub-GA)’s screening and functional analysis. (A) Volcano
plot of DEGs in GSE199950. (B) The clustering tree was analyzed with WGCNA, with various colors
signifying various modules. (C) Utilizing random walks to sequence advantage genes. (D) The MCC
score escalates as the color transitions to red, with elevated node scores signifying greater significance
within the network. (E,F) Analysis of GO and KEGG.

2.2. Identification of Hub-GA Based on MCODE

The module partitioning approach of the MCODE algorithm was selected based on
the notion of minimal entropy. The network was modularly analyzed using Cytoscape
3.6.1, and the MCODE algorithm was employed to identify protein groups in the targeted
network that were closely associated. Eight clusters in all were identified. The highest score
was achieved by cluster 1 (FOS, SPP1, MMP13, IL6, TLR4, CXCL5, PPARG, PTGS2, MMP3,
TGFB1, IL1A, CXCL1, LCN2, IL1RN, IL33). Finally, the Hub-GA was identified (Figure 2D).

2.3. Functional Enrichment and Immune Infiltration Analysis

Functional enrichment analysis found 902 BP, 7 CC, and 54 MF items. Hub-GA has a
tight relationship with a number of biological processes, including angiogenesis, oxidative
stress, inflammatory response, cytokine activity modulation, cellular immune response,
and tissue remodeling. The hub genes were significantly enriched in the AGE-RAGE, TNF,
IL-17, toll-like receptor, NF-kappa B, HIF-1, and other signaling pathways, according to the
results of the KEGG analysis. These pathways were also closely associated with infectious
diseases, atherosclerosis, lipids, and inflammatory bowel disease (Figure 2E,F).

The results of the immune infiltration analysis showed a significant increase in the
proportions of T cells, NK cells, dendritic cells, monocytes, eosinophils, and macrophages
in the GA group (p < 0.05, Figure 3A,B). Between the control group and the GA group,
there was not a significant difference in immune-related activity (p > 0.05, Figure 3D,E).
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Figure 3. Immune infiltration analysis. (A,D) GSE199950. (B,E) GSE242872. (C,F) GSE160170.
* p < 0.05 vs. Con; ** p < 0.01 vs. Con.

2.4. Dataset Validation

Furthermore, the association between the immune response and Hub-GA expression
levels was analyzed using GEO databases. Overexpression of MMP2, FOS, IL6, PTGS2,
IL1A, CXCL1, and IL1RN was identified in the GA group (p < 0.05, Figure 4A). The GA
group had a statistically significant increase in macrophages, MDSC cells, eosinophils, NK
cells, and γδT cells (p < 0.05, Figure 3C). The results of the immune infiltration analysis
indicated that the control group and GA group differed significantly in terms of mast
cell activity, T cell responsiveness, NK cell dormancy, and γδT cell expression (p < 0.05,
Figure 3F). This supports previous results that these hub genes have a strong connection
with the immune system.
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RNA-Seq analysis revealed 10 major cell types in GA: natural killer T (NKT) cell, ep-
ithelial cell, monocyte, pyramidal cell, dendritic cell, fetal germ cell, B cell, megakaryocyte,
lymphoid cell, and plasma cell (Figure 4C). In lymphocytes, dendritic cells, and pyramidal
cells, the crucial gene MMP2 was highly expressed (Figure 4B). According to GO and KEGG
analysis, the joint tissues exhibited an up-regulation of the Wnt, AMPK, and chemokine
signaling pathways involving the activation of T cells, the control of chemokines, the
signal transduction involved in the immune response, and other potential mechanisms
(Figure 4D–G).

2.5. Multiple-Angle TCM Group Filtration for GA Therapy

A total of 473 Chinese herbal medicines were collected following OB and DL screening.
Based on the overlap rate calculation, there were varying levels of gene overlap between
the Hub-GA gene and 455 Chinese herbal medicines. Each TCM achieved an accurate score
based on Hscore, the top 50% of TCMs were chosen as the threshold based on overlap rate
and Hscore, and a total of 127 TCMs were screened. A protein–protein interaction (PPI)
network was constructed for each TCM target, and the network proximity between the
TCM target and disease module was calculated.

Numerous studies have demonstrated the widespread use of NSAIDs (such as in-
domethacin, ibuprofen, naproxen, etc.) in the management of GA [11]. The Drugbank
database was searched for drug targets related to etoricoxib, celecoxib, indomethacin,
naproxen, ibuprofen, and diclofenac. The distances between NSAIDs and Hub-GA were
then screened, normalized, and deduplicated. The screening thresholds for NSAIDs were
dAB(NSAIDs) and Z(NSAIDs). It was observed that there existed a topological intersection
between the TCM target and Hub-GA (Z < 0). Using NSAIDs as the threshold value
(dAB(NSAIDs) = 1.8108, Z(NSAIDs) = −57.4494), a total of 112 Chinese herbal medicines were
screened. In addition, 74 Chinese herbal medicines with an Mscore > 2 were subsequently
screened, yielding a total of 574 compounds. This process was combined with clinical
experience (Figure 5A–E).
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2.6. TCM Combination Based on Molecular Virtual Screening and Clustering

It was discovered that the tiny ligand molecules were steadily positioned in the
docking pocket by molecular docking virtual technology. Of the compounds, 79.89% had
an affinity of less than −5 kcal/mol−1, indicating that the tiny ligand molecules found
in Chinese herbal medicines were mostly tightly attached to the receptor protein. When
connecting with PTGS2, Baicalin had the best score out of them (Figure 5F,G).

Twenty-one representative compounds were identified when the overlap and molecu-
lar docking data from Hub-GA were combined. K-means clustering and stratification were
utilized for additional research on Chinese herbal medicines containing more than five
active compounds (Figures 6 and 7A). Fittings were performed for the average silhouette
score as well as the Dunn index. The results showed that the distribution of the silhouette
score performed better than the Dunn index, so the silhouette score was used as a screening
criterion (Supplement Figures S1 and S2). The average silhouette score provides a more
comprehensive assessment of the clustering characteristics of each Chinese herbal medicine,
facilitating the identification of optimal TCM combinations for disease treatment. The aver-
age silhouette score’s peak fitting value was 0.5989. Based on an average silhouette score
of greater than 0.6, seven Chinese herbal medicines were chosen for calculation efficiency:
Tamaricis Cacumen, Cuscutae Semen, Artemisiae Annuae Herba, Schizonepetae Herba, Gleditsiae
Spina, Prunellae Spica, and Achyranthis Bidentatae Radix, which may be a potential TCM
combination to intervene in GA (Table 1).

Table 1. Information of a potential TCM combination to intervene in GA.

Name Overlap Rate Hscore dab Zd Mscore Silhouette Score

Gleditsiae Spina 0.0462 0.0023 1.7059 −175.1157 3.0152 0.89
Prunellae Spica 0.0464 0.0016 1.7094 −137.5972 4.4550 0.75
Tamaricis Cacumen 0.0484 0.0014 1.6821 −177.3917 2.2708 0.73
Schizonepetae Herba 0.0474 0.0012 1.7186 −126.7836 8.7373 0.73
Cuscutae Semen 0.0448 0.0028 1.7143 −173.9090 14.7876 0.68
Achyranthis Bidentatae Radix 0.0455 0.0058 1.7053 −150.4610 15.6081 0.62
Artemisiae Annuae Herba 0.0437 0.0057 1.7163 −167.2389 3.3503 0.62
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Ec and Si in GAD.
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2.7. Building Multi-Level Networks and Discovering Critical Compounds

The complex network demonstrated that a wide range of compounds was implicated
in the screened Chinese herbal medicines, with beta-sitosterol, sitosterol, and stigmasterol
accounting for more than half of the TCM targets. Over half of the medicines targeted
PTGS2, TGFB1, IL6, IL1A, and FOS, among the numerous signaling pathways involved
in the screening of Hub-GA (Figure 7B). Interestingly, two distinct chemicals found in
Artemisiae Annuae Herba, cirsiliol and axillarin, have the ability to target the PTGS2 and
impact multiple signaling pathways that could be linked to GA treatment (Figure 7C).

2.8. Synergistic Association among TCM Combinations

The relationship between Gleditsiae Spina, Achyranthis Bidentatae Radix, and Schizonepetae
Herba was discovered through the correlation coefficient and synergy index, indicating that
these three Chinese herbal medicines were similar in their traits and compounds and play
an important role in the compatibility of TCM combinations (Figure 7D). However, the
accuracy of the synergy index may be affected by the composition of substances in Chinese
herbal medicines as well as the accuracy of target prediction results (Figure 7E).

2.9. Method Comparison

Compared with other methods, including random forest (RF), gradient boosting
decision tree (GBDT), support vector machine (SVM), extreme gradient boosting (XGBoost),
and classification and regression tree (CART), the experimental results of the regression
task, as summarized in Table 2, demonstrate that the Syn-COM outperforms all others
in regression evaluation metrics, particularly in mean absolute percentage error (MAPE).
While our framework does not achieve the lowest mean square error (MSE), it excels
by considering the unique characteristics and clinical applications of each drug, offering
comprehensive advantages over other methods in the regression task.

Table 2. Results of method comparison on the regression task.

Name MSE RMSE MAE MAPE

RF 0.007 0.063 0.056 8.570
GBDT 0.010 0.101 0.088 13.787
SVM 0.009 0.096 0.077 13.687

XGBoost 0.010 0.099 0.090 14.086
CART 0.000 0.011 0.010 35.845

Syn-COM 0.001 0.037 0.025 0.981

2.10. Pharmacodynamic Verification of GAD
2.10.1. Identification of Components in Chinese Herbal Medicine

UPLC-Q-TOF-MS/MS was used to identify the major chemical composition of GAD.
These molecules span the majority of the principal peaks in the chromatographic diagram
and contain a variety of components, including flavonoids such as quercetin, kaempferol,
luteolin, fisetin, and hesperetin; phenols such as cirsiliol and gallic acid; terpenoids; cy-
cloenes; and so on (Figure 8A,B). Supplement Table S1 provides information about Chinese
herbal medicine substances.
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Figure 8. Depiction of GAD components and variations in ankle joint swelling in mice previous to
and following GA administration. (A,B) TIC of GAD by UPLC-Q-TOF-MS/MS. (C) Mice’s ankle joint
swelling after seven days of treatment in each group. (D) Each group’s ankle joint swelling index at
each time point. ## p < 0.01 vs. Con; ### p < 0.001 vs. Con; * p < 0.05 vs. Mod; ** p < 0.01 vs. Mod.

2.10.2. Effects on Ankle Joint Swelling in GA Mice

During the administration period, one mouse in the Mod group and one in the In
group expired, while no mice perished in the Cir group or the GAD group. After modeling,
the Mod group’s ankle swelling index was significantly greater at days 3 and 7 compared
with the Con group (p < 0.01, p < 0.001). Day 3 showed a statistically significant (p < 0.05)
decrease in the ankle swelling index in the GAD group compared with the Mod group;
however, there was no significant difference in the ankle swelling index between the In
group and the Cir group (p > 0.05). The day 7 ankle swelling index in the GAD, In, and Cir
groups was significantly less than in the Mod group (p < 0.05); nevertheless, the efficacy
difference between the GAD and Cir groups was not significant compared with that of the
In group (p > 0.05, Figure 8C,D).

2.10.3. Effects on Renal and Joint Morphological Changes in GA Mice

The renal tissue structure in the Con group showed no apparent pathological alter-
ations. The renal cell structure was intact and transparent, with a well-organized arrange-
ment and regular spacing. The Mod group exhibited pathological alterations, including
thinning of the renal tubule wall, atrophy of the glomeruli, disorganized structure, dilata-
tion of the lumen, disorderly arrangement, infiltration of interstitial inflammatory cells, and
proliferation of fibrous tissue. In comparison with the Mod group, the administration group
exhibited thickening of the renal tubule wall and a decrease in pathological alterations such
as inflammatory cell infiltration and fibrous tissue hyperplasia (Figure 9).



Pharmaceuticals 2024, 17, 1230 13 of 25
Pharmaceuticals 2024, 17, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 9. Modifications in kidney (A) and joint tissue (B) morphology in each mouse group (×200). 

2.10.4. Effects on UA and Abnormal Inflammation in GA Mice 
The hub genes for GA were identified by analysis of the research, disease gene 

screening, molecular docking, and multi-layer network construction. The significance of 
PTGS2, TGFB1, MMP3, IL6, and IL1A were also established for the animal experiments 
that followed. Following the administration of the Mod group, the activities of the 
inflammatory factors and UA were quantitatively measured in each group of mice. The 
results demonstrated that the Mod group’s UA, IL6, and IL1A contents were significantly 
higher than those of the Con group (p < 0.05). Following medication administration, there 
was a significant decrease in the expression levels of UA, IL6, and IL1A in the In and Cir 
groups (p < 0.05). While the GAD group was able to decrease the levels of UA and IL6 (p 
< 0.05), there was no significant difference in the reduction in IL1A expression in the mice 
(p > 0.05). The outcomes demonstrated that GAD and cirsiliol administration could 
effectively inhibit the inflammatory response in GA mice (Figure 10A). 
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2.10.4. Effects on UA and Abnormal Inflammation in GA Mice

The hub genes for GA were identified by analysis of the research, disease gene screen-
ing, molecular docking, and multi-layer network construction. The significance of PTGS2,
TGFB1, MMP3, IL6, and IL1A were also established for the animal experiments that fol-
lowed. Following the administration of the Mod group, the activities of the inflammatory
factors and UA were quantitatively measured in each group of mice. The results demon-
strated that the Mod group’s UA, IL6, and IL1A contents were significantly higher than
those of the Con group (p < 0.05). Following medication administration, there was a sig-
nificant decrease in the expression levels of UA, IL6, and IL1A in the In and Cir groups
(p < 0.05). While the GAD group was able to decrease the levels of UA and IL6 (p < 0.05),
there was no significant difference in the reduction in IL1A expression in the mice (p > 0.05).
The outcomes demonstrated that GAD and cirsiliol administration could effectively inhibit
the inflammatory response in GA mice (Figure 10A).
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Figure 10. The effect of GAD modulation on aberrant inflammation in GA mice. (A) ELISA was
utilized to identify the levels of UA and inflammatory-related indices for each group. (B) q-PCR was
utilized to determine the expression levels of TGFB1, PTGS2, and MMP3 in each group. (C) GAD
inhibited excessive inflammation by modulating TGFB1, PTGS2, and MMP3 expression. # p < 0.05 vs.
Con; ## p < 0.01 vs. Con; * p < 0.05 vs. Mod; ** p < 0.01 vs. Mod; ∆ p < 0.05 vs. In; ∆∆ p < 0.01 vs. In.

2.10.5. Effects on the Expression Levels of TGFB1, PTGS2, and MMP3 in Ankle Joints of
GA Mice

The mRNA expression levels of TGFB1, PTGS2, and MMP3 in the Mol group were
significantly greater than those in the Con group (p < 0.05, Figure 10B). The Western blotting
showed that the cellular inflammatory response increased, whereas the protein expression
levels of TGFB1, PTGS2, and MMP3 were significantly up-regulated in the Mol group
(p < 0.05). Following medication intervention, the expression levels of TGFB1, PTGS2, and
MMP3 decreased significantly compared with the Mol group (p < 0.05). It was evident that
GAD and cirsiliol could have a beneficial protective effect in GA mice to a certain degree
by suppressing aberrant inflammatory responses (Figure 10C).

3. Discussion

GA is a crystalline joint disease characterized by urate accumulation due to aberrant
purine metabolism or reduced UA excretion [16]. It has been discovered that a number of
factors related to inflammation, immunity, oxidation, and autophagy are significant in the
development and progression of the disease [17,18]. Several adverse side effects, including
gastrointestinal bleeding, gastrointestinal toxicity, and renal toxicity, are frequently brought
on by certain drugs in patients. The therapeutic combination of several tiny compounds,
known as TCM, has a synergistic impact that enhances medicine performance and lowers
the risk of adverse events. There is evidence to support the effectiveness of TCM in treating
diseases. Nonetheless, the majority of TCM medications are produced based on limited
clinical expertise or validated results from experiments. Artificial intelligence technology
has assisted in the revolutionary and subversive changes to traditional drug discovery
processes brought about by the advancement and development of modern science and
technology [19].
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This study focuses on developing a comprehensive modeling and prediction method
to screen for TCM combinations resistant to GA in non-dose relationships based on network
characteristics, overlap degree, molecular virtualization, and matrix decomposition at mul-
tiple levels. Identifying the hub genes associated with diseases is crucial for the effective
screening and prediction of drug combinations. The algorithms WGCNA, CIBERSORT, and
PageRank were utilized to identify important hub genes associated with GA, comprehend
the variety and intricacy of immune functions, and investigate potential therapeutics. The
outcome Hub-GA genes were chosen, including FOS, IL6, TLR4, PPARG, PTGS2, MMP3,
TGFB1, and IL1A. It has been pointed out that IL6, IL1A, PPARG, and TGFB1 are some of
the critical genes in GA generation and are closely related to oxidative stress, inflammatory
response, and cellular immune response, which is consistent with our findings [20]. In ad-
dition, immune infiltration analysis and RNA-Seq analysis revealed that the pathogenesis
of the GA model was attributed to the significant infiltration of monocytes and neutrophils
in the synovium of inflamed joints following MSU injection. Among these cells, TGFB1
emerges as a pivotal cytokine governing T-cell differentiation and immune response equi-
librium. By modulating TGFB1, IL2, and IL6 synthesis, the activity of Tregs cells can be
regulated to ameliorate disease progression [21]. Another study also indicated that elevated
uric acid levels can upregulate the expression of the metalloproteinases MMP3, MMP9,
MMP13, and MMP2 while increasing glycosaminoglycan concentration; this significantly
downregulates proteoglycan degradation and subsequently triggers MSU crystallization,
further exacerbating inflammation [22,23].

Compared with TCM screening principles, the proposed framework integrates com-
plex relationships between Chinese herbs, hub genes, and multi-layer scoring indicators.
This approach enables the precise identification and filtering of novel herbal combinations
that effectively target disease. Crucial factors such as the proximity of drug targets within
the PPI network, the overlap between drug and disease targets, and the sequence similarity
of small-molecule drug targets are key in determining effective drug combinations [1,24].
These factors are essential to evaluating TCM combinations at both the statistical and molec-
ular levels. Additionally, the development of TCM compounds must consider the unique
characteristics of TCM and clinical experience. In this study, we have integrated these
aspects for the first time, significantly enhancing the credibility of the TCM combination
GAD for treating GA. Moreover, this framework represents the first systematic attempt to
calculate the interaction potential and associations between TCM combinations. Unlike tra-
ditional drug interaction prediction models, this approach utilizes the Si and Ec metrics to
determine the primary and secondary roles within drug combinations. This concept closely
aligns with the traditional Chinese medicine principles of “monarch, minister, assistant,
and envoy”.

In the Chinese herbal compound GAD, transcriptomics and multi-scale bioassays
revealed that the primary components of Artemisiae Annuae Herba significantly inhibit
the migration and activation of endogenous macrophages, effectively reducing excessive
inflammation in the body [25]. Cuscutae Semen, a TCM with multiple pharmacological
properties, has been shown in animal studies to reduce the expression levels of cytokines
(IL-1β and TNF-α) and inflammatory proteins (NLRP3, NF-κB, and PTGS2) through the
gut microbiota–neuroinflammatory axis, thereby exerting anti-inflammatory effects and
alleviating oxidative stress [26]. Herba Schizonepetae extract significantly inhibits the LPS-
induced macrophage RAW264.7, reducing the production of TNF-α, IFN-γ, and IL-10, and
plays a crucial role in combating inflammatory responses and regulating immune func-
tion [27]. Flavonoids such as fisetin, kaempferol, and quercetin, found in Gleditsiae Spina,
exhibit anti-inflammatory, anticancer, antibacterial, anti-allergic, and antiviral activities [28].
Bioinformatics tools have identified the target organs of Achyranthis Bidentatae Radix as the
kidney, liver, and bones [29]. Animal experiments indicate that Achyranthis Bidentatae Radix
significantly increases plasma berberine concentration in GA rats, improves blood supply
to inflammatory joints, and markedly inhibits the expression of MDR1 mRNA and P-gp
in the knee synovium [30]. Research on Tamaricis Cacumen remains limited, necessitating
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further experimental investigation. Notably, cirsiliol and axillarin may be key compounds
in TCM for interfering with the disease process of GA. UPLC-Q-TOF-MS/MS analysis
identified several compounds used in TCM, including sitosterol, kaempferol, quercetin, and
particularly cirsiliol, validating the approach for screening the drug combination. Cirsiliol
has been found to reduce the IL-6-induced STAT3 cell signaling pathway by regulating
Jak2 phosphorylation, thereby modulating autophagy and the inflammatory response [31].
Axillarin, meanwhile, is recognized for its potent anti-glycation and antioxidant proper-
ties [32]. Further basic experiments are required to verify whether these compounds can
intervene in disease by targeting the PTGS2 gene.

Animal experimental studies have shown that GAD can regulate the expression
levels of TGFB1, PTGS2, and MMP3; reduce the levels of inflammation-related factors IL6
and IL1A; improve inflammatory infiltration in the kidney and joint; and alleviate ankle
joint swelling in GA mice. Additionally, we verified the feasibility of using cirsiliol in
the treatment of GA. No mice died during the entire experiment, indicating that GAD
does not cause significant adverse reactions. Nevertheless, our study is subject to certain
limitations. The datasets for many herbs in Chinese medicine are limited and incomplete,
potentially leading to omissions and bias in prediction and screening. Furthermore, the
specific mechanism of GAD in treating GA has been verified only at the level of key
genes. Although we predicted and calculated the synergistic interactions of Gleditsiae
Spina, Achyranthis Bidentatae Radix, and Schizonepetae Herba in drug combinations, further
validation through detailed and comprehensive clinical studies or basic experiments is
still required. In the future, we plan to incorporate multiple types of omics data, such as
genomics, transcriptomics, proteomics, and metabolomics, to expand the predicted sample
data. This approach aims to reveal new targets and facilitate new drug discovery.

4. Materials and Methods
4.1. Thorough Screening for Crucial Genes
4.1.1. Screening for Differentially Expressed Genes (DEGs)

The expression matrix and associated information from the GEO dataset were selected
for the analysis of differential gene screening using GEO2R (https://www.ncbi.nlm.nih.
gov/geo/geo2r/ (accessed on 18 April 2024)) analysis of differentially expressed genes
between datasets. Strict thresholds were chosen at p < 0.05 and |log2-fold change (FC)| > 1
for DEGs detection.

4.1.2. Weighted Gene Co-Expression Network Analysis (WGCNA)

WGCNA is a systems biology approach employed to elucidate the patterns of gene
associations across diverse groups [33]. The pickSoftThreshold function was utilized to
determine the optimal soft threshold β, and a scale-free network distribution was obtained.
Furthermore, the value of 1-topological overlap matrix (1-TOM) was calculated by the
processing of the correlation matrix. The dynamic tree cut algorithm was used to identify
different gene modules. A merge cut height threshold of 0.25 was established to merge
and cluster similar modules. In order to assess the stability of WGCNA, the module’s
conservative degree was determined by employing the module conservative function,
which was represented as a Z-summary score. Subsequently, utilizing the module dis-
criminant method (ME), the uniform data were validated, and the modules exhibiting
topological alterations were identified. The core module was identified using a range
of metrics, and the comprehensive score of each module was calculated using the multi-
ple modular characteristic fusing (MMCF) method in the modular analytical computing
platform (http://112.86.129.72:48081 (accessed on 18 April 2024)) [34].

4.1.3. Prioritizing Potential Genes

Potential genes were identified as DEGs and gene merging within critical modules.
On a directed network, the PageRank algorithm defined a random walk model. Every
node in this process had a probability of being accessible based on its PageRank value,

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://112.86.129.72:48081
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which indicated the significance of the node [35]. Genes with PageRank > 1.00 × 10−3 were
classified as advantage genes after potential genes had been ordered in order of priority.

4.1.4. Construction of PPI Network and Module Optimization

PPI networks were built with the STRING database (https://string-db.org/ (accessed
on 18 April 2024)). Cytoscape 3.6.1 was used to visualize the resulting networks. Three
techniques were utilized to determine the functional modules of every group of PPI net-
works: molecular complex detection (MCODE), markov cluster (MCL), and GLay. Entropy
is a useful measure for quantifying the level of disorder in scale-free networks. A network
with lower entropy can be more stable. A comparison was conducted between the three
aforementioned forms of module division, and the most effective method for identifying
modules was determined [36]. Calculate according to the following formula:

E = −∑n
i=1 IilnIi, (1)

n represents the total number of nodes within the network, and Ii denotes the impor-
tance of the its node.

Eleven network topology parameters (betweenness, bottle neck, closeness, degree,
DMNC, eccentricity, EPC, MCC, MNC, radiality, etc.) were chosen based on the features
of the network topology. The core module in each group was determined by analyzing
the module that ranked highest, and the genes inside that module were found to be the
hub genes.

4.2. Verification with Hub Genes

An independent GEO dataset was utilized to assess the expression levels of hub genes.
Furthermore, the scRNA-Seq data underwent quality control and data filtering. The func-
tions NormalizeData, ScaleData, and RunPCA were used for the purpose of normalizing
and performing PCA analysis on the data [37]. The ideal number of principal components
(PCs) for the upcoming t-distributed stochastic neighbor embedding (t-SNE) analysis was
determined based on the findings of the ElbowPlot and JackStraw analyses. The Cellmarker
database (http://xteam.xbio.top/CellMarker/ (accessed on 20 April 2024)) was utilized to
obtain the variations between cell subtype genes via the FindAllMarkers method.

4.3. Functional Enrichment Analysis

Subsequently, gene ontology (GO) function analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis were performed for hub genes within
the module after minimum entropy optimization.

4.4. Immune Infiltration Analysis

The CIBERSORT algorithm was used to quantify and assess the immune and stromal
cell quantities in the GA and control groups [38]. The Spearman was then used to research
the correlation between the cells and the Hub-GA. A single-sample gene set enrichment
analysis (ssGSEA) score was calculated for immune cell infiltration and immune-related
functions in the two groups.

4.5. Effective Drug Combination Screening

The TCMSP database was utilized to conduct a search for the active ingredients of
TCM, including 499 herbs, 13,144 compounds, and 785 targets. The compounds were
screened, normalized, and deduplicated based on their oral bioavailability (OB) and drug-
like characteristics (DL). The thresholds for screening were set at OB ≥ 30% and DL ≥ 0.18.

4.5.1. The Relationship between Chinese Herbal Medicines and Disease under
Effectiveness and Overlap

The association between Chinese herbal medicines and hub genes was initially evalu-
ated using the overlap rate [39]. Furthermore, Hscore quantified the efficacy of Chinese

https://string-db.org/
http://xteam.xbio.top/CellMarker/
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herbal medicines in combating diseases [40]. The system established connections across
drug combination compounds–disease networks using the PageRank algorithm and a
two-step random walk algorithm. The number of components found in TCM and its
effect on the target determined the importance of these targets in the PPI network. The
effectiveness of Chinese herbal medicines in treating diseases was directly proportional to
the number of targets it acts upon and the higher the Hscore. Calculate according to the
following formula:

Overlap rate =
(A ∩ B)

(A + B − A ∩ B)
. (2)

The gene numbers A, B, and A∩B reflect the gene numbers of the Chinese herbal
medicines, Hub-GA, and the intersection between drug and disease genes, respectively.

Hscoreγi = ∑n
β=1

AβVβγ

βout . (3)

Aβ indicates the target score for β, and Vβγ signifies the matrix created between β and
γ, where 1 and 0 indicate the presence or absence of a connection between the two. The
output value of node β in the network has been designated by βout.

4.5.2. The Relationship between Chinese Herbal Medicines and Disease under the
Network Module

Within the protein interaction set, the genes related to each TCM form modules, and
the similarity between these modules is shown by their network distance from the disease
module [41]. The mean shortest distance (dAB) between drug–disease target pairings and
the mean shortest distance (SAB) within each group are evaluated in a comparison of
network interactions between drug and disease targets.

SAB = ⟨dAB⟩ −
⟨dAA⟩+ ⟨dBB⟩

2
. (4)

The average shortest path between nodes A and B inside the interaction area is
represented by dAA and dBB. The two target topologies overlap when SAB < 0. The two sets
of targets were topologically separated when SAB ≥ 0.

The z was marked as a dependable metric for gauging the network proximity between
Chinese herbal medicine (X) and hub genes (Y). The calculation of the shortest path length,
denoted as d(x,y), between each drug target (x) and the disease target (y) was determined
by the following formula:

d(X, Y) =
1

∥Y∥∑y∈Y minx∈Xd(x, y), (5)

z =
d − µ

σ
. (6)

The mean was µ and the standard deviation was σ. Herbs and disease genes separated
from each other with a z ≥ 0 from a network perspective. Otherwise, z < 0.

4.5.3. The Relationship between Chinese Herbal Medicines and Disease under Clinical
Medication Experience

Pscore is a measure that indicates the effectiveness of herbal combinations in the use
of TCM, based on the clinical experience and habits of experts [40]. The Pscore values
of 28,279 TCM pairs were computed by screening, deduplicating, and normalizing the
database. Mscore was created to quantify the average frequency of specific Chinese herbal
medicines in regularly used combinations.

Pscore = count
(

Herbi ∩ Herbj
)
, (7)
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Mscore =
∑∞

n=0
(

Pscorej
)

nj
. (8)

Herbi and Herbj refer to TCM, Pscorej is the sum of all drug pairs containing Herbj in
the database, and n is the number of drug pairs found.

4.5.4. Molecular Docking

Molecular docking was performed between compounds that appeared more than five
times and hub genes after the chemical components of TCM were gathered utilizing the
screening approach mentioned above. The AutoDock Vina 1.1.2 program was utilized
to perform docking of the receptor protein and the ligand separately. The affinity was
evaluated using molecular docking, which is a crucial sign of a ligand’s ability to attach to
a receptor molecule efficiently.

4.5.5. Identification of Representative Compounds and TCM Combination Refinement
with Similarity Clustering

The molecular fingerprints of the active compounds were downloaded. The similarity
of molecular fingerprints was evaluated with the Tanimoto coefficient. The compounds
in drug combinations were then classified into three groups based on their distance uti-
lizing the K-means clustering. This algorithm has been widely used in the field of drug
discovery [42,43]. A disease–TCM compounds–targets–pathways network was constructed,
and the Dunn index and silhouette score utilized as evaluation indexes to validate the
clustering results.

4.5.6. Cooperative Association of Herbal Combination Based on SVD

In statistics and machine learning, SVD serves as a common linear transformation
method that is frequently used [44]. The four properties and five tastes, meridians, asso-
ciation between diseases and Chinese herbal medicine, and representative compounds
were included in the calculation through the construction of the core TCM matrix. The
presence of these components was set to 1, and the absence of them to 0. Following the
normalization of the aforementioned data, the matrix underwent SVD to obtain the relevant
principal components, and the vector inner product was used to compute the correlation
coefficient among herbal combinations. This approach creatively took into account TCM’s
inherent capacity to regulate disease and compound nodes [45]. Conversely, we devised
the following formula to determine the synergy index (Si) by combining the compounds’
docking ability with the average effective coverage score (Ec) of TCM compounds:

EC =
1

NHerb
·
nHerb(jRc)

nHerb(j)
, (9)

Si =

∣∣∣∑nHerb(jRc)
1 Aj

∣∣∣·dj·Ec∣∣∣∑N
1 sab(j)

∣∣∣·Dj·nj

. (10)

n represents the numerical value of the core herbal medicine, nHerb the number of
representative compounds discovered through molecular docking, n(Herb(j)) the number
of compounds in Herbj, and n(Herb(j

Rc
)) the number of representative compounds in Herbj.

Aj represents TCM representative compound molecules’ binding energy, dj the shortest
distance between TCM and disease interaction, s(ab(j)) the network distance between Chinese
herbal medicines, Dj the maximum clustering distance, and nj the number of TCM targets.

4.6. Method Comparison

To evaluate the model’s performance, we compared it with five common machine
learning models, RF [46], GBDT [47], SVM [48], XGBoost [49], and CART [50], using a 5-fold
cross-validation (CV) strategy. Since these models rely on matrix-like feature vectors, the
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5-fold CV method was directly applied to assess their performance. The primary outcome
measure used was the MSE. In addition, we report the root-mean-square error (RMSE),
mean absolute error (MAE), and MAPE to compare the predicted values with the true
values. The data were split with a training-to-test set ratio of 8:2.

4.7. Drug Combinations Analysis Utilizing UPLC-Q-TOF-MS/MS

Effective drug combinations treating GA (GAD) used the following: Tamaricis Cacu-
men, Cuscutae Semen, Artemisiae Annuae Herba, Schizonepetae Herba, Gleditsiae Spina,
Prunellae Spica, and Achyranthis Bidentatae Radix. The Chinese National Pharmacopoeia’s
standards were fulfilled, and it was procured from a local source. To make a GAD water
decoction, soak the herbs for 30 min beforehand, then add nine times the volume of water
and boil for 2 h. After filtering the decoction and continuing to boil it to obtain a raw drug
concentration of 1 g/mL, the mixture was once more filtered, sterilized, and stored at 4 ◦C
for subsequent experimentation.

For detection and analysis by mass spectrometry, the 500 µL GAD was filtered through
a 0.22 µM membrane. The determination was performed on an ACQUITY UPLC-BEH
C18 column (2.1 mm × 100 mm, 1.7 µm) using the Waters ACQUITY UPLCTM system.
The mobile phase consisted of 0.1% acetonitrile solution (B) and 0.2% formic acid aqueous
solution (A). The sample size was 1 µL, and the flow rate was 300 µL/min. Mobile phase A
consisted of 0.2% formic acid aqueous solution (A)–acetonitrile (B); gradient elution took
place for 0–30 min for 5–95% B and 30–33 min for 95% B–5% B. Principal component analysis
scanning mode was MSe, the electrospray ion source was employed, and negative ion
mode was used for detection. The ion source’s operational parameters were as follows: The
spectral acquisition interval was 0.2 s, the scanning range was m/z 50–1500, the capillary
voltage was 3.0 kV, the cone hole voltage was 40 V, the solvent gas flow was 800 L·h−1, the
ion source temperature was 120 ◦C, and the solvent removal temperature was 450 ◦C. The
cone hole backblowing gas flow (N2) was 50 L·h−1.

4.8. Verification of Pharmacodynamic Experiment
4.8.1. Animals and Drugs

Forty male C57BL/6J mice, aged 6–8 weeks, were used in this experiment. The mice
were bred in a sterile animal breeding facility at Zhongyan Zichuang (Beijing) Biotechnology
Co., Ltd., Beijing, China. The research was conducted in accordance with the standards set
by the Ethics Committee, with the approval number ZYZC20240613S.

Positive medication, indomethacin enteric-coated pills, manufactured by Linfen Baozhu
Pharmaceutical Co., Ltd., ShanXi, China; lot number: 200301. Specification per tablet:
25 mg. For subsequent usage, make a 0.3 g/mL liquid with regular saline and store it in
the refrigerator at 4 ◦C.

4.8.2. Animal Modeling, Grouping, and Drug Administration

Mice were provided with food and water to ensure their survival, implementing
adaptive feeding for one week before the formal experiment. Preparation of MSU crystals:
following the Coderre recording method, a suspension of MSU crystals with equal concen-
tration was manufactured [51]. The model was built by injecting the suspension vertically
using a needle along the lateral rear of the ankle joint of mice. Following the random
number table method, eight mice were divided into each of the following groups: the
control (Con), model (Mod), cirsiliol (Cir), indomethacin (In), and GAD. The concentration
of the substance used in GAD was 3 g/kg/d after a 7-day continuous intervention, while
the concentration of the In that was found to be effective was 0.3 g/mL/d. The Cir dosage
was 25 mg/mL/d with a 10 mL/kg dosing volume.

4.8.3. Ankle Joint Swelling Index

The circumference of the ankle joint in each group of mice was measured using
vernier calipers, and the ankle joint swelling index was computed. Ankle joint swelling
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index = joint thickness at each point in time after administration − thickness before
administration (mm).

4.8.4. Hematoxylin and Eosin (HE) Staining

The tissues in each group were fixed with 4% paraformaldehyde (Solarbio, Beijing,
China), decalcified, dehydrated, waxed, embedded, sliced, and stained with HE (Beyotime,
Shanghai, China) in order to assess alterations in the morphology of the kidneys and
ankle joints.

4.8.5. Enzyme-Linked Immunosorbent Assay (ELISA)

Each mice group’s serum was obtained, and the levels of uric acid (UA) and associated
inflammatory components were measured. Interleukin-1α (IL1A) and interleukin-6 (IL6)
content and UA were measured using IL1A, IL6, and UA kits (Proteintech, Wuhan, China,
Nanjing Jiancheng, Nanjing, China).

4.8.6. RNA Extraction and Quantitative Polymerase Chain Reaction (q-PCR)

Using column extraction, each animal group’s RNA was extracted in compliance
with the RNA extraction kit’s instructions (Vazyme, Nanjing, China). Each group of RNA
samples was examined using a microspectrophotometer to ascertain the purity and concen-
tration. The PCR amplification system and reverse transcription system were configured in
compliance with the instructions provided by the appropriate kit’s manufacturer (Vazyme,
China). The temperatures utilized in the PCR reaction were pre-denaturation at 95 ◦C
for 30 s, cycle reaction at 95 ◦C for 10 s, and 60 ◦C for 30 s. The entire process was cali-
brated using GAPDH. The mRNA expression levels of the important target proteins TGFB1,
PTGS2, and MMP3 were measured using the 2−∆∆Ct method. Shanghai Jierui Bioengineer-
ing Co., Ltd. (Shanghai, China) supplied the primers. Table 3 shows a list of the primer
sequences used.

Table 3. Primers sequences used for quantitative PCR.

Gene Primers

TGFB1
Forward-5′-TGATACGCCTGAGTGGCTGTCT-3′

Reverse-5′-CACAAGAGCAGTGAGCGCTGAA-3′

PTGS2
Forward-5′-GATCCCCAGGGCTCAAACAT-3′

Reverse-5′-GAAAAGGCGCAGTTTACGCT-3′

MMP3
Forward-5′-CACTCACAGACCTGACTCGGTT-3′

Reverse-5′-AAGCAGGATCACAGTTGGCTGG-3′

GAPDH
Forward-5′-TCTTGCTCAGTGTCCTTGC-3′

Reverse-5′-CTTTGTCAAGCTCATTTCCTGG-3′

4.8.7. Western Blotting

Each animal group’s ankle joints were given a RIPA lysate containing PMSF, which
was then centrifuged, the supernatant was aspirated, and 5× protein-loading buffer was
added for denaturation. A 6–15% sodium dodecyl–sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) gel was used for protein electrophoresis. The proteins were transferred
onto 0.45 µm PVDF membranes using wet transfer and blocked with 5% skimmed milk
powder. The antibodies were diluted according to the manufacturer’s instructions, and
the membranes were incubated with TGFB1 (1:2000; Proteintech, China), PTGS2 (1:1000;
Proteintech, China), and MMP3 (1:1000; Proteintech, China) as the primary antibodies and
GAPDH antibody (1:5000; Proteintech, China) as an internal control. The membrane was
then incubated with the corresponding secondary antibody (1:2000; Proteintech, China).
ECL reagent (Beyotime, China) was added for development, and visualization was per-
formed using a chemiluminescence imaging system. The ImageJ was used to analyze the
optical densities of the target bands.
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4.9. Data Sources and Statistical Methods

Disease databases related to GA and gout gene expression were downloaded from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/ (accessed on 20 April 2024)). The
keywords “gouty arthritis” and “gout” were used to search for the following datasets:
GSE199950, GSE242872, GSE217561, and GSE160170. The RNA-seq data were extracted
using the fragment per kilo base million (FPKM) format, and the log2 (FPKM + 1) trans-
form was used for standardizing the data. The drug datasets were obtained from the
TCMSP database (https://tcmsp.91medicine.cn/ (accessed on 20 April 2024)) and Drug-
bank database (https://go.drugbank.com/ (accessed on 20 April 2024)). The UniProt
database (http://www.uniprot.org/ (accessed on 20 April 2024)) was utilized to stan-
dardize and eliminate duplicate entries of the acquired effective targets. Clinical appli-
cation experience data for TCM was taken from the Chinese patent medicine database
(http://crds.release.daodikeji.com (accessed on 20 April 2024)). The chemical composition
was determined using the 3D structure in the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/ (accessed on 20 April 2024)), while the equivalent structure of receptors
was found in the Protein Data Bank database (http://www.rcsb.org/pdb (accessed on 20
April 2024)).

Software, including Python 3.11 and GraphPad Prism 8.0.1, was used to conduct
statistical analysis. The mean ± standard error of the mean (SEM) was used to express
all measurement data. Comparisons between the two groups were performed using
independent sample t-tests. Nonparametric tests were used for samples that did not
conform to normal distribution. Statistical significance was set at p < 0.05.

5. Conclusions

In summary, we have developed a novel multi-level network framework named
Syn-COM for screening potential drug combinations for disease treatment. By employ-
ing various bioinformatics algorithms and module partitioning, this framework filters
and identifies key hub genes related to diseases, offering insights into the diversity and
complexity of immune and biological functions. The drug-screening process integrates
network features, overlap degree, molecular docking, and similarity to efficiently extract
data features and identify optimal drug combinations, independent of dose relationships.
The framework also innovatively calculates drug interaction and association using simi-
larity clustering and synergy matrix filtering. This method is versatile and applicable to
predicting drug combinations beyond Western medicine for various diseases. By incorpo-
rating clinical experience and TCM characteristics, the framework enhances the prediction
of TCM combinations. Using GA as a case study, preliminary experimental validation
suggests that the herbal combination GAD could be significant in future GA treatment.
This approach shows great potential for identifying drug combinations and developing
innovative therapies for a wide range of human diseases.
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