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Abstract: Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination
in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms
underlying MS remain unclear, but current evidence suggests that inflammation and immune dys-
function play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic
multifunctional organ involved in various immune diseases, including MS, due to its endocrine
function and the secretion of adipokines, which can influence inflammation and immune responses.
Physical activity represents an efficacious non-pharmacological strategy for the management of a
spectrum of conditions that not only improves inflammatory and immune functions but also directly
affects the status and function of AT. Additionally, the exploration of nutritional supplementation
represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied
to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims
to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest
published data about the involvement of AT and the main adipokines, such as adiponectin, leptin,
and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether
physical activity and dietary management could serve as useful strategies to improve the quality of
life of MS patients.

Keywords: multiple sclerosis; physical activity; adipose tissue; adipokines; nutritional supple-
ments; diet

1. Introduction

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous
system (CNS), currently affecting over 2.5–3 million people worldwide [1,2]. Clinically,
MS is a heterogeneous disease classified into three main phenotypes: relapsing–remitting
multiple sclerosis (RRMS), primary progressive multiple sclerosis (PPMS), and secondary
progressive multiple sclerosis (SPMS). RRMS affects approximately 85% of MS patients and
is characterized by episodes of neurological dysfunction alternating with periods of remis-
sion. Many RRMS patients eventually transition to SPMS within 20 years, characterized by
worsening neurodegenerative processes. Alterations in cytokine levels and costimulatory
molecules have been noted in the dendritic cells of patients moving from RRMS to SPMS.
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Other factors contributing to the death of neuronal and oligodendrocyte cells may involve
elevated nitric oxide production and the release of soluble proteins like matrix metallopro-
teinases. These processes exacerbate oxidative stress, directly affecting the integrity of the
blood–brain barrier (BBB) [3]. PPMS, affecting the remaining 10–15% of patients, involves
continuous neurological damage from disease onset [3,4]. Despite clinical distinctions,
chronic inflammation and immune system dysfunctions play a critical role across all MS
phenotypes [5]. While MS was once considered strictly related to T cell dysregulation and
mainly driven by autoreactive T helper (Th)1 and Th17 cells, it has now been recognized
that numerous factors, including the endocrine activity of adipose tissue (AT), contribute
to MS immunopathology [6]. Apart from its role in energy homeostasis, AT functions as
an active endocrine organ, significantly influencing immune and inflammatory processes
through the release of adipocytokines [7]. Adiponectin, leptin, and tumor necrosis factor α
(TNFα) are key adipokines released by AT that significantly influence immune responses
and inflammation. Adiponectin typically has anti-inflammatory effects, although its role in
MS is complex, with research indicating that it may have both protective and detrimental
effects depending on the disease stage. In contrast, leptin is pro-inflammatory and en-
hances Th1 and Th17 responses, which are critical in MS pathology. TNFα, a well-known
pro-inflammatory cytokine, drives the inflammatory response by activating immune cells
and fostering demyelination [8–10]. Disruptions in the secretion of these adipokines might
be involved in the pathophysiology of MS, potentially heightening the risk of disease
onset and accelerating its progression, as evidenced by their altered levels in MS patients
compared to healthy controls [11–14].

Physical activity is increasingly recognized as a powerful non-medical tool for treating
various diseases, enhancing metabolic, immune, and inflammatory functions [15–17]. An
increasing number of studies in the literature support the idea that regular physical activity
is particularly beneficial for individuals with MS, given its positive effects on relapse rate,
brain atrophy, and disability progression. Well-structured exercise programs have been
demonstrated to be safe and effective in managing MS, improving muscle function, walking,
mobility, and cognitive functions [18]. Moreover, physical activity can significantly enhance
mood, reduce fatigue, and improve overall quality of life, which is especially important
for MS patients dealing with chronic and progressive symptoms [18,19]. Importantly, in
MS patients, regular exercise has been shown to modulate immune responses, potentially
reducing pro-inflammatory cytokines and increasing anti-inflammatory ones produced
by AT, thereby modulating its endocrine function [17,20]. This modulation may help to
mitigate the chronic inflammation that characterizes MS.

In addition to physical activity, several other lifestyle factors, such as diet, have been
shown to significantly influence MS disease activity [21,22]. The nutritional status of MS
patients has been proposed as a potential factor influencing MS symptoms and progres-
sion [22]. Various dietary supplements appear to possess antioxidant and anti-inflammatory
properties, potentially enhancing autoimmune tolerance in MS patients [23,24]. Conversely,
recent data from the literature have highlighted a consistently high prevalence of defi-
ciencies in vitamins A, B12, and D3 among MS patients, underscoring the importance
of adopting a healthy dietary regimen and appropriate supplementation for individuals
with MS [23]. Despite extensive reviews about the contributing factors, signs/symptoms,
and dysregulated mechanisms of MS, the role of AT in MS has not been comprehensively
reviewed. Understanding the interplay between AT and MS, particularly in relation to
physical activity, could provide new insights into therapeutic strategies aimed at managing
inflammation and improving overall outcomes for MS patients. Moreover, improving
the understanding of the impact of nutritional factors on MS pathogenesis could offer a
complementary approach to disease management.

Therefore, the primary outcome of this review was to elucidate the complex relation-
ship between lifestyle and MS by focusing on the roles of AT and the main adipokines—
adiponectin, leptin, and TNFα—in the pathogenesis of MS.
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Furthermore, we investigated whether physical activity and dietary management can
improve the quality of life for MS patients, with particular attention paid to the impact of
physical activity on the levels of the aforementioned adipokines in MS patients.

2. MS and Physical Exercise

The benefits of exercise in improving physical performance, mental function, and
general wellbeing are evident. Interestingly, as reviewed by Bonanni R. et al., even moderate
exercise can be beneficial in the context of neurodegenerative diseases. It helps improve
energy balance, fitness levels, flexibility, and quality of life by reducing neuroinflammation,
enhancing neuroplasticity, and supporting myelin repair [25].

For patients with MS, an exercise prescription is essential [26–32]. Indeed, evidence in-
dicates that a supervised and personalized exercise program can cause important improve-
ments in different areas of cardiorespiratory fitness, muscle strength, flexibility, balance,
fatigue, quality of life, and respiratory function in individuals with MS [33–36]. Regarding
the type of exercise, the majority of studies in the literature have included exercise programs
involving both resistance (e.g., progressive resistance exercise, walking mechanics) and
endurance training (e.g., bicycle ergometry, arm or arm–leg ergometry, aquatic exercise,
treadmill walking), as well as combined training approaches [29,31]. These studies have
shown that such exercise regimens provide significant benefits for MS patients, improving
disease symptoms. Accordingly, several important physiological and functional benefits
of exercise could be listed for MS, including improved aerobic capacity [37], better bal-
ance [38], improved mood (with potential reduction in depression) [39], increased muscle
strength [40], and improvements in the immune system [41] (see Figure 1).
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Figure 1. Physical activity, nutrition, and supplementation are crucial non-pharmacological tools for
MS management. Lifestyle factors influence AT endocrine function, particularly through adipokine
secretion. These hormones play a role in MS pathophysiology, affecting disease development and pro-
gression. Thus, maintaining balanced adipokine levels is essential for fostering an anti-inflammatory
environment. The figure was created using BioRender.com.

It is worth noting that the effects of exercise on MS have primarily been studied in
patients with mild to moderate impairment, typically those with an Expanded Disability
Status Scale (EDSS) score of less than 7 [27]. For patients falling within the mild to moderate
range, current exercise guidelines recommend a combination of aerobic and resistance
training. Specifically, these guidelines suggest 2–3 days per week of aerobic training,
consisting of 10–30 min at moderate intensity, alongside 2–3 days per week of resistance
training [36]. To our knowledge, only one study has investigated exercise in highly impaired
MS patients with an EDSS score between 5 and 8, highlighting the need for more research
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to understand the benefits and optimal exercise for individuals with more severe MS
symptoms [42].

Despite the potential benefits of exercise, only a few MS subjects (20%) engage in
regular physical activity [43,44]. Most likely, common clinical features of MS (e.g., spasticity,
weakness, fatigue, impaired balance) contribute to low levels of physical activity rather
than a lack of interest in exercise.

The molecular mechanisms responsible for the beneficial effects of exercise in MS are
multifaceted. Exercise training has been shown to positively impact individuals with MS
by influencing various biological processes, including the regulation of cytokine produc-
tion, potentially contributing to reduced physical disability [45,46]. Accordingly, research
indicates that regular exercise can lead to favorable changes in cytokine profiles, promot-
ing a more balanced immune response and potentially mitigating the neuroinflammatory
processes characteristic of MS [47].

Furthermore, exercise-induced neurotrophic factors have been implicated in the preser-
vation of neuronal health and function in MS. Studies suggest that exercise may enhance
the production of these factors, thereby promoting neuroprotection and neuroplasticity
in MS patients [48]. This neuroprotective effect is crucial, as MS is characterized by the
progressive loss of neurological function due to demyelination and neurodegeneration [49].

The positive effects of exercise in MS underscore the importance of incorporating
regular physical activity into the comprehensive care regimen for MS patients. Ongoing
research into these mechanisms enhances our understanding of MS and helps develop
personalized exercise programs that optimize outcomes and improve overall health and
quality of life for individuals with MS.

3. Involvement of AT in MS Pathophysiology and Adipokine Modulation by Exercise

Clinical and experimental data suggest that the pathogenesis of MS is closely linked
to immune system dysfunctions and chronic inflammation [1,6]. The induction of inflam-
mation by the immune system may be influenced by various factors, potentially including
the endocrine function of AT, though this involvement is not yet fully explored [13,50]. AT
is now recognized as a multifunctional dynamic organ involved in numerous physiologi-
cal and pathological processes, such as energy metabolism regulation, insulin sensitivity,
and immune and inflammatory responses [51]. It is traditionally divided into white adi-
pose tissue (WAT), which stores energy as triglycerides in unilocular adipocytes, and
brown adipose tissue (BAT), composed of multilocular, mitochondria-rich adipocytes in-
volved in thermogenesis and energy expenditure [52]. Both WAT and BAT are highly
metabolically active organs that secrete adipocytokines and batokines, which play critical
roles in several pathophysiological processes, including within the CNS [53]. Adipokines
have been suggested to be the molecular link between AT and the inflammatory and
immunologic activation of the CNS [53]. While adipokines are known to predict pro-
gression in other chronic inflammatory diseases, their involvement in MS has been less
explored [54]. Recent evidence indicates that an imbalance between pro-inflammatory
and anti-inflammatory adipokines may play a role in the immune–pathological processes
associated with MS [13,55,56].

Moreover, regular physical activity has been shown to provide a wide range of benefits
on immune function and inflammatory responses, potentially mitigating the progression
and severity of various immune-mediated diseases such as rheumatoid arthritis, systemic
lupus erythematosus, and inflammatory bowel disease [57]. As previously mentioned,
exercise may also play a significant role in alleviating physical disability in individuals with
MS. This effect is thought to be achieved, in part, through the regulation of adipocytokine
production, which helps to modulate the immune response and potentially slow disease
progression [47]. Specifically considering adipokines, there are limited data on the effects of
exercise on adipokine profiles in MS. However, one of the molecular mechanisms through
which physical activity exerts its positive effects on individuals with MS may be through
the involvement of AT endocrine function.
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Thus, given the potential role of adipokines in MS pathophysiology and the benefit
of physical exercise for individuals with MS, researchers have proposed a renewed focus
on the effects of exercise on adipokines. This focus is partly supported by evidence
that regular exercise induces an anti-inflammatory response in AT and by the broader
effects of exercise on immune system markers in the general population [58–60]. Exercise
positively modulates adipokine release through several mechanisms, primarily by reducing
fat mass and stimulating the release of various factors that exert anti-inflammatory effects
and influence AT metabolism, promoting the release of adiponectin and other beneficial
adipokines [61–63]. Thus, by modulating the peripheral immune system, it may be possible
to indirectly influence CNS inflammation in MS.

In the following sections, we will delve into the role of key adipokines, such as
adiponectin, leptin, and TNFα, in MS pathogenesis. Additionally, we will explore how
exercise affects these adipokines and the potential benefits it offers to individuals with MS.

3.1. Adiponectin

Adiponectin is a 244-amino acid protein synthesized by adipocytes. It forms low
(LMW)-, medium (MMW)-, and high-molecular-weight (HMW) complexes, with HMW
oligomers having the most significant biological effects [64]. Adiponectin acts through
specific receptors: AdipoR1 (mainly in skeletal muscle), AdipoR2 (predominantly in the
liver), and T-cadherin (mainly in the cardiovascular system) [65].

Adiponectin plays a crucial role in regulating insulin sensitivity, glucose and lipid
metabolism, and exhibits anti-inflammatory, anti-fibrotic, and antioxidant properties [66].
It also modulates immune response, with its effects varying based on the type of receptor
activated on immune cells. Accordingly, changes in adiponectin levels have been reported
in numerous immune-related diseases, including inflammatory diseases like inflamma-
tory bowel disease and autoimmune diseases such as systemic lupus erythematosus [67].
Adiponectin’s mechanisms on immune cells are well documented, particularly its anti-
inflammatory activity [67,68]. It suppresses the release of pro-inflammatory cytokines
TNFα, IL-6, and IL-8 from monocytes while inducing the production of anti-inflammatory
mediators IL-10 and IL-1 receptor antagonists [69]. However, pro-inflammatory activities
of this adipokine have also been reviewed by Choi H.M. et al. [67].

The role of adiponectin in MS remains controversial. The majority of studies suggest
an increase in total serum adiponectin levels in MS patients [67].

For instance, a study on blood samples from 99 MS patients and 89 healthy subjects
found higher adiponectin levels in MS patients. Additionally, follow-up over 3.6 ± 2.20 years
confirmed the prognostic value of adiponectin, as patients with higher levels had worse
EDSS [13]. Similarly, Çoban et al. supported the involvement of adiponectin in both the
pathogenesis and progression of MS, suggesting that higher adiponectin levels could serve
as prognostic biomarkers for MS [70]. Düzel et al. also found significantly higher levels of
adiponectin and other adipokines in RRMS patients compared to healthy controls [71]. High
adiponectin levels in MS may indicate a significant attempt by AT to counteract chronic
inflammation; this response suggests that AT is actively trying to mitigate the ongoing
inflammatory processes in MS, although it may be insufficient to fully counteract the
disease’s progression. It is plausible that signaling pathways exist through which the CNS
communicates with AT to signal that “help is needed”, although the precise mechanisms
still remain unclear. Accordingly, the CNS can directly influence AT activity through neural
and neuroendocrine signals, including hormones and neurotransmitters, which regulate
adipokine production and release [72]. For example, sympathetic nervous system (SNS)
activation via β-adrenergic receptors modulates BAT activity, affecting thermogenesis
and energy metabolism [73]. This interaction may have implications for MS, suggesting
a role for peripheral neurons and neuroendocrine pathways in systemic inflammation
regulation. Moreover, altered signals from the MS-affected brain microenvironment may
influence adipokine secretion from AT, thereby impacting systemic inflammation and
disease progression [11].
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However, some research indicates lower adiponectin levels in MS patients compared
to healthy individuals [74]. Moreover, a 2-year randomized controlled trial involving 88 MS
patients found no significant differences in adiponectin levels relative to disease severity or
treatment response [75]. These discrepancies could be due to the small sample sizes and
the inclusion of MS patients undergoing disease-modifying treatments.

The cerebrospinal fluid (CSF) levels of adiponectin may serve as a useful indicator
of MS disease, as two studies have also reported higher CSF adiponectin levels in MS
patients compared to controls [6,76]. Signoriello et al. found that CSF adiponectin levels
are higher in MS patients than in controls, with particularly high levels in primary progres-
sive MS (PPMS) compared to relapsing–remitting MS (RRMS). Elevated CSF adiponectin
was associated with higher baseline EDSS scores and more severe disease at a 4.5-year
follow-up. Additionally, adiponectin levels correlated with CSF IgG levels and showed an
altered oligomerization profile, with significant increases in HMW and MMW isoforms [6].
Although limited by a small sample size, Hietaharju et al. reported that CSF adiponectin of
MS patients is significantly higher compared to their asymptomatic co-twins [76]. Addition-
ally, in vitro studies provide further evidence supporting the functional role of adiponectin
in MS. Piccio et al. showed that adiponectin knockout mice with experimental autoimmune
encephalomyelitis (EAE) display heightened inflammation, demyelination, and axonal
damage in the CNS. Conversely, administration of adiponectin ameliorates EAE by enhanc-
ing the number of T-regulatory cells [77]. Zhang et al. found that adiponectin possesses
properties capable of inhibiting autoimmune inflammation mediated by Th17 cells in
the central nervous system in vitro [78]. Collectively, these findings indicate a significant
association between adiponectin modulation and disease progression and severity in MS.

The abovementioned evidence underscores the substantial impact of adiponectin on
immunological function in MS. Therefore, exploring how adiponectin responds to exercise
in an MS population remains a critical yet understudied area in MS research. Consider-
ing physical activity as a non-pharmacological intervention in the management of other
diseases such as metabolic disorders, it is already well documented that improvements
in physiological outcomes are associated with the modulation of adiponectin levels [21].
To date, three studies have examined adiponectin levels following exercise in people
with MS, reporting varied outcomes: an increase, a decrease, and unchanged levels of
this adipokine [12,79,80]. For instance, an 8-week aerobic interval training study showed
improvements in both psychological and physiological parameters, alongside increased
adiponectin levels in women with MS, suggesting exercise’s beneficial effects on qual-
ity of life and fatigue by influencing adipose tissue function [79]. This enhancement of
adiponectin levels in response to exercise may signify an anti-inflammatory effect of exer-
cise training in MS subjects. Conversely, a case report by Grazioli et al. suggested that a
well-structured concurrent aerobic and resistance training program reduced adiponectin
levels and HMW oligomers within 4 months, with sustained effects observed at the 6-month
follow-up [12]. The results also showed a significant improvement in the body composition
profile of MS subjects [12]. Another study on RRMS patients found no significant changes
in adiponectin levels immediately post-exercise, potentially due to variations in exercise
duration, type, or the clinical and metabolic profiles of the MS participants [80]. While
these studies focused on serum samples, no data are available on CSF adiponectin levels
in MS patients. However, Schön et al. demonstrated that acute intense aerobic exercise
modulates numerous cytokines in the CSF of healthy young volunteers, with adiponectin
showing the most significant exercise-induced changes [81]. Considering the critical role
of inflammation in both the onset and progression of MS, there is a pressing need for
further research to investigate how physical exercise, particularly during early and/or
relapsing–remitting phases, influences inflammatory markers such as adiponectin in MS.
This exploration aims to elucidate whether these changes are causally related or merely
coexist as by-products of another underlying mechanism.
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3.2. Leptin

Leptin is a well-known pro-inflammatory cytokine that plays a crucial role in regulat-
ing energy balance, appetite, and metabolism [82]. Beyond its metabolic functions, leptin is
heavily involved in immune responses, contributing to the inflammatory state observed in
several chronic conditions, including MS [83]. Its pro-inflammatory effects are widespread,
influencing both innate and adaptive immunity [83]. Leptin exerts these effects by binding
to its receptors, of which six leptin receptor (LepR) isoforms have been identified, each
with distinct physiological roles [84]. In human T cells, B cells, and monocytes, activation
of these cells leads to a significant increase in LepR expression [85]. Leptin treatment in
activated B cells results in enhanced pro-inflammatory cytokine production, including IL-6,
TNFα, and IL-10 [86]. Conversely, leptin significantly inhibits the proliferation of regula-
tory T (Treg) cells, which are crucial for maintaining immune tolerance and preventing
autoimmune responses [86].

Leptin enhances the production of pro-inflammatory cytokines such as IL-1, IL-6,
IL-12, and TNFα in monocytes [87]. On the other hand, pro-inflammatory cytokines like
IL-1β, TNFα, and IL-6 stimulate the secretion of leptin by mononuclear phagocytes [87].
This bidirectional interaction between leptin and pro-inflammatory molecules exacerbates
the inflammatory response, potentially significantly contributing to the pathology of MS.
Fifteen studies have investigated leptin levels in MS patients, with nine reporting sig-
nificantly higher serum leptin levels compared to healthy controls [55,71,88–100]. Six
studies found no difference in leptin levels, and one study reported lower levels in MS
patients [95,96,100–105]. Although no clear association between serum leptin levels and
EDSS scores was found in patients with RRMS, positive correlations between serum leptin
and EDSS were observed in patients with SPMS and PPMS [105]. Regarding CSF leptin
levels, one study reported no significant changes, while another observed significantly
higher leptin levels in RRMS patients [76,106,107].

Three trials investigated the impact of regular physical activity on circulating levels of
leptin in individuals with MS [79,107,108]. Ebrahimi et al. found no significant changes
in leptin levels or body mass index [108]. In this study, the intensity of the exercise is
likely to not have been sufficient to achieve maximal benefits on leptin levels. Conversely,
Mokhtarzade et al. reported a notable decrease in serum leptin levels alongside improve-
ments in body composition among MS participants [79]. Similarly, Majdinasab et al. also
noted a significant post-exercise reduction in leptin levels in individuals experiencing
relapses [80].

Although there are only two studies reporting reduced levels of leptin following
exercise, the decline in leptin levels in MS suggests a potential anti-inflammatory effect of
physical activity. As mentioned above, leptin influences immune responses by modulating
Th1 and Th2 cell functions. Lower levels of leptin are typically associated with suppressed
Th1 cell activity and enhanced Th2 cell function, which results in reduced production of
pro-inflammatory cytokines. Therefore, the observed reduction in leptin levels following
exercise may indicate a beneficial modulation of immune responses toward a less inflamma-
tory state in MS patients. Nonetheless, further comprehensive investigations are necessary
to fully understand and confirm the potential anti-inflammatory effects of exercise on leptin
levels in individuals with MS.

3.3. TNFα

TNFα is a versatile cytokine that is part of the TNF receptor ligand superfamily. It par-
ticipates in various homeostatic and inflammatory processes and is significantly involved
in autoimmune and inflammatory disorders [109–111]. Beyond its role in regulating the
inflammatory response, TNFα also has important pathophysiological functions within the
CNS [111–113].

Regarding MS disease, TNFα is closely linked to MS-related inflammatory demyelina-
tion [114,115]. Although TNFα has been linked to the inflammatory processes in MS, recent
studies also highlight its potential neuroprotective effects, such as promoting remyelination
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by increasing oligodendrocyte proliferation [116,117]. Elevated levels of TNFα have been
observed in the CSF of MS patients, correlating with disease progression [118]. Similarly,
TNFα expression is upregulated in experimental autoimmune encephalomyelitis (EAE),
and administering TNFα to these mice has been shown to exacerbate the disease [119,120].
However, the role of TNFα in MS and EAE is complex and not solely detrimental [119,120].
Surprisingly, research has shown that TNFα knockout mice exhibit EAE symptoms that are
as severe, or even more severe, than those observed in wild-type mice [121].

The intricate role of TNFα in MS is likely attributed to the complexity of its signaling
pathways and its interactions with various cytokines, CNS cells, and immune cells. TNFα
interacts with two distinct receptors: TNFR1 and TNFR2. TNFR1, which is broadly ex-
pressed, is involved in tissue degeneration and inflammation, whereas TNFR2, selectively
expressed in neurons, microglia, oligodendrocytes, T cells, and endothelial cells, mediates
homeostatic functions [122].

The impact of physical activity on TNFα modulation in individuals with MS has been
investigated in several trials [79,80,123–131]. Some studies found no significant changes in
TNFα levels following exercise training [124,125,128–130], while others indicated a decrease
in serum levels [79,80,123,126,131]. Although Kjølhede, et al. reported no changes in TNFα
levels, they observed a reduction in IL-17 secretion following resistance exercise in the
trained subjects compared to the untrained ones, supporting the anti-inflammatory effect
of physical exercise in individuals with MS [129]. Only one study reported an increase in
TNFα levels [127].

These variations in the effects of exercise on TNFα levels may be attributed to its
pleiotropic nature. As previously mentioned, TNFα can be linked to both harmful effects
on the myelin sheath and BBB, as well as the promotion of remyelination. This dual
effect may be attributed to the activation of two distinct signaling pathways mediated
by separate TNFα receptors, namely p55 and p75 [116,117]. Exercise might specifically
activate the “beneficial” TNFα-p75 receptor pathway, which encourages cell growth and
proliferation [116]. These findings underscore the critical role of TNFα in MS. The variations
in cytokine production and release may be influenced by factors such as the method of
training, timing of exercise, and the type of sample (CSF or blood) used for analysis.
Accordingly, further research is required to obtain more comprehensive results regarding
TNFα responses to exercise in MS and its associations with disease symptoms.

Table 1 summarizes the main findings on adipocytokine changes in relation to MS.

Table 1. Modulation of adipokines in MS in relation to physical exercise.

Adipocytokine Study Population Main Findings Reference

Adiponectin

Case report: a 39-year-old RRMS
patient

Total serum adiponectin and HMW oligomers were
reduced after 4 months of training at moderate
intensity (65% heart rate reserve); in addition, a

reduction in BMI (−0.9%) and FAT (−2.6%) and an
improvement in the disability level were also

demonstrated

[12]

40 MS women randomized divided
into either a non-exercising control

or training group

Blood adiponectin levels considerably increased in
the training group (8 weeks of aerobic interval

training). In addition, the aerobic interval training
was associated with improvements in fatigue,

quality of life, and maximal oxygen consumption

[79]

30 MS women and 15 healthy
controls

Adiponectin showed no significant difference
between non-exercising and training group (a single

bout of aerobic exercise at 60–70% maximal
heart rate)

[80]
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Table 1. Cont.

Adipocytokine Study Population Main Findings Reference

Leptin

30 MS women and 15 healthy
controls

Participants performed a single bout of aerobic
exercise at 60–70% maximal heart rate. Immediately

following exercise, leptin levels significantly
decreased in MS subjects

[80]

34 MS patients with mild to
moderate disability randomly
divided into a training group

(n = 17) and a control group (n = 17)

Non-significantly changed the serum levels of leptin,
ghrelin, ghrelin/leptin ratio, testosterone, and

testosterone/leptin ratio between no exercise and
training subjects (low-intensity exercise three times a

week for 10 weeks)

[108]

TNFα

40 MS women randomized into
either a non-exercising control or

training group.

TNFα levels significantly decreased subsequent to
the aerobic interval training (8 weeks of aerobic

interval training)
[79]

30 MS women and 15 healthy
controls

TNFα levels were significantly decreased
immediately after exercise (a single bout of aerobic

exercise at 60–70% maximal heart rate)
[80]

8 MS patients with low disability

Decrease in fatigue at the end of physical activity
intervention (12-week series of combining Pilates

and aerobic exercises) accompanied by a significant
reduction in TNFα

[123]

A randomized controlled clinical
trial in 60 MS patients

In response to cardiopulmonary exercise test (30 min
training at 60% of VO2max), TNFα levels stayed

unchanged.
[124]

15 MS women and 10 healthy
women.

Blood samples were taken at baseline. TNFα
remained unchanged immediately after exercise and

two hours after exercise [15 min treadmill (~50%
VO2 peak)]

[125]

67 MS patients Decrease in the production of TNFα at the end of the
exercise program (12-week combined exercise) [126]

11 MS and 11 non-MS control
subjects (8 women and 3 men in

both groups)

TNFα increased in MS compared with controls after
exercise (30 min of cycle ergometry at 60% of peak

O(2) uptake, 3 day/wk for 8 wk at weeks)
[127]

10 MS female patients
Participants completed 8-week program of

twice-weekly progressive resistance training. After
training, TNFα showed non-significant reductions

[128]

35 MS people treated with
interferon (IFN)-β

No changes were observed in TNFα levels after a
24-week progressive resistance training respect to a

control group
[129]

15 MS patients and 13 in control
group. Twenty healthy controls

TNFα levels were slightly inducible in MS patients
completing an eight-week aerobic training program [130]

20 subjects (n = 10 MS patients and
n = 10 controls)

Serum concentration of the TNFα decreased
significantly after a single bout and 6 weeks of

aerobic exercise training in the intervention group
[131]

4. Nutrition and Supplements

Health promotion requires good nutrition and an adequate lifestyle. In recent years,
an increasing number of scientific studies have demonstrated how an unwholesome diet,
typically high in sugar, saturated fat, and salt and low in vegetables and fruits, can partici-
pate to the development of non-communicable commune diseases (NCDs), such as cancer,
heart syndromes, diabetes, and neurodegenerative disorders such as MS [132]. Indeed,
aside from established epidemiologic evidence that smoking, vitamin D, and Epstein–Barr
infections impact on the risk of developing MS, there is rising interest in diet and its effects
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on both the development and progression of this disease [133]. What to eat is an essential
factor to consider, as dietary factors are capable of controlling the expression of specific
genes and thereby driving metabolic pathways.

Nutrition intervention studies suggest that diet may be contemplated as an integrative
treatment to control the progression of the disease [134]. Scientists have not recognized
a definitive effective diet that can change the course of MS, but clinical trials suggest a
benefit from linoleic acid and from the intake of vitamin D, both associated with a lower
incidence of MS [135]. A ketogenic diet (high-fat, low-carbohydrate) has also demonstrated
advantageous effects on neurodegenerative diseases through the modulation of central and
peripheral metabolism, mitochondrial function, inflammation, oxidative stress, autophagy,
and gut microbiome [136]. More specifically in MS, it has been suggested that a ketogenic
diet improves clinical symptoms by promoting central inflammation (particularly through
an increase in interleukins IL-1β, IL-6, and IL-17), and reducing emotional disorders such
as anxiety and depression [137,138]. The overcoming MS (OMS) diet is a plant-based diet
(food that has been processed or refined as little as possible) that comprises seafood and
fish but cuts out all processed foods, meat, eggs, dairy, and saturated fats. Additional
supplements may be needed to ensure patients receive enough nutrients, like protein, iron,
and calcium [139]. The OMS diet has been cross-sectionally associated with lower fatigue,
depression, and disability in MS patients [140]. Observance to the OMS diet, as part of a
multimodal lifestyle program, has also been associated with improved quality of life (QoL)
and reduced fatigue and depression among MS patients [141].

Numerous trials involving omega-3 fatty acid supplementation (e.g., fish oils, EPA
and DHA acid, 6–10 g per day for 1–2 years) have been lately conducted among patients
with MS [142]. Additionally, antioxidant factors such as vitamins and unsaturated fatty
acids have been studied and seem to play a role in the regulation of oxidative stress in
MS [143].

In the next paragraphs, we will analyze the principal nutrition factors effective in the
management of MS patients in relation to plausible modifications in adipokines expression.

Polyunsaturated fatty acids (PUFAs) are extremely effective antioxidant compounds.
Bjørnevik et al. reported a low incidence of MS in people following diets enriched in
PUFAs [144]. Some studies have shown that PUFAs also act against the progression of
the disease, reducing the frequency of relapses [145]. In human studies, a low-fat diet
supplemented with PUFAs was linked to reduced disability scores on the EDSS, slight
improvements in relapse rates and fatigue, and an overall enhancement of quality of
life [143]. Such effects might be associated with the amelioration of neurodegeneration and
a consistent decrease in demyelination in MS. The molecular mechanisms of such effects
are related to a decrease in inflammation and the maintenance of immunomodulation [143].
Ramirez et al. described the beneficial effects of supplementation with fish oil (comprising
high amounts of omega-3 PUFAs) against inflammation and oxidative stress [146]. Omega-
3 fatty acid supplementation results in a reduction in pro-inflammatory cytokines and free
radicals [146–148]. A recent review by Al-Naqeb et al. examines the health benefits of
ten plant-based oils—primarily seed oils—on MS. These include pomegranate seed oil,
sesame oil, Acer truncatum seed oil, hemp seed oil, evening primrose oil, coconut oil,
walnut oil, essential oil from Pterodon emarginatus seeds, flaxseed oil, and olive oil [149].
The authors conclude that plant-based oils may be beneficial in managing MS and its
associated symptoms. Their potential benefits include reducing inflammation, promoting
remyelination, modulating the immune system, and inhibiting oxidative stress [149].

With regard to adiponectin modulation, to our knowledge, there is not any evidence
specifically found in MS patients, but, in diabetes patients, n-3 PUFAs supplementation
is able to increase AdipoR1 and AdipoR2 gene expression and adiponectin serum lev-
els [150,151]. Similarly, in patients with stable coronary artery disease, omega-3 PUFA
supplementation improves the adiponectin profile [152]. Thus, such data suggest that a pos-
sible modulation of adiponectin following supplementation with PUFAs in MS might exist.
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Vitamins have also been largely studied in MS. Vitamin D plays a significant role
not only in calcium homeostasis and bone health but also in immunomodulation and the
reduction in oxidative stress [153]. Frequently, MS patients exhibit vitamin D deficiency,
also associated with a higher risk of the development and relapse of MS [154,155]. A low
vitamin D intake has been associated not only with a high risk of developing MS but
also with a worsening of the disease and an increased risk of relapses (relapse, fatigue,
and disability) [156]. Some evidence suggests that vitamin D supplementation exerts anti-
inflammatory and immunomodulatory effects on MS pathogenesis by inhibiting CD4+ T
cell production, potentially reducing the risk of MS and slowing disease progression [143].
However, a recent multi-center intervention study did not demonstrate a significant impact
of vitamin D supplementation on the course of MS, raising doubts about its effective-
ness [157]. As a result, the therapeutic or preventive role of vitamin D in MS is not widely
accepted in clinical guidelines. Also known as retinol, vitamin A is a fat-soluble vitamin
present in foods of both animal- and plant-based origin (liver, milk, cheese, green leaves,
oil, vegetables, and fruit), with a wide variety of functions in visual ability, skin, and
immunity. Vitamin A includes various active forms, including retinoids and carotenoids.
The association between the pathogenesis of MS and vitamin A remains unclear, although
a lack of correlation between the development of MS and low levels of vitamin A has been
defined [158,159]. On the other hand, a correlation between vitamin A and the severity of
some disease symptoms has also been suggested: a randomized controlled trial presented
benefits in terms of fatigue, depression, and cognitive status of MS patients supplemented
with high doses of vitamin A [160].

Phytic acid or phytate is the principal reservoir of phosphorus present in almost all
wholegrains, legumes, and oilseeds [161]. When phytate is consumed in large amounts by
itself without being processed/cooked, it can decrease the absorption of some minerals,
leading to the definition of phytate as an antinutrient [162].

The effectiveness of high-phytate foods has been proven to improve cardiovascu-
lar health through the molecular mechanisms linked to their ability to prevent vascular
calcifications [163].

In neurodegenerative diseases such as Parkinson’s disease, phytate can display strong
antioxidation and anti-inflammatory action, blocking the formation of oxygen radicals
(OH-) [163,164], inhibiting lipid peroxidation [165] and mitigating neuronal damage and
loss [166]. An association between phytate intake and the inhibition of cognitive decline
has also been found. Indeed, in MS risk, the assumption of phytate has been found to be
involved. The intake of grain or meat, fat, and milk from animals (with a high content of
phytic acid) correlated positively with the prevalence of MS [166]. To date, the molecular
mechanisms underlying such observations are unknown; however, the ability of phytic
acid to influence the bioavailability of several metabolites, such as calcium and vitamin D,
might be involved. Behind these effects, phytate can possibly exercise its positive effects
too by decreasing leptin and increasing adiponectin levels [167]. Specifically, in diabetic
patients, an 8-week diet rich in legumes is significantly able to increase serum adiponectin
concentrations [168]. The same patients receiving phytate supplementation showed a
significant decrease in serum levels of HbA1c and an increase in adiponectin levels [168].
In particular, InsP6 intake induces an increase in plasma adiponectin concentration in
patients with diabetes, indicating that a phytate-rich diet could help to prevent or minimize
diabetic-related complications [168].

In terms of probiotics, the latest research has revealed an association between the gut
microbiota and the central nervous system as the gut–brain axis, which encompasses a
communication network between the nervous, endocrine, and immune systems [169]. In
addition, studies have advised that variations in the gut microbiota can significantly impact
the inflammatory responses of individuals with MS [170]. Notably, supplementation
with probiotics can positively influence both immune and inflammatory responses by
reducing serum inflammatory cytokines such as C-reactive protein (CRP), TNFα, and
interferon gamma (IFN-γ) [171]. Indeed, probiotic supplementation has led to significant
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improvements in the disability scores and mental health parameters (reduced depressive
symptoms, anxiety, and stress) of MS patients in a 12-week randomized controlled trial.
Additionally, it was found to decrease inflammatory markers, including high-sensitivity
C-reactive protein (hs-CRP), and oxidative stress markers, such as plasma nitric oxide (NO)
metabolites and malondialdehyde (MDA). Probiotic supplementation also enhanced insulin
resistance and cholesterol levels [172]. These findings advise that probiotics could play a
favorable role for various aspects of MS, including disability, mental health, inflammation,
and metabolic conditions.

Table 2 summarizes the main findings on dietary approach and/or supplement in
relation to MS.

Table 2. Main findings on dietary approach and/or supplement in MS.

Dietary Approach and/or
Supplement Study Population Main Findings Reference

Adherence to the
ketogenic diet 99 MS subjects

Amelioration of fatigue and depression
accompanied by weight loss and reduction

in pro-inflammatory cytokines
[136]

Adherence to the OMS diet
Data from an international

population of MS followed over
7.5 years

Lower depression rate [140]

High intake of grain or meat,
fat, and milk from animals

(elevate content of phytic acid)

75 MS women and 75 healthy
controls

Positive correlation with the prevalence
of MS [166]

Omega-3 fatty acid and fish
oils supplementation Systematic review of 5554 studies

Beneficial effects on reducing relapsing
rate, inflammatory markers, and

improving quality of life
[142]

Diets enriched in PUFAs
80,920 women from Nurses’ Health

Study and 94,511 women from
Nurses’ Health Study II

Lower incidence of MS. Among the specific
types of PUFA, only α-linolenic acid was

inversely associated with MS risk
[144]

Omega-3 PUFAs
supplementation 10 MS patients Improvement in quality of life by

decreasing relapse rates [148]

Vitamin D deficiency

92,253 women from the Nurses’
Health Study (NHS) and

95,310 women from the Nurses’
Health Study II (NHS II)

Higher risk of MS incidence [155]

Low vitamin D intake Review of literature data
Increased incidence of MS, but the

risk–benefit profile of dosage and duration
or supplementation needs to be clarified

[156]

Vitamin D supplementation
172 MS patients were randomized:

low-dose vitamin D3–high-dose
vitamin D3

Lack of significant effects [157]

Low levels of vitamin A 31 MS patients and 29 matched
controls

Lack of correlation with the incidence
of MS [159]

Vitamin A supplementation 101 MS patients in a placebo
randomized clinical trial

Significant improvement in fatigue and
depression. Improvement also in

psychiatric outcomes during
interferon therapy

[160]

Probiotics supplementation 40 MS patients
Significant improvement in inflammatory
markers, oxidative stress indicators, pain,

fatigue, and quality of life
[171]

Probiotics supplementation 60 MS patients

Significant improvements in disability
scores and mental health parameters, such
as reduced depressive symptoms, anxiety,

and stress

[172]
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5. Conclusions

MS is a chronic autoimmune disease affecting the CNS over a long-term period. The
severity of MS varies widely and is influenced by several factors, comprising the endocrine
activity of AT. The involvement of AT in MS pathogenesis remains to be further clarified;
certainly, MS is characterized by an altered immune response in which AT also participates
through dysregulated adipokine secretion, increasing the risk of disease development and
accelerating its progression. Based on the data presented in this review, it is plausible that
the functionality of AT is positively influenced by lifestyle factors such as physical activity
and nutrition, which are essential in the management of MS.

Currently, physical activity is recognized as a successful rehabilitation strategy for MS
patients. Organized and adapted exercise programs can enhance fitness, functional capacity,
and overall quality of life, helping as an adjunctive therapy. Additionally, nutritional
supplementation represents an important field of MS research aimed at improving MS
clinical symptoms. It seems clear that both physical activity and nutrition can be important
instruments in the inhibition of MS establishment.

More importantly, once MS is initiated, engaging in regular physical activity and
appropriate nutrition can contribute to decreases in disease severity by stimulating the
inflammatory response. Therefore, an active lifestyle can be considered an essential part of
MS prevention and treatment. Changes in adipokine levels might actively participate in
driving, at least in part, the disease-beneficial effects of exercise and nutrition in MS.

In conclusion, the complex interplay between MS pathogenesis, AT endocrine function,
and lifestyle factors represents a significant area of research for the prevention and manage-
ment of the disease. Thus, studies involving larger patient cohorts are necessary to better
understand the molecular mechanisms underlying AT’s endocrine response to exercise and
nutrition in MS. Such comprehension will represent a step towards the identification of
potential novel targets involved in both the establishment and progression of the disease.
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