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Abstract: Background: The process of the globally aging population has been accelerating, leading to
an increasing social burden. As people age, the musculoskeletal system will gradually go through
a series of degenerative and loss of function and eventually develop age-related musculoskeletal
diseases, like sarcopenia, osteoporosis, and osteoarthritis. On the other hand, several studies have
shown that polyunsaturated fatty acids (PUFAs) possess various important physiological functions on
the health of muscles, bones, and joints. Objective: This narrative review paper provides a summary
of the literature about the effects and mechanisms of PUFAs on age-related musculoskeletal diseases
for the prevention and management of these diseases. Methods: Web of Science, PubMed, Science
Direct, and Scopus databases have been searched to select the relevant literature on epidemiological,
cellular, and animal experiments and clinical evidence in recent decades with keywords “polyun-
saturated fatty acids”, “PUFAs”, “omega-3”, “omega-6”, “musculoskeletal diseases”, “sarcopenia”,
“osteoporosis”, “osteoarthritis”, and so on. Results: PUFAs could prevent and treat age-related
musculoskeletal diseases (sarcopenia, osteoporosis, and osteoarthritis) by reducing oxidative stress
and inflammation and controlling the growth, differentiation, apoptosis, and autophagy of cells. This
review paper provides comprehensive evidence of PUFAs on age-related musculoskeletal diseases,
which will be helpful for exploitation into functional foods and drugs for their prevention and
treatment. Conclusions: PUFAs could play an important role in the prevention and treatment of
sarcopenia, osteoporosis, and osteoarthritis.

Keywords: polyunsaturated fatty acids; PUFAs; musculoskeletal disease; sarcopenia; osteoporosis;
osteoarthritis

1. Introduction

In recent years, the global population’s aging process has been irreversible, and it
shows an accelerating trend. The World Health Organization (WHO) reported that in 2020,
the population worldwide of 60 or older was around 1 billion, which accounts for 13.5%
of the whole world population of 7.8 billion. By 2050, that figure is expected to approach
2.1 billion [1]. In the progression of aging, organisms undergo a series of gradual degenera-
tive changes that lead to the accumulation of inflammation, the intensification of oxidative
stress, apoptosis, and, thus, damage to the structure and function of cells and organs [2,3].
With aging, the risk of various age-related diseases increases, for instance, cardiovascular
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diseases, metabolic diseases, cancers, and musculoskeletal diseases. Among these dis-
eases, age-related musculoskeletal diseases are a kind of diseases that, due to the longtime
of mechanical pressure and biological changes, bones, muscles, and joints progressively
experience a process of degeneration and eventually develop into a range of age-related
musculoskeletal disorders, such as sarcopenia, osteoporosis, and osteoarthritis [4,5]. Glob-
ally, age-related musculoskeletal disorders are among the main causes of morbidity and
death among the elderly, which also cause a huge economic burden. A total of 23.1% of the
total of the Global Burden of Disease (GBD) is attributable to diseases in people aged 60
and over, and musculoskeletal diseases account for 7.5% of the total burden [6]. Therefore,
improving the musculoskeletal function of the elderly has a vital part in improving their
quality of life as they age.

Numerous studies have indicated that polyunsaturated fatty acids (PUFAs) offer cer-
tain benefits for cardiovascular diseases, diabetes, and other age-related diseases [7–11].
In particular, PUFAs are beneficial to the health of the musculoskeletal system and can
improve age-related musculoskeletal diseases. According to the location of the first un-
saturated bond, fatty acids with two or more unsaturated double bonds are referred to
as PUFAs. These PUFAs can be further classified as omega-3, omega-6, omega-9, and
so on. The n-3 family mainly consists of α-linolenic acid (ALA), eicosapentaenoic acid
(EPA), and docosahexaenoic acid (DHA). The n-3 PUFAs take part in several biological
processes, including oxidative energy supply and participation in biofilm construction;
they have been proven to improve the body’s immune function, neuromuscular function,
lipid distribution, and inflammation level [12–14]. The n-6 series mainly includes linoleic
acid (LA), γ-linolenic acid, and arachidonic acid (AA). The n-6 PUFAs can regulate blood
lipids, participate in phospholipid production, lower cholesterol, and promote growth and
development [15,16] (Figure 1).
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can synthesize EFAs by introducing double bonds at the Δ12 and Δ15 positions [19]. 
Therefore, the supplement of PUFAs is very necessary, and obtaining PUFAs directly from 
dietary food is the most efficient and important way. 

Figure 1. The chemical structures of several polyunsaturated fatty acids: (A) structures of n-3 PUFAs and
(B) structures of n-6 PUFAs. AA—arachidonic acid; ALA—α-linolenic acid; DHA—docosahexaenoic acid;
EPA—eicosapentaenoic acid; LA—linoleic acid; PUFA—polyunsaturated fatty acid.

Moreover, LA and ALA are essential fatty acids (EFA), a class of fatty acids that are
nutritionally essential but cannot be synthesized by mammals. The body can utilize EFA to
synthesize longer-chain PUFAs. In most mammals, double bonds can be added at positions
∆4, ∆5, ∆6, and ∆9, but never beyond ∆9 [17,18]. On the other hand, some plants can
synthesize EFAs by introducing double bonds at the ∆12 and ∆15 positions [19]. Therefore,
the supplement of PUFAs is very necessary, and obtaining PUFAs directly from dietary
food is the most efficient and important way.

Although the effects and mechanisms of PUFAs on sarcopenia, osteoporosis, and
osteoarthritis have been widely studied, the relative information has not been comprehen-
sively summarized and discussed. This paper reviews the studies in recent decades on the
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potential relationship between PUFAs and several age-related musculoskeletal diseases
(sarcopenia, osteoporosis, and osteoarthritis). Then, we also discussed the underlying
molecular mechanisms of the effect of PUFAs on these diseases (Figure 2). This review aims
to provide a reference for managing and preventing these diseases.
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Figure 2. The effects of polyunsaturated fatty acids on age-related musculoskeletal diseases. PUFAs
could protect against age-related musculoskeletal diseases, with a focus on sarcopenia, osteoporosis,
and osteoarthritis. PUFA—polyunsaturated fatty acid.

2. Methods

We looked through the Web of Science, PubMed, Scopus, and Science Direct databases
to select the relevant literature (including international articles written in English in re-
cent decades, online reports, and textbooks). The keywords used in searching included
“polyunsaturated fatty acids”, “PUFAs”, “omega-3”, “omega-6”, “musculoskeletal dis-
eases”, “sarcopenia”, “osteoporosis”, “osteoarthritis”, and so on. The search step was
completed in February 2024. Then, we reviewed the abstract of the articles to make sure
they fit the topic of this review and removed all duplicates. Epidemiological, cellular,
and animal experiments, as well as clinical evidence in recent decades on the effects and
mechanisms of PUFAs on age-related musculoskeletal diseases, were summarized and
discussed to integrate this narrative review. Because this is a narrative review paper, it does
not need to record the literature search on any particular platform [20,21].

3. Sarcopenia
3.1. Prevalence of Sarcopenia

A syndrome known as sarcopenia is the age-related loss of strength and muscle mass,
which is an important cause of the high incidence of fractures, some chronic diseases,
and death [22–24]. Sarcopenia affects 10–23% of the elderly worldwide [25]. Oceania
was observed with the highest prevalence (40%) applying the definitions established by
the European Working Group on Sarcopenia in Older People (EWGSOP) [26], followed
by South America (35%) utilizing muscle mass as standard, while Asia (15%) with the
Asian Working Group for Sarcopenia (AWGS) [27], and Europe with EWGSOP2 [28] had
the lowest prevalence (1%) [25]. In China, several community surveys in recent years
have found an overall incidence of 11–19% [29–31]. Additionally, people with various
illnesses have a higher prevalence of sarcopenia than the general population. For instance,
the prevalence of individuals with diabetes was 18%, and the number of patients with
unresectable esophageal cancer was up to 66% [32]. Therefore, many old people around
the world are accompanied by muscle problems that seriously affect their quality of life.

3.2. Pathogenesis of Sarcopenia

Many factors can lead to sarcopenia in old people. Most current studies have shown
that the pathogenesis of sarcopenia mainly includes muscle mitochondrial dysfunction,
satellite cell loss and dysfunction, chronic inflammation, and related hormonal changes [33–36].

Mitochondrial dysfunction is a central mechanism of skeletal muscle senescence [33].
With bodies and cells aging, the oxidative phosphorylation capacity of skeletal muscle
mitochondria is impaired, leading to the massive generation and accumulation of reactive
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oxygen species (ROS) in dysfunctional mitochondria [35]. However, skeletal muscle cells’
function mainly relies on oxidative metabolic pathways, which makes them very sensitive
to ROS and very vulnerable to the deleterious effects of ROS production [37]. Ultimately,
the abundant accumulation of mitochondrial ROS in skeletal muscle cells can accelerate
telomere depletion as well as trigger cellular senescence, leading to sarcopenia [33].

One type of stem cell located in muscle tissue is called muscle satellite cell, and
it has the ability to self-renew. Sarcopenia may be connected to the reduction in the
number of satellite cells and the loss of the ability to regenerate, which are caused by
aging [36,38]. In the aging satellite cells, the expression of several pathways, like Notch-
p53 signaling axis and mammalian target of rapamycin complex 1 (mTORC1), which
promote cell function and activity is decreased and dysregulated, while the associated
inhibitory pathways are upregulated, such as Janus kinase-signal transducer and activator
of transcription (JAK-STAT) and adenosine 5′-monophosphate (AMP)-activated protein
kinase (AMPK)/p27 [39–42].

In the process of aging, the body presents a state of chronic inflammation. That is,
various pro-inflammatory factors increase, and the levels of anti-inflammatory molecules
decrease at the same time, which inhibits protein synthesis and promotes protein decompo-
sition. This state of chronic inflammation causes anabolic imbalance in muscle tissue and
involves multiple signaling pathways [43]. For example, an elevated level of interleukin-6
(IL-6) can cause myofibrillar protein loss and muscle atrophy. Tumor necrosis factor-α
(TNF-α) can increase the decomposition of protein in skeletal muscle and reduce the pro-
duction of muscle protein by transmitting ROS and activating the nuclear factor-κ-gene
binding (NF-κB) signaling pathway [44,45].

3.3. Effects of PUFAs on Sarcopenia

In this section, the results from epidemiological studies are first summarized and
discussed; then, the results of cellular and animal experiments are shown. Finally, the
clinical evidence is provided.

Many studies have shown that PUFAs have been linked with better skeletal muscle
growth and function, as well as a lower risk of sarcopenia. For instance, in some cross-
sectional studies, omega-3 fatty acid consumption in older type 2 diabetic individuals was
positively correlated with appendicular skeletal muscle mass index (ASMI) (odds ratio
(OR) = 0.09; 95%confidence interval (CI) = 0.04, 0.06), step count (ρ = 0.524; p = 0.01), and
grip strength (β = 0.757; p = 0.04) [46–49], and was negatively correlated with sarcopenia
(OR = 0.29; 95% CI = 0.14, 0.60) [50]. In a case-control study, the EPA and DHA levels were
lower in the sarcopenic patients than those in the control group (p = 0.003 and p = 0.014) [51].

There are also some cell and animal experimental studies that showed PUFAs are
beneficial to muscle health. PUFAs can ameliorate muscle damage caused by harmful
factors. In an in vitro study, researchers used Tunisian Pistacia lentiscus L. seed oil (PLSO),
rich in PUFAs and several nutrients with antioxidant properties, to counter the cytotoxic
effects of 7β-hydroxycholesterol (7β-OHC) on mouse C2C12 myoblasts [52]. It was found
that PLSO significantly attenuated the 7β-OHC-induced cytotoxicity, prevented organelle
dysfunction, and lowered the oxidative stress level. The mechanism of this cytoprotective
effect was mainly through lowering the level of ROS and increasing superoxide dismutase
(SOD) and glutathione peroxidase (GPx) in cells, which restored mitochondrial function [52].
In another study, rat skeletal (L6) myotubes were cultured with saturated fatty acids (SFAs)
either alone or together with a monounsaturated fatty acid (MUFA) or PUFA (linoleate,
LO) [53]. The outcomes demonstrated that pro-inflammatory NF-κB, IL-6, and ROS levels
rose, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) related to
mitochondrial function decreased in SFA-induced L6 myotubes. LO can antagonize those
changes, which means LO exhibits anti-inflammatory and antioxidant characteristics [53].
Moreover, a study used model animal Caenorhabditis elegans to explore the impact of
LA on muscle. Their findings suggested that LA can repair mitochondrial function by
weakening oxidative stress and promoting mitophagy, thereby improving skeletal muscle
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loss. The possible mechanism is increasing the expression of mitophagy genes pink-1 and
decay accelerating factor-16/forkhead box O (DAF-16/FOXO) transcription factors [54].
PUFAs also inhibit aging-related muscle loss and dysfunction. In a study, 75-week-old
C57BL/6J mice received different diets (EPA-deprived or enriched diet) for 12 weeks to
evaluate their efficacy in protecting against sarcopenia. The results indicated that the
mice with an EPA-deprived diet showed lower grip strength, which can be improved
by EPA supplementation [55]. This effect was probably caused by the transition of fiber
type in skeletal muscle, which was a change in transcriptomic level [55]. In another
study, 25-month-old Sprague Dawley (SD) rats were given gavage for 10 weeks of wheat
oligopeptides and fish oil high in omega-3 PUFAs. According to the omics results, this
study found that this combination dramatically improved muscle atrophy, oxidative stress,
and inflammation levels in skeletal muscle and decreased aging-related muscle loss. The
probable mechanism is that omega-3 PUFAs could promote protein synthesis and muscle
regeneration [56]. The mechanisms of PUFAs in sarcopenia are shown in Figure 3 and
Table 1.
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Figure 3. The effects and mechanisms of PUFAs against sarcopenia. PUFAs could increase the level
of SOD and the expression of DAF-16/FOXO transcription factors in cells to inhibit the production
of ROS, thus suppressing oxidative stress. PUFAs could also improve mitochondrial function by
increasing the expression of the mitophagy gene pink-1 and increasing PGC1α to promote mitophagy.
PUFAs had the ability to suppress NF-κB activities, hence decreasing inflammatory markers like IL-6
and TNF-α. DAF-16—decay accelerating factor-16; FOXO—forkhead box O; IL-6—interleukin-6; NF-
κB—nuclear factor-κ-gene binding; PGC1α—peroxisome proliferator-activated receptor γ coactivator
1α; PUFA—polyunsaturated fatty acid; ROS—reactive oxygen species; SOD—superoxide dismutase;
TNF-α—tumor necrosis factor-α.



Nutrients 2024, 16, 3130 6 of 20

Table 1. Effect of PUFAs on sarcopenia from cellular and animal experiments.

Study Type PUFAs Type Subject Dose Effects Mechanisms Ref.

In vitro PLSO
7β-OHC-induced
murine C2C12
myoblasts

100 µg/mL
for 24 h

Prevented myoblast
dysfunction and death
Reduced oxidative stress

↑ SOD, GPx
↓ ROS, MDA,
and ∆Ψm

[52]

In vitro LO
SFA-induced rat
skeletal (L6)
myotubes

100 mM for
16 h

Reduced inflammation
and oxidation levels
Improved mitochondrial
function

↑ PGC1α
↓ ROS, IL-6, and NF-κB [53]

In vivo LA Caenorhabditis
elegans

50 µg/mL for
10 days

Improved skeletal
muscle loss

↑ DAF-16/FOXO
and pink-1
↓ ROS

[54]

In vivo EPA 75-week-old
C57BL/6J mice

1 wt% for
12 weeks, sup-
plemented
in diet

Suppressed
aging-associated muscle
dysfunction and
muscle fiber
type changes

Fast-to-slow fiber type
transition;
Muscle transcriptome
alteration

[55]

In vivo Fish oil 25-month-old
SD rats

200, 400,
800 mg/kg
for 10 weeks,
oral gavage

Improved muscle
atrophy,
oxidative stress,
and inflammatory levels
and cell infiltration

Promoted protein
synthesis and
muscle regeneration

[56]

Abbreviations: 7β-OHC—7β-hydroxycholesterol; DAF-16—decay accelerating factor-16; EPA—eicosapentaenoic
acids; FOXO—forkhead box O; GPx—glutathione peroxidase; IL-6—interleukin-6; LA—linoleic acid;
LO—linoleate; MDA—malondialdehyde; NF-κB—nuclear factor-κ-gene binding; PGC1α—proliferator-activated
receptor γ coactivator 1α; PLSO—Tunisian Pistacia lentiscus L. seed oil; ROS—reactive oxygen species;
SD rat—Sprague Dawley rat; SFA—saturated fatty acid; SOD—superoxide dismutase; ↑—up regulation;
↓—down regulation.

Some randomized controlled trials (RCT) have tried to verify the improvement of
PUFAs on skeletal muscle in aged people. For example, a study based on 200 older
Chinese people showed that thigh circumference, total as well as appendicular skeletal
muscle mass significantly increased (p < 0.001) after 6 months of fish oil capsules (1.34 g
EPA + 1.07 g DHA/d) supplementation. Muscle strength and physical performance, in-
cluding hand grip strength and timed up and go time (p < 0.001), were also improved [57].
In another study based on 94 healthy aged participants, the intervention with krill oil for
6 months promoted appendicular skeletal muscle mass, strength, and function, mainly
including the vastus lateralis muscle thickness, grip strength, and knee extensor maximal
torque (p < 0.05), which indicated that supplementation of krill oil could significantly
increase muscle function and size [58]. Furthermore, a study found that 6 months of sup-
plementing n-3 PUFA in healthy elderly not only exhibited a significant increase in muscle
strength but also attenuated acute response to exercise without any effects on mitochondrial
function [59]. Moreover, there was evidence that PUFAs, in combination with training, had
a positive effect on sarcopenia. A RCT found that 24 weeks of n-3 PUFA-rich diet combined
with resistance training stimulated the regional anti-inflammatory responses and growth
responses in skeletal muscle by upregulating the expression of cell growth regulator (e.g.,
mTOR) and downregulating the expression of pro-inflammatory cytokine (e.g., IL-1β),
which is advantageous to the skeletal muscle growth in active older women [60].

There are still some studies with inconsistent results. A study included 55 elderly
patients with abdominal obesity with type 2 diabetes. The intervention group received
4 g/d of fish oil for 6 months, and the levels of serum EPA and DHA rose significantly,
but there was no significant change in muscle mass [61]. The possible explanation for the
different results was these subjects with type 2 diabetes had a long duration of insulin
resistance and relatively older ages, so their resilience may be even worse, and their
response to interventions may also be weaker. Another 3-year DO-HEALTH clinical trial
showed that neither n-3 PUFAs supplemented alone nor combined with vitamin D or
strength training improved the scores of short physical performance battery (SPPB) in
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a statistically significant way [62]. The reasons could be that 83% of participants in this
study at baseline had been at moderate to high levels of physical activity. Therefore, the
possibility of further benefit from extra exercise may be very slight. The details of clinical
studies are shown in Table 2.

Table 2. Clinical evidence of the effect of PUFAs on age-related musculoskeletal diseases.

Study Type Intervention Subject Dose Results Ref.

Sarcopenia

RCT EPA + DHA Older Chinese
people

1.34 g EPA + 1.07 g
DHA/d for 6 months

Increased mass, strength, and
physical performance of
muscle

[57]

RCT Krill oil Healthy elderly
people 4 g/d for 6 months

Increased muscle thickness,
grip strength, and knee
extensor maximal torque

[58]

RCT EPA + DHA Healthy older
adults 4 g/d for 6 months

Increased muscle strength
Attenuated the acute response
to exercise

[59]

RCT
n-3 PUFA-rich
healthy diet +
training

Older women
Fish and seafood
intake ≥ 500 g/week
for 24 weeks

Lowered the local level of
inflammation
Triggered growth responses in
skeletal muscle

[60]

RCT Fish oil
Type 2 diabetic
patients with
abdominal obesity

4 g/d for 6 months
Increased serum EPA and
DHA levels but no significant
change in muscle mass

[61]

RCT Omega-3 PUFA Adults aged
70 years or older 1 g/d for 3 years Showed no significant

increase in the scores of SPPB [62]

Osteoporosis

RCT EPA/DHA
Older
postmenopausal
women

1.2 g/d for 6 months

Reduced bone turnover
Improved RBC DHA levels in
short-term
supplementation

[63]

RCT PO Japanese adults 7.0 mL/d for
12 months

Had a positive effect on
age-related
BMD decline

[64]

RCT Fish oil
(EPA + DHA)

Postmenopausal
breast cancer
survivors

4 g/d for 3 months
Changed serum fatty acid
levels
Inhibited bone resorption

[65]

RCT Marine n-3 PUFA
Adult kidney
transplant
recipients

2.6 g/d for 44 weeks Showed no significant effect
on promoting BMD [66]

RCT n-3 PUFA HIV-infected
patients 2 g/d for 24 months Had no beneficial effect on

BMD [67]

Osteoarthritis

RCT Krill oil Japanese adults 2 g/d for 30 days Mitigated the pain and
stiffness in knees [68]

RCT Krill oil

Adults with
clinically
diagnosed knee
osteoarthritis or
regular knee pain

4 g/d for 6 months Improved keen pain, stiffness,
and physical function [69]

RCT Marine omega-3
fatty acids US older adults

1 g/d Omacor® + 840 mg
EPA + DHA for
3.8–6.1 years

Did not alleviate knee pain,
stiffness, or enhance function [70]

Abbreviations: BMD—bone mineral density; DHA—docosahexaenoic acid; EPA—eicosapentaenoic acid;
PO—perilla seed oil; PUFA—polyunsaturated fatty acid; RBC—red blood cell; RCT—randomized controlled trial;
SPPB—short physical performance battery; ↑—up regulation; ↓—down regulation.
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4. Osteoporosis
4.1. Prevalence of Osteoporosis

Osteoporosis is a systemic bone disease, and its characteristics are reducing bone
mineral density and impairing the microstructure of bone, which can lead to increased vul-
nerability and fracture susceptibility [71,72]. With the global elderly population expanding,
the high-risk group of osteoporosis is also increasing, and fragile fractures have become a
major obstacle to healthy aging.

The International Osteoporosis Foundation (IOF) estimated that 4 million men and
16 million women were affected by osteoporosis in six European countries (the UK, France,
Germany, Italy, Spain and Sweden) [73]. In America, about 10 million Americans over
50 suffer from osteoporosis, and another 34 million are at risk [74]. In China, the overall
prevalence of osteoporosis over 40 years old was 20.6% for women and 5.0% for men [75].
In addition, bone fraction is one of the most common complications of osteoporosis [76].
In 2010, about 21 million men and 137 million women aged 50 years and over worldwide
reached the fracture threshold, and Asia had the top number of people over the threshold;
the number is projected to double in the next 40 years [77]. As a result, osteoporosis and
associated fractures have become a significant disease burden to society.

4.2. Pathogenesis of Osteoporosis

Osteoclasts are large, multinucleated cells attached to bone, and their main function
is to release the enzymes associated with osteolysis for bone resorption [78,79]. Stud-
ies have shown that many factors, such as hormones, cytokines, inflammatory factors,
and noncoding RNA, can act on the signaling pathways that promote the differentiation
and maturation of osteoclasts, which result in enhanced bone resorption, bone loss, and
osteoporosis [80]. The signaling pathways mainly includes IL-1/TNF-α, receptor activa-
tor of nuclear factor κB ligand/receptor activator of nuclear factor κB/osteoproteinogen
(RANKL/RANK/OPG) and their downstream signaling pathways, mitogen-activated
protein kinase (MAPK) cascade, NF-κB, protein kinase B (PKB), c-jun N-terminal kinase
(JNK), and extracellular regulated protein kinases (ERK) [81–84].

Another key group of cells is osteoblasts, which contribute to forming bone and
strengthening through the synthesis and secretion of collagen, as well as the formation
of hydroxyapatite by mineralizing inorganic phosphorus and calcium ions [85]. The
signaling molecules that play a crucial role in osteoblast turnover are Runx2, β-catenin,
osterix, and their related signaling pathways, for instance, Wnt/β-catenin, Notch and bone
morphogenetic protein (BMP)-Smad signaling pathways. Those molecules and signaling
pathways regulate the growth, activation, and maturation of the osteoblasts, and they are
essential for bone remodeling [86–90].

4.3. Effects of PUFAs on Osteoporosis

Accumulating studies have indicated that PUFAs could play an important role in main-
taining bone health. n-3 PUFA intake was inversely associated with the risks of incident and
recurrent fractures, and this benefit was more distinct in individuals with a higher genetic
risk of fractures. In some cross-sectional studies, the BMD in the spine (β = 0.155; p = 0.009)
and femur (β = 0.287; p = 0.043) showed a significant positive correlation with total plasma
n-3 PUFA [91,92] and serum docosapentaenoic acid (DPA) had a positive correlation with
BMD of the head (β = 0.002; p = 0.008) and lumbar spine (β = 0.001; p = 0.036) [93]. Logis-
tic regression analysis also showed that higher levels of plasma n-3 PUFAs (OR = 0.751;
p = 0.022) were protective factors for low bone mass [91]. Compared to patients with os-
teoarthritis, those with hip fractures had 26.2% lower plasma n-3 levels [94]. However,
the nutritional pattern abundant in omega-6 PUFAs had a negative association with the
BMD of the hip (r = −0.215, p < 0.05) [95]. In a Mendelian randomization study, omega-6
PUFAs were also inversely related to total body BMD (β = −0.052; p = 0.0106) [96]. In a
cohort study, the risks of the total fractures (hazard ratio (HR) = 0.93; 95% CI = 0.89, 0.97),
total recurrent fractures (HR = 0.88; 95% CI = 0.82, 0.96), vertebrae fractures (HR = 0.85;
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95% CI = 0.72, 0.99), and hip fractures (HR = 0.83; 95% CI = 0.75, 0.92) were lower in those
subjects who have the habit of using fish oil supplements [97]. Moreover, this negative
association between fish oil supplementation and total fractures was stronger in individuals
with higher fracture genetic risk scores [97].

Some studies showed that the level of PUFA metabolism in aging bone cells changes,
and supplementation with PUFAs has many health benefits for bones. For example, in a
study, researchers applied metabolomics to explore the change in the level of n-3 PUFA
in aged osteoblasts and found that the amount of n-3 PUFA decreased in tandem with a
reduction in the expression of genes associated with bone metabolism (e.g., RANKL/OPG,
insulin-like growth factor-1, IGF-1), as well as increases in genes linked to aging and oxida-
tive stress damage (e.g., MDA). Intake of n-3 PUFA improved aging-related osteoporosis
by adjusting unsaturated fatty acid metabolism in senescent osteoblasts [98]. In another
study, the non-polar lipid fraction of green shell mussel oil (GSM), which is high in long-
chain omega-3 PUFA, was introduced into the culture of osteoclasts. The results showed
that non-polar lipid from GSM oil reduced the tartrate-resistant acid phosphatase (TRAP)
activity and the numbers of TRAP cell in a manner that is dependent on the dosage and
the expression of some genes related to cell differentiation decreased, like nuclear factor
of activated T-cells, cytoplasmic 1 (NFATc1), carbonic anhydrase II (CA II), cathepsin K
(CTSK), and matrix metalloproteinase-9 (MMP-9). The non-polar lipid fraction of GSM oil
had the effect of inhibiting osteoclastogenic activity [99].

Several animal experiments showed that a diet high in n-3 PUFAs significantly im-
proved bone accumulation and bone function. For example, in a study, 12-month-old
mice were given 1% or 4% highly purified concentrated fish oil (CFO) diets for 12 months.
The results showed that mice from the 4% CFO group maintained higher bone mineral
density (BMD) in the process of aging [100]. The possible mechanisms of the protection
included decreasing the levels of the bone resorption marker (e.g., TRAP and IL-6), reduc-
ing the stimulating factor RANKL without influencing its receptor OPG, increasing the
suppressors of osteoclastogenesis (e.g., IL-12, interferon-γ, IFN-γ), and downregulating
the inflammatory signaling pathways like NF-κB, JNK, and p38 MAPK [100]. In another
study, supplementation of DHA in SD rats increased BMD and bone mineral content (BMC)
of the whole body, lumbar spine, and long bone, and the bone cortical microstructure
parameters and peak force of the lumbar spine were improved. Additionally, this study
also found that during and after sexual maturation, intake of dietary DHA (0.1, 0.4, 0.8,
and 1.2% w/w) would contribute to the peak bone mass, and higher doses of DHA had
no further healthy benefit for bone [101]. Furthermore, adult Wistar rats in the group with
diets that added flaxseed flour, which is rich in ALA, had greater total and spine BMD,
total and spine BMC, and total bone area, as well as higher levels of osteocalcin. Flaxseed
flour also improved the width of the diaphysis, BMD, maximum force, breaking strength,
and stiffness of the femur [102]. However, n-6 PUFAs in the diet could be harmful to bone
health. For instance, in a study, mice in the postmenopausal osteoporosis model were orally
administered with krill oil or AA-rich oil diet. It found that AA diet inhibited BMD and
the repair of trabecular microstructure. The underlying mechanism was that the AA diet
upregulated the expression of RANKL mediated by prostaglandin E2/EP4 receptor, thereby
enhancing the NF-κB pathway, which leads to bone resorption [103]. The mechanisms of
PUFAs on osteoporosis are shown in Figure 4 and Table 3. It should be pointed out that
the relationship between osteoporosis and n-3, n-6 PUFAs was inconsistent. That is, taking
significant amounts of n-3 PUFAs in the diet was both healthy and safe, whereas too much
n-6 PUFAs in the diet could be damaging to health.
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In vivo Fish oil 
12-month-old 
C57BL/6 mice 

1%, 4% for 12 months,  
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↑ BMD, IL-12, and IFN-γ 
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Figure 4. The effects and mechanisms of PUFAs against osteoporosis. n-3 PUFAs could raise the
level of SOD to reduce ROS, thus suppressing oxidative stress in osteoblasts; n-3 PUFAs could
reduce RANKL expression in osteoblasts, while n-6 PUFAs could raise the expression via increasing
PGE2/EP4. RANKL could combine with RANK on osteoclast and then activate NF-κB and JNK
pathways to ultimately stimulate NFATc1, the important transcription factor for the differentiation
of osteoclast. n-3 PUFAs could increase the level of IFN-γ and IL-12, the strong suppressors of
osteoclastogenesis. Osteoclastogenesis and osteoclast differentiation would improve bone resorption
and bone loss, which led to osteoporosis. IFN-γ—interferon-γ; IL-12—interleukin-12; JNK—c-jun
N-terminal kinase; NF-κB—nuclear factor-κ-gene binding; NFATc1—nuclear factor of activated
T-cells cytoplasmic 1; PGE2—prostaglandin E2; PUFA—polyunsaturated fatty acid; RANK—receptor
activator of nuclear factor κB; RANKL—receptor activator of nuclear factor κB ligand; ROS—reactive
oxygen species; SOD—superoxide dismutase.

Some clinical trial studies have also indicated that PUFAs, particularly n-3 PUFA, have
positive effects on bone health. In a study, older postmenopausal women received 1.2 g/d
of EPA/DHA for 6 months while the control group was provided olive oil. It was found
that, in this short-term intervention, DHA levels in red blood cells (RBCs) increased, and
osteocalcin and bone-specific alkaline phosphatase dropped in the n-3 PUFA group [63].
In an RCT, healthy Japanese adults received 7.0 mL/d of olive oil as a placebo or perilla
(Perilla frutescens) seed oil (PO), which is rich in ALA. After 12 months of intervention,
the mean of BMD increased, and the levels of serum TRACP5b decreased significantly
in the PO group [64]. At the same time, compared to the placebo group, erythrocyte
plasma membrane ALA levels and biological antioxidant potential/diacron reactive oxygen
metabolites ratios significantly increased in the PO group. These findings suggested that
12 months of PO intake alleviated age-related BMD decline via increasing ALA levels and
inhibiting bone resorption [64]. In another study, high-dose fish oil supplementation was
given to postmenopausal breast cancer survivors for 3 months. The results indicated that
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the levels of total n-3 PUFAs, EPA, and DHA in serum increased, but the levels of n-6
PUFAs and n-6:n-3 PUFA ratio in serum decreased, and bone resorption was inhibited [65].

Table 3. Effect of PUFAs on osteoporosis from cellular and animal experiments.

Study Type PUFAs Type Subject Dose Effects Mechanisms Ref.

In vitro n-3 PUFAs Osteoblasts NA

Increased bone metabolism
gene expression
Decreased aging-related genes
expression, oxidative stress
damage

↑ RANKL/OPG,
IGF-1
↓ MDA, FOXO1

[98]

In vitro GSM oil RAW 264.7
osteoclasts 10–20 µg/mL for 48 h Inhibited osteoclastogenic

activity ↓ TRAP and NFATc1 [99]

In vivo Fish oil 12-month-old
C57BL/6 mice

1%, 4% for 12 months,
supplemented in diet

Maintained higher BMD
during aging

↑ BMD, IL-12, and
IFN-γ
↓ TRAP5b, RANKL,
and NF-κB

[100]

In vivo DHA SD rats
0.1, 0.4, 0.8, 1.2% w/w
for 10 weeks,
supplemented in diet

Increased bone mass,
bone strength
Improved trabecular
microarchitecture

↑ BMC, BMD [101]

In vivo Flaxseed
flour Adult Wistar rats 25 g/100 g diet for

6 months
Produced greater BMD and
femur resistance

↑ BMD, BMC, and
osteocalcin [102]

In vivo AA Ovariectomized
mice

220 mg/kg for
3 months,
oral administration

Impaired trabecular
microstructure repair
and BMD

↑ PGE2, RANKL, and
NF-κB
↓ BMD

[103]

Abbreviations: AA—arachidonic acid; BMC—bone mineral content; BMD—bone mineral density;
DHA—docosahexaenoic acid; FOXO—forkhead box O; GSM—green shell mussel oil; IFN-γ—interferon-
γ; IGF-1—insulin-like growth factor-1; IL-12—interleukin-12; MDA—malondialdehyde; NA—not avail-
able; NF-κB—nuclear factor-κ-gene binding; NFATc1—nuclear factor of activated T-cells cytoplasmic 1;
OPG—osteoproteinogen; PGE2—prostaglandin E2; PUFA—polyunsaturated fatty acid; RANKL—receptor activa-
tor of nuclear factor κB ligand; SD rat—Sprague Dawley rat; TRAP—tartrate-resistant acid phosphatase; ↑—up
regulation; ↓—down regulation.

Several studies, especially long-term studies, showed no significant effect. For example,
in a trial, 2.6 g/d marine n-3 PUFA supplement for 44 weeks was provided to adult kidney
transplant recipients after the transplant, while olive oil was given to the control. It was
found that, in the intention-to-treat analyses, there was no significant difference in Delta
BMD of any skeletal site and trabecular bone score (TBS) between the two groups [66]. The
probable reason for this inconsistent result could be that the study subjects were mainly
Norwegian, famous for their high intake of fish, so more supplementation was unlikely to
provide significant advantages because the number of participants had probably already
surpassed the marine n-3 PUFA threshold that is ideal for bone. In another study, HIV-
infected patients with hypertriglyceridemia were given 2 g/d of n-3 PUFA or fenofibrate for
24 months. The outcomes showed that, although the BMD in the femoral neck (FN) region
decreased noticeably in both groups, there was no statistical difference in the change of
BMD in the lumbar spine and FN between the two groups [67]. According to the study, an
imbalance in the proportion of n-3 and n-6 PUFAs in patients‘ diets could have contributed
to the different outcomes in the trial. At the same time, the sample size of this trial was
small (30 subjects per arm), and many subjects were lost to follow-up. The details of clinical
studies are shown in Table 2.

5. Osteoarthritis
5.1. Prevalence of Osteoarthritis

Osteoarthritis is a degenerative, non-inflammatory, and progressive active joint disease.
The pathological degeneration of articular cartilage, as well as new bone formation in the
joint margin and subchondral region, are the main characteristics [104]. As GBD reported, in
2017, the global age-standardized point prevalence of diagnosed hip and knee osteoarthritis
was 3.75%, and the annual incidence was 0.18% [105,106]. The prevalence rate showed a
9.3% increase from 1990 to 2017 and a 13.25% increase from 1990 to 2019 [105,107]. The
standardized incidence of overall osteoarthritis in 2017 was 6.8 per 1000 person-years, and
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the prevalence was 10.7% in the United Kingdom [108]. The prevalence of symptomatic
knee osteoarthritis was 17% in the United States and 14.6% in China [109,110]. In lower
middle- and low-income countries, including countries in East Asia, Pacific and South
Asia, and Sub-Saharan Africa, the prevalence of osteoarthritis varied widely from 1.42% to
83.73% [111]. Moreover, the prevalence in the US, China, and India has greatly increased
by 79.63%, 156.58%, and 165.75%, respectively, from 1990 to 2019 [107]. Thus, osteoarthritis
is an increasingly common disease that affects many health outcomes worldwide.

5.2. Pathogenesis of Osteoarthritis

In the past few decades, osteoarthritis has been widely studied, but the complex
pathological mechanism of osteoarthritis is still not very clear [112]. It once was thought
that prolonged overload and biomechanical degradation of joints were the cause of the
destruction of articular cartilage and consequent inflammation, which led to pains and
stiffness of joints [113]. Nowadays, chondrocyte apoptosis, joint-related tissue lesions,
inflammation, and metabolic factors are considered to be several factors that could cause
osteoarthritis [112,114,115]. Apoptosis is a mode of highly regulated programmed cell death.
In chondrocytes of osteoarthritis, apoptotic cells increased dramatically [116]. Several
studies have indicated that the signaling pathways (e.g., the mitochondrial-mediated
caspase-dependent pathways and the death receptor pathway) [112] and cytokines (e.g.,
TNF-α, IL-1β, and IL-6) [115,117,118] related to apoptosis were increased in chondrocytes
of osteoarthritis.

Osteoarthritis is a joint disease involving the change of articular cartilage and sub-
chondral bone, ligament, capsule, synovial joints, and muscles around the structure [119],
especially the change of subchondral bone and synovium [112]. Subchondral bone scle-
rosis was probably one of the important causes of osteoarthritis. In both the early and
late stages, a series of structural changes of subchondral bone were observed, including
pore remodeling of subchondral bone, irregular bone mineralization in the matrix tissue,
enhancement of subchondral bone density, and sclerosis [120–122]. Moreover, synovial
hyperplasia, hypertrophy, fibrosis, and the level of synovial inflammation were related to
the occurrence and development of osteoarthritis [123,124].

5.3. Effects of PUFAs on Osteoarthritis

Some epidemiologic studies showed that dietary intake of PUFAs had associations
with disease progression in osteoarthritis. For example, in a study, inverse relations
were found between total n-3 PUFAs and DHA in plasma with patellofemoral cartilage
loss [125]. In another case-control study, 100 female participants with symptomatic primary
knee osteoarthritis were matched with 100 apparently healthy women. The results found
that PUFA intake had a negative correlation with the Western Ontario and McMaster
Universities Osteoarthritis Index (WOMAC) (r = −0.163; p < 0.05) [126]. In a 48-month
follow-up study of subjects with radiographic knee osteoarthritis, researchers observed
that higher dietary intakes of PUFAs appeared to be associated with less radiographic
progression (HR = 0.67; 95% CI = 0.51, 0.89) [127]. However, the result of a study showed
that none of the serum EPA, other specific n-3 PUFAs, and n-6 PUFAs levels were associated
with the risk of knee osteoarthritis or other osteoarthritis outcomes [128]. The possible
reason was that the measured serum PUFA levels were temporary and might not be
associated with longer-term results.

Many experimental studies have investigated the beneficial effects of PUFAs on os-
teoarthritis and related mechanisms. For instance, in a study, human osteoarthritis chondro-
cytes and SD rats were both supplemented with DHA. It was discovered that rats with DHA
had an increased collagen II-positive cell rate and thicker cartilage, while the rats also had a
significantly lower Mankin score [129]. At the same time, in osteoarthritis chondrocytes, the
expression of p-mTOR, p-JNK, p-p38, and the ratio of light chain 3-I/II (LC3-I/II) decreased,
and the expression of Beclin-1 and B-cell lymphoma-2 (Bcl-2) increased. These outcomes
indicated that DHA promoted proliferation, reduced apoptosis, and elevated autophagy
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of chondrocytes in osteoarthritis [129]. In another study, obesity-related post-traumatic
osteoarthritis mice had 14 weeks of a diet that was abundant in n-3 PUFAs, and the diet
alleviated the osteoarthritis-like lesions of articular cartilage and osteoarthritis progression,
along with the reduction of proteins of high-mobility group box 1 (HMGB1), the receptor for
advanced glycation end products (RAGE), and toll-like receptor 4 (TLR4) [130]. In SW1353
cells, DHA also significantly decreased HMGB1-RAGE/TLR4 signaling proteins, which
were upregulated by IL-1β, while increasing the expression of sirtuin1. The overexpression
of HMGB1 can reverse the inhibitory effect of DHA on the pathway [130]. In addition,
n-6 PUFAs exacerbated obesity-related osteoarthritis, whereas n-3 PUFAs were protec-
tive against the disease by regulating the TLR4/NF-κB and NOD-like receptor protein 3
(NLRP3)/caspase-1/gasdermin D pathways [131]. Moreover, anterior cruciate ligament
transection (ACLT)-induced rats were given DHA tail injection every other day. The results
showed that the intervention group had less bone mass loss and angiogenesis, and in the
osteochondral unit, the number of immunofluorescence-positive cells labeled with TRAP,
RANKL, CD31, and endomucin decreased [132]. In the experiment of RAW264.7 cell, DHA
inhibited TRAP-stained cells, area of bone resorption pits, and the mRNA expression of
TRAP, CTSK, microphthalmia transcription factor (MITF), and NFATc1, while DHA also
inhibited tube formation, proliferation, and migration, as well as vascular endothelial
growth factor (VEGF)-C mRNA and vascular endothelial growth factor receptor2 (VEGFR2)
protein expression in HUVECs [132]. The mechanisms of PUFAs on osteoarthritis are
shown in Figure 5 and Table 4.
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Figure 5. The effects and mechanisms of polyunsaturated fatty acids against osteoarthritis. n-3
PUFAs could increase SIRT1 and inhibit the HMGB1-RAGE/TLR4-NF-κB signaling pathway, while
n-6 PUFAs could promote the pathway, which was associated with increasing the level of NLRP3 and
inflammatory factors, like IL-1β and TNF-α. n-3 PUFAs could increasing JNK, p38 MAPK pathways
expression and Bcl-2 to suppress apoptosis. n-3 PUFAs could raise the level of Beclin-1 by inhibiting
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the expression of the mTOR pathway to promote autophagy. n-3 PUFAs could lower the ex-
pression of RANKL and NFATc1 to suppress osteoclast differentiation and reduce VEGF and its
receptor to inhibit vessel formation. Bcl-2—B-cell lymphoma-2; HMGB1—high-mobility group
box 1; IL-1β—interleukin-1β; JNK—c-Jun N-terminal kinase; MAPK—mitogen-activated pro-
tein kinase; mTOR—mammalian target of rapamycin; NF-κB—nuclear factor-κ-gene binding;
NFATc1—nuclear factor of activated T-cells cytoplasmic 1; NLRP3—NOD-like receptor protein
3; PUFA—polyunsaturated fatty acid; RAGE—receptor for advanced glycation end products;
RANKL—receptor activator of nuclear factor κB ligand; SIRT1—sirtuin 1; TLR4—toll-like recep-
tor 4; TNF-α—tumor necrosis factor-α; VEGF—vascular endothelial growth factor; VEGFR—vascular
endothelial growth factor receptor.

Table 4. Effect of PUFAs on osteoarthritis from cellular and animal experiments.

Study Type PUFAs Type Subject Dose Effects Mechanisms Ref.

In vitro DHA Human osteoarthritis
chondrocyte 50 µg/mL for 1 h Promoted chondrocyte

proliferation
Suppressed apoptosis
and
elevated autophagy

↑ Beclin-1 and Bcl-2
↓ p-JNK, p-p38,
p-mTOR, and
LC3-I/II ratio

[129]

In vivo DHA SD rats 5 g/kg for 6 weeks,
supplemented in diet

↑ Collagen II–positive
cell rate
↓ Mankin score

[129]

In vitro DHA SW1353 cells 10 µM for 24 h Alleviated osteoarthritis
progression

↑ SIRT1
↓ HMGB1, RAGE, TLR4,
and Caspase-8

[130]

In vivo Fish oil
Obesity-related
post-traumatic
osteoarthritis mice

8.4% w/w for 14 weeks,
supplemented in diet [130]

In vitro n-3/n-6 PUFAs SW1353 cells
NA

n-6 PUFAs exacerbated
obesity-related
osteoarthritis
n-3 PUFAs
were protective

n-6: ↑ TLR4, NF-κB,
and NLRP3
n-3: ↓ TLR4, NF-κB,
and NLRP3

[131]

In vivo n-3/n-6 PUFAs
Obesity-related
post-traumatic
osteoarthritis mice

[131]

In vitro DHA RAW264.7 cells NA Protected cartilage by
inhibiting the ability of
bone remodeling
and angiogenesis

↓ CTSK, TRAP, NFATc1,
MITF, VEGF-C,
VEGF-A, and VEGFR2

[132]

In vivo DHA ACLT-induced rats
1 mg/kg every other
day for 2 months,
injected in tail

↓ RANKL, CD31, and
endomucin [132]

Abbreviations: ACLT—anterior cruciate ligament transection; Bcl-2—B-cell lymphoma-2; CTSK—cathepsin K;
DHA—docosahexaenoic acid; HMGB1—high-mobility group box 1; JNK—c-Jun N-terminal kinase; LC3—light
chain 3; MITF—microphthalmia transcription factor; mTOR—mammalian target of rapamycin; NA—not
available; NF-κB—nuclear factor-κ-gene binding; NFATc1—nuclear factor of activated T-cells cytoplasmic 1;
NLRP3—NOD-like receptor protein 3; PUFA—polyunsaturated fatty acid; RAGE—receptor for advanced gly-
cation end products; RANKL—receptor activator of nuclear factor κB ligand; SD rat—Sprague Dawley rat;
SIRT1—sirtuin 1; TLR4—toll-like receptor 4; TRAP—tartrate-resistant acid phosphatase; VEGF—vascular endothe-
lial growth factor; VEGFR—vascular endothelial growth factor receptor; ↑—up regulation; ↓—down regulation.

Clinical trials also have studied the health effects of PUFAs on joint pain and function.
For example, in a trial, Japanese adults with mild knee pain as subjects were provided
2 g/d of krill oil for 30 days, and the symptoms of knee pain were assessed by the Japanese
Knee Osteoarthritis Measure (JKOM) and Japanese Orthopedic Association score (JOA) [68].
After the intervention, in both the JKOM and JOA questionnaires, the results of the krill
oil group showed a very big improvement, especially in the two questions of JKOM about
knee pain and stiffness. Krill oil showed significant benefits on keen pain in sleeping and
standing, as well as in the range of motion on both sides of the knees [68]. In another study,
adults diagnosed with mild to moderate knee osteoarthritis or had regular knee pain were
given 4 g/d of Krill oil as the intervention group for 6 months while the control group was
given mixed vegetable oil. It was found that the krill oil group had greater improvements
in knee stiffness, physical function, and knee pain scores [69].

Nevertheless, there is also a study that indicated that PUFAs did not improve joint
diseases or function. In the Vitamin D and OmegA-3 Trial, participants of US older adults
took marine omega-3 PUFAs supplementations (1 g/d Omacor® + 840 mg/d EPA + DHA)
for 3.8 to 6.1 years [70]. The results showed that during the follow-up period, at any point
in time, the intervention group and placebo group between the WOMAC pain had no
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difference. Over time, marine omega-3 PUFA supplementations also did not significantly
raise WOMAC function or stiffness scores, which indicated that a mean of 5.3 years of
supplementing omega-3 PUFAs did not relieve the pain in the knee or improve function or
stiffness in pain [70]. The reasons for this inconsistent result were that, firstly, the diagnosis
of osteoarthritis was mainly based on self-report, which might be subject to bias; secondly,
the dose of n-3 PUFAs was relatively lower [68,69]. The details of clinical studies are shown
in Table 2.

6. Conclusions

Many studies showed that PUFAs could protect against age-related musculoskeletal
diseases (sarcopenia, osteoporosis, and osteoarthritis), and the mechanisms were mainly
reducing oxidative stress and inflammation and controlling the growth, differentiation,
apoptosis, and autophagy of cells. However, some studies, especially several long-term
studies, had inconsistent results. Therefore, in the future, more epidemiological studies
with more reasonable research designs, larger sample sizes, and representative subjects
should be conducted. In experimental studies, the underlying mechanisms of PUFAs on
age-related musculoskeletal diseases should be explored further. Moreover, additional
longer-term clinical trials ought to be carried out in order to validate the effects of PUFAs
on age-related musculoskeletal diseases from the preclinical studies. Moreover, PUFAs
could be exploited into functional foods and drugs for the prevention and treatment of
age-related musculoskeletal diseases, sarcopenia, osteoporosis, and osteoarthritis.
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