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Abstract: Background: Managing metabolism for optimal training, performance, and recovery in
medium-to-high-level endurance runners involves enhancing energy systems through strategic nutri-
ent intake. Optimal carbohydrate intake before, during, and after endurance running can enhance
glycogen stores and maintain optimal blood glucose levels, influencing various physiological re-
sponses and adaptations, including transitory post-endurance inflammation. This randomized trial
investigates the impact of a high-dose 2:1 maltodextrin–fructose supplementation to medium-to-
high-level endurance runners immediately before, during, and after a 15 km run at 90% VO2max

intensity on post-exercise inflammatory stress. Methods: We evaluated inflammatory biomarkers
and lipidomic profiles before the endurance tests and up to 24 h after. We focused on the effects of
high-dose 2:1 maltodextrin–fructose supplementation on white blood cell count, neutrophil number,
IL-6, cortisol, and CRP levels, as well as polyunsaturated fatty acids, ω-3 index, and AA/EPA ratio.
Results: This supplementation significantly reduced inflammatory markers and metabolic stress.
Additionally, it may enhance the post-activity increase in blood ω-3 fatty acid levels and reduce
the increase in ω-6 levels, resulting in a lower trend of AA/EPA ratio at 24 h in the treated arm.
Conclusions: Adequate carbohydrate supplementation may acutely mitigate inflammation during
a one-hour endurance activity of moderate-to-high intensity. These effects could be beneficial for
athletes engaging in frequent, high-intensity activities.
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1. Introduction

Managing metabolism to optimize training, performance, and recovery for medium-
and high-level runners involves understanding and strategically enhancing the energy
systems. This includes optimizing nutrient intake and efficient utilization of metabolic
sources to support sustained energy production during training sessions and races and en-
suring adequate recovery between workouts [1,2]. During endurance running, as intensity
increases, the active muscle mass becomes progressively more dependent on carbohydrates
as energy source, making periodized carbohydrate supplementation crucial for optimal
metabolism and energy availability [3–7].

Training and competitive running can induce inflammation during and immedi-
ately after endurance performance, impairing optimal recovery processes [8,9]. The pro-
inflammatory responses triggered by running initiate a complex cascade of events influenc-
ing various immune parameters, including changes in peripheral white blood cell count
and, in particular, neutrophils and mononuclear cells and plasma cytokine levels [9–12].
Since the mid-1990s, many studies have indicated that low carbohydrate supplementa-
tion (30–60 g/h) may facilitate a reduction in the inflammatory response to prolonged,
intensive running [13–15]. Additionally, consuming carbohydrates enhances glucose avail-
ability to active muscles, helping to lower nervous system activation, stress hormones,
pro-inflammatory signals, and cytokine release from active muscle tissue [16,17].

Repeated muscle contractions, energy deficit, and metabolic stress during endurance
running also promote the production of anti-inflammatory mediators, principally
interleukin-6 (IL-6), which inhibits pro-inflammatory cytokines like tumor necrosis factor-α
(TNF-α), creating an anti-inflammatory environment that counteracts the pro-inflammatory
responses associated with high-intensity exercise [18–20]. IL-6, produced during the normal
physiological response to running, plays a role in modulating the stress response, activating
the hypothalamic–pituitary–adrenal axis at multiple levels, resulting in an increased release
of cortisol from the adrenal glands. IL-6 also serves a glucoregulatory function, mobilizing
and enhancing energy availability during long-distance running when glycogen stores are
depleted [21,22]. Moreover, carbohydrate supplementation reduces IL-6 production and
hypothalamic–pituitary–adrenal activation, resulting in the moderated release of various
hormones, including cortisol [16,23–25].

Carbohydrate supplement strategies may also positively impact other post-running
inflammatory and stress proteins that increase shortly after the inflammatory response
begins, such as C-reactive protein (CRP), a marker of systemic inflammation [9,26,27].
Another example is creatine phosphokinase (CK), a protein involved in muscle metabolism,
which serves as a marker of physical stress. CK levels in plasma indicate muscle fiber
damage and vary significantly after high-intensity exercise, with eccentric exercise causing
more muscle damage than concentric contractions of the same intensity [28].

The metabolic adaptations that occur during long-term physical activity may lead
to changes in long-chain ω-3 fatty acid levels. Long-chain ω-3 fatty acids, particularly
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are further molecules pivotal
in modulating inflammation. ω-3 fatty acids exert their anti-inflammatory effects through
several mechanisms, including the synthesis of anti-inflammatory molecules (mainly re-
solvins and protectins), the inhibition of pro-inflammatory cytokine production, and the
modulation of cell membrane composition, which affects numerous receptor functions
and signal transduction pathways. The ω-3 index, which reflects the proportion of EPA
and DHA in cell membranes, is an established marker of cardiovascular health and in-
flammatory status. A higher ω-3 index is associated with reduced inflammation and a
lower risk of cardiovascular diseases [29]. Conversely, arachidonic acid (AA) is a precursor
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for pro-inflammatory eicosanoids, including prostaglandins and leukotrienes, which are
potent mediators of inflammation. The AA/EPA ratio is thus a valuable indicator of the
balance between pro-inflammatory and anti-inflammatory processes in the body. A higher
AA/EPA ratio suggests a dominance of pro-inflammatory processes, whereas a lower ratio
indicates a more balanced inflammatory state [30].

The impact of carbohydrate supplementation on inflammation induced by running
has been extensively studied. However, previous studies mainly focused on a single type
of carbohydrate supplementation, with levels typically ranging from 30 to 60 g/h [8,9,31].
These levels do not meet the carbohydrate intake currently considered optimal during
prolonged high-intensity endurance exercise. Moreover, the exercise intensity was typi-
cally low to moderate, ranging between 60% and 75% of the minimum speed associated
with maximal oxygen consumption (vVO2max). The duration of these exercises typically
lasted between 90 min and 3 h [13,14,32–34]. Additionally, there is no information on
how long-distance running with or without carbohydrate supplementation affects short-
term lipidomic changes. To this end, this study investigated the effects of a mixed high-
carbohydrate supplement (containing a 2:1 ratio of maltodextrin to fructose at a rate of
80 g/h, currently considered the optimal carbohydrate intake) when consumed immedi-
ately before, during, and after approximately 1 hour of high-intensity (at 90% vVO2max)
endurance running on short-term inflammatory markers and lipidomic profiles, with a
particular focus on the ω-3 index and AA/EPA ratio.

2. Materials and Methods
2.1. Study Design and Participants

This study is a randomized placebo-controlled cross-over trial that involves twenty-
nine healthy volunteers enrolled from a cohort of long-distance runners in Lombardia,
Italy, between June 2023 and September 2023, chosen for the homogeneity of their perfor-
mance and training. The experimental procedure was conducted from 3 November 2023
to 19 November 2023. Subjects who met the following requirements were eligible for
enrollment: (1) healthy male and female subjects; (2) Caucasian ethnicity; (3) medium-to-
high-level long-distance runners who can complete 15 km under 65 min; (4) willingness to
have samples stored for future research; (5) absence of eating disorders; (6) subjects trained
at least three times per week for a minimum of 6 consecutive months. Exclusion criteria
included pregnancy and a history of chronic diseases with correlated pharmacological
treatments. The study was conducted according to the guidelines laid down in the Declara-
tion of Helsinki and was approved by the institutional review board of the University of
Molise (Prot. n. 26/2023—11 October 2023). The protocol complied with the Consolidated
Standards of Reporting Trials (CONSORT) guidelines for clinical trials and was registered
on the Open Science Framework: https://osf.io/dbqc8 (accessed on 6 August 2024). All
participants provided written informed consent.

2.2. Randomization and Procedures

The order of interventions in the two separate tests was randomized using RStudio
(version 4.3.1). Seven days were allowed between each intervention to ensure that each
athlete could return to their baseline state. Non-compliant subjects (e.g., those who devel-
oped a cold, fever, or any condition that led to altered inflammatory markers during the
observation period) were excluded from the analysis. Weather conditions such as wind,
rain, temperature, and humidity were evaluated to ensure the two tests were performed
under the same conditions.

The timing of supplementation, the endurance period, and the sampling schedule of
the experimental protocol are shown in Figure 1. During the first evaluation, an incremental
ramp test on the treadmill was performed. The gas during exercise and resting were
analyzed with a metabolic cart (Quark CPET, Cosmed, Rome, Italy). After a 3 h fast,
athletes ran until exhaustion on a treadmill that increased by 0.1 km/h every 12, with a
constant inclination of 1%. The starting speed was decided based on the athlete’s level so

https://osf.io/dbqc8
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that the test could last between 8 and 12 min overall. First ventilatory threshold (VT1),
second ventilatory threshold (VT2), minimum velocity associated with vVO2max, velocity at
peak (VMax), maximal oxygen consumption (VO2max), and respiratory exchange ratio (RER)
were measured. Weight and plicometry were also measured before the incremental test. The
body fat percentage was determined according to the Jackson and Pollock equation [35,36].
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the 2nd and 3rd visits (B). AA = arachidonic acid; CK = creatine phosphokinase; CRP = C-
reactive protein; DHA = docosahexaenoic acid; MS = muscle soreness; EPA = eicosapentaenoic
acid; GI = gastrointestinal; IL-6 = interleukin-6; WBC = white blood cells.

Running athletes were instructed to familiarize themselves with the treadmill in the
weeks before the test. Additionally, they were required to abstain from intense physical
activity for 48 h before each test. During this period, only rest or low-volume/low-intensity
training was permitted, and muscle strength training was strictly prohibited. During the
second and third visits, 7 and 14 days after the first visit, the athletes, after an overnight fast,
performed the outdoor 18 km endurance test on a flat course (a circuit of 5 km repeated
three times with an overall elevation gain of 6 m/loop), composed as follows: 3 km
warm-up at an intensity below VT1 and then 15 km at the speed of 90% of vVO2max. The
weather conditions (temperature, humidity, and wind speed) between the endurance tests
were similar.

The measurement of blood lactate from the earlobe (Lactate Pro 2 Arkray, Kyoto, Japan)
was performed before the warm-up and at the end of the 15 km run. Alongside these data,
heart rate during the test, the rate of perceived exertion (RPE) scale at the end of the test,
and weight before and immediately after each test were also collected. Moreover, a 7-point
Likert Scale of muscle soreness (MS) was administered to the athletes upon completion
of the 15 km and at 3, 24, and 48 h afterward. Any gastrointestinal symptoms (GI) were
recorded from the first supplementation up to 24 h after the test.

2.3. Supplementation and Dietary Instruction

A total of 60 ml of Carbo Gel C2:1 (Enervit, Milan, Italy) containing 40 g of maltodextrin–
fructose 2:1 (composition of 100 g of Carbo Gel C2:1: 44.51 g water, 36.4 g maltodextrin,
18.2 g fructose, 0.26 g xantham gum, 0.42 g citric acid, 0.1 g natural flavoring, 0.1 g potas-
sium sorbate, 3.22 mg niacin, 0.28 mg vitamin B6, and 0.23 mg thiamin) or 60 mL of placebo
(composition of 100 g: 98.63 g water, 0.75 g xantham gum, 0.42 g citric acid, 0.1 g natural fla-
voring, 0.1 g potassium sorbate, 4.26 mg sucralose, 3.22 mg niacin, 0.28 mg vitamin B6, and
0.23 mg thiamin) were administered six times (after the first venous sample immediately
before starting the warm-up, at the 5th and 10th km during the 15 km test, immediately
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after the second venous sample, and after 1 h and 2 h of recovery) with a carbohydrate
intake of 80 g/h (Figure 1B). The maltodextrin–fructose 2:1 supplementation and placebo
were identical in consistency, acidity, and taste.

All long-distance runners were instructed to follow their usual diet and to maintain
the same diet from the day before to the day after each test. However, starting 48 h
before the test and continuing until the end of the experimental procedure, athletes were
restricted from consuming foods containing significant amounts of ω-3 and ω-6 fatty acids.
Additionally, they were instructed not to take ω-3 supplements for 30 days before the test.
They were also asked to keep a three-day food diary to assess the caloric and macronutrient
intake in their diet. This diary was kept from the day before to the day after the first
visit and the test days. The athletes arrived in the morning in a fasted state before each
15 km test.

2.4. Glycemia, Inflammatory, and Damage Biomarkers

Blood samples were taken immediately before and after the 15 km run and 3 h and
24 h from the end of each test. Before each blood sample, the athlete remained seated
for at least 5 min. During the 3 h recovery, the athletes mostly stayed seated, and only
short walks were allowed in the laboratory room. Venipunctures were performed for each
blood sample. From the venous blood samples, the following parameters were analyzed:
glycemia, complete blood count, IL-6, CRP, cortisol, and CK. An additional blood sample
after 1.5 h from the end of each test was taken specifically for IL-6 analysis.

2.5. Lipidomic Analysis

Whole blood fatty acid composition on dried blood spots (before and after the 15 km
run, after 1.5 h, 3 h, and 24 h from the end of each test) was analyzed by an external
service at the University of Milan using high-resolution capillary gas chromatography, as
previously described [37].

2.6. Statistical Analysis

Descriptive characteristics were reported as frequency and percentage for categori-
cal data, mean and standard deviation (SD) or median, and I–III quartile for continuous
variables, where appropriate. Comparison between baseline characteristics was performed
through the Chi-squared test, Fisher’s exact test, Mann–Whitney U test, or t-test depend-
ing on the nature of the variable. The trend of each variable between the two arms
(maltodextrin–fructose 2:1 supplementation or placebo) was shown through a plot where
the x-axis represents the time (x = 0 was immediately before, 1 was post-running, 1.5 was
the measure after 1 h and a half, and 3 was the measures take 3 h and 24 h post-running),
and the y-axis represents the values for each parameter of interest. The hypothesis of a
normal distribution at all times for each variable was evaluated for each variable via the
Shapiro–Wilk test.

Two-way repeated ANOVA was performed to compare the effect across the different
measurement times and between the two interventions on the outcomes. To model the
within-subjects variables, a subject term was also included. Then, linear mixed-effects
models were performed including treatment, time, and the interaction term between the
two arms, with a random intercept for each participant. The same models were used to
compare the effect of the interventions on the other interesting variables. Analysis from
both approaches produces consistent results. Since the CRP values were not normally
distributed, these values were categorized as ≤0.16 mg/dL or >0.16 mg/dL. A value of
0.16 mg/dL defines the minimum detectable level, and a high level of CRP indicates a more
inflammatory status. Then, GEE models (generalized estimating equations) were fitted to
evaluate the effect of time and the effect of treatment. All models were adjusted for the
intervention sequence. The linear regression model was used to evaluate the association of
the AA/EPA ratio at baseline on CK variation (from baseline to 24 h post-running). The
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AA/EPA ratio was categorized as <20, 20–30, and >30. The coefficient (β) and its 95%
confidence interval (CI 95%) were provided.

All analyses were performed using RStudio (version 4.3.1). A two-tailed p-value of
0.05 was considered significant. Since some analyses involved multiple tests, the p-values
were adjusted with a Bonferroni correction.

3. Results
3.1. Study Population

From the 43 enrolled participants, 29 medium-to-high-level runners were randomized,
and 26 (4 females and 22 males) completed the two sequences and were included in the
analysis (Figure S1). Individual characteristics of the participants are presented in Table S1.
The median age was 32 years (I–III quartiles = 24.3–40) and the mean VO2max equal to
61.84 ± 5.33 mL/kg·min. No significant differences were found between included (n = 26)
and excluded (n = 3) participants (Table S1). The endurance performances for the two arms,
considering the cross-over design, are presented in Table 1. No significant differences were
found in the 15 km endurance test results between the two arms. Additionally, only a few
athletes presented GI symptoms, without any differences.

Table 1. Endurance performances of placebo and treatment arms.

Placebo Treatment p-Value *

3 km test velocity (km/h) 13.31 ± 0.75 13.44 ± 0.71 0.509
15 km test velocity (km/h) 15.59 ± 1.46 15.59 ± 1.45 0.992
Mean heart rate during 3 km (bpm) 145.96 ± 10.1 146.64 ± 11.96 0.829
Mean heart rate during 15 km (bpm) 171.38 ± 8.85 171.23 ± 9.18 0.951
Maximal heart rate during 15 km (bpm) 179.58 ± 9.70 179.46 ± 8.56 0.964
Rating of perceived exertion 7.15 ± 1.74 6.96 ± 1.66 0.685
Baseline lactate (mmol/L) 1.35 ± 0.21 1.32 ± 0.24 0.629
Post-running lactate (mmol/L) 5.14 ± 1.95 4.64 ± 1.44 0.298
Post–pre test delta weight (kg) −1.33 ± 0.43 −1.28 ± 0.40 0.690
GI symptoms (n) 6 (23.1) 4 (15.4) 0.481

bpm = beats per minute; * p-value refers to the comparison between the two arms. Results were shown as
mean ± SD or frequency and percentage (%). GI = gastronitestinal.

Baseline blood markers (both inflammatory and lipidomic) were not significantly
different between placebo and treatment arms (Table 2).

Table 2. Baseline characteristics of inflammatory and damage markers and lipidomic profile.

Overall Placebo Treatment p-Value *

Inflammatory and damage markers at baseline

White blood cells (n × 109) 4.96 ± 1.35 5.04 ± 1.47 4.88 ± 1.25 0.671
Neutrophil (n × 109) 2.58 ± 1.11 2.71 ± 1.39 2.45 ± 0.74 0.409
Cortisol (nmol/L) 22.36 ± 5.14 21.52 ± 5.50 23.19 ± 4.71 0.247
IL-6 (pg/mL) 2.49 ± 1.13 2.31 ± 0.66 2.66 ± 1.45 0.269
CRP (mg/dL) 0.16 ± 0.18 0.19 ± 0.26 0.14 ± 0.03 0.333
CK (IU/L) 233.77 ± 239.71 259.92 ± 321.55 207.62 ± 111.37 0.437

Lipidomic profile at baseline

ω-3 index (%) 2.33 ± 0.81 2.38 ± 0.89 2.28 ± 0.73 0.669
EPA (%) 0.36 ± 0.13 0.34 ± 0.13 0.38 ± 0.14 0.329
DHA (%) 1.97 ± 0.72 2.04 ± 0.80 1.90 ± 0.64 0.509
AA (%) 8.36 ± 1.64 8.32 ± 1.80 8.40 ± 1.51 0.878
AA/EPA ratio 25.74 ± 8.96 26.80 ± 9.50 24.68 ± 8.45 0.399

* p-value refers to the comparison between the two arms. Results were shown as mean ± SD or percentage (%).
AA = arachidonic acid; CK = creatine phosphokinase; CRP = C-protein reactive; DHA = docosahexaenoic acid;
EPA = eicosapentaenoic acid; IL-6 = interleukin 6; IU = international units.
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3.2. Glycemia

The trend of blood glucose levels over time and between treatments is shown in
Figure 2. A significant effect of time (p < 0.001) in both treatment and placebo arms was found.
In detail, immediately post-activity, the glycemia showed a notable increase in both arms
with a faster and significant increase in the treatment group (placebo: 133.46 ± 34.35 mg/dL,
treatment: 165.42 ± 42.85 mg/dL, p = 0.004). At three hours post-running, glucose levels
dropped significantly more in the treatment group (placebo: 80.50 ± 5.58 mg/dL, treatment:
68.58 ± 16.81 mg/dL, p = 0.002). At 24 h, blood glucose levels in both arms returned close
to the baseline value, with no significant differences between the two arms (placebo:
86.58 ± 7.21 mg/dL, treatment: 84.96 ± 6.77 mg/dL, p = 0.432). The delta differences
between post-activity and 3 h measurements compared to 24 h levels were significant for
both arms (p < 0.001).
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3.3. Inflammatory Biomarkers

The inflammatory response over time and between the two arms is shown in Figure 3.
In particular, regarding the white blood cell count, the model revealed significant effects
of time (p < 0.001). Specifically, the time effect was always significant except for the delta
between baseline and 24 h post-running; this trend was shown in both arms (Figure 3A).
The white blood cell concentration in the placebo group increased from a baseline of
5.04 ± 1.47 × 109/L to 11.59 ± 2.43 × 109/L at 3 h then decreased to 5.05 ± 1.04 × 109/L
at 24 h. Instead, the treatment group showed a more moderate increase, with levels rising
from 4.88 ± 1.25 × 109/L at baseline to 10.16 ± 1.82 × 109/L at 3 h post-running and
returning to 4.90 ± 0.93 × 109/L at 24 h. The treatment effect was notably significant
at 3 h post-running (p < 0.001); also, the change in the delta between baseline and 3 h
post-running differed significantly between the two arms (p = 0.0137).

The concentration of neutrophils showed a significant transient increase immediately
after exercise, peaking at 3 h post-running for both arms (p < 0.001) (Figure 3B). In par-
ticular, under placebo conditions, neutrophil levels increased from a baseline mean of
2.71 ± 1.39 × 109/L to 9.51 ± 2.29 × 109/L at 3 h post-running (p < 0.001). In the treatment
group, the increase was notably attenuated, rising from a baseline of 2.45 ± 0.74 × 109/L
to 8.18 ± 1.63 × 109/L at 3 h post-running. The difference in concentration of neutrophil
between the two arms was statistically significant at 3 h post-running and in the change
in delta between baseline and 3 h post-running (p = 0.018 and p = 0.009, respectively).
Finally, as to the white blood cell count trend, the time effect was not significant for the
delta between baseline and 24 h post-running in both arms.
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The levels of IL-6 changed significantly over time (p < 0.001); in particular, IL-6 lev-
els were significantly elevated immediately post-running then returned to baseline val-
ues 24 h post-exercise (Figure 3C). The placebo group showed a baseline IL-6 level of
2.31 ± 0.66 pg/mL, which significantly increased to 8.84 ± 4.22 pg/mL immediately post-
running and a rapid decrease at 1.5 h post-running (3.12 ± 2.15 pg/mL) (p < 0.001 for
time). In the treatment group, at baseline, IL-6 was equal to 2.66 ± 1.45 pg/mL, rising to
7.19 ± 3.88 pg/mL post-running and returning to basal levels of 2.65 ± 1.51 pg/mL at 1.5 h
post-running (p < 0.001 for time). A significant difference between placebo and treatment
was found after exercise (p < 0.049) and from pre- and immediate post-running (p = 0.007).

Lastly, a significant increase in cortisol concentration levels was also observed over
time in both arms (p < 0.001) (Figure 3D). In particular, the placebo group’s baseline
cortisol concentration was 21.52 ± 5.50 nmol/L, which increased to 27.08 ± 6.92 nmol/L
post-running (p < 0.001). For the treatment group, baseline levels were similar to the
placebo group and equal to 23.19 ± 4.71 nmol/L, increasing to 27.65 ± 4.79 nmol/L post-
running (p < 0.001). Then, after 3 h post-running, cortisol levels in the placebo group had
significantly decreased to 14.74 ± 6.30 nmol/L (p < 0.001). This decrease is increasingly
marked in the treatment group (12.35 ± 3.20 nmol/L, p < 0.001), indicating a more rapid
recovery (p = 0.046 for treatment effect). The cortisol increased at 24 h in both arms, reaching
similar levels (placebo: 18.47 ± 4.81 nmol/L; treatment: 18.60 ± 3.81 nmol/L, p = 0.916).

Finally, CRP values greater than 0.16 mg/dL—the cut-off indicating the minimum
detectable level—changed over time and were more frequent in the placebo group than in
the treatment group, with the maximum difference at 24 h (n = 8 and 3 subjects with CRP
less than 0.16 mg/dL in the placebo and treatment arms, respectively) (Figure 4). Results
are confirmed through the generalized estimating equations (GEE) model, which showed a
statistically significant time effect (p = 0.013) and treatment effect (p = 0.006).
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Figure 4. The proportion of CRP values not identifiable (≤0.16 mg/dL vs. >0.16 mg/dL) in placebo
and treatment arms over time (at baseline, post-running, and 3 and 24 h post-running).

3.4. Lipidomic Profile, ω-3 Index and AA/EPA Ratio

Regarding the fatty acid markers, a significant time effect was found in the treatment
and placebo arms for both AA and EPA, along with a significant variation over time only for
the treatment in DHA (Table 3). In particular, AA shows that at baseline, both the placebo
and treatment groups had similar levels (8.32 ± 1.80% and 8.40 ± 1.51%, respectively).
Post-running, the AA levels increased slightly in both groups, with the placebo group
maintaining higher levels (8.55 ± 1.67%) compared to the treatment group (8.45 ± 1.07%).
After 1.5 h, the AA levels remained stable in the treatment group (8.69 ± 1.18%), while
slightly increasing in the placebo group (8.62 ± 1.54%). At the 3 h mark, the AA levels
peaked in both groups, with the placebo group at 9.08 ± 1.54% and the treatment group
at 8.95 ± 1.43%. After 24 h, the AA levels decreased in both groups but were significantly
higher (p < 0.001) in the placebo group (8.45 ± 1.69%) compared to the treatment group
(8.10 ± 1.22%). Significant differences over time were noted in the placebo group at all
time points and in the treatment group at most time points, with a notable significant
difference between the groups observed after 24 h. EPA levels showed significant time
effects, with values in the placebo group increasing from 0.34 ± 0.13% to 0.37 ± 0.11% at
3 h then reducing to 0.33 ± 0.11% at 24 h post-running. The treatment group exhibited an
increase from 0.38 ± 0.14% to 0.40 ± 0.15% at 3 h, followed by a decrease to 0.35 ± 0.12% at
24 h. DHA levels similarly increased and then decreased in both arms. However, the effect
of time is significant only in the treatment group. In particular, rising from 2.04 ± 0.80% to
2.12 ± 0.66% at 3 h and reducing to 1.91 ± 0.75% at 24 h post-running in the placebo group.
The treatment group’s DHA levels significantly increased from 1.90 ± 0.64% (baseline)
to 2.11 ± 0.73% at 3 h then significantly decreased to 1.79 ± 0.59% at 24 h. The p-values
of the interaction terms (treatment × time) are shown in Table S2. Moreover, there is no
significant effect of either time or treatment on total saturated fatty acids, stearic acid, and
palmitic acid (Figure S2).

The ω-3 index changed significantly over time in the treatment arm (p < 0.001);
(Figure 5A). No significant time effect was shown for the placebo (p = 0.516). In de-
tail, the values of ω-3 at baseline were 2.38 ± 0.89% in the placebo group and 2.28 ± 0.73%
in the treatment group. Post-running, there was an increase in the ω-3 index in both arms,
reaching values of 2.49 ± 0.73% in the placebo group and 2.50 ± 0.84% in the treatment
group at 3 h. At 24 h post-running, ω-3 index levels decreased with respect to levels at 3 h
post-running in both arms but did so significantly only in the treatment group (p < 0.001).
No differences between arms were found at each timepoint (at 24 h, placebo: 2.24 ± 0.84%
vs. treatment: 2.14 ± 0.68%, p = 0.579).
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Table 3. Distribution of AA, DHA, and EPA over time between the two arms (placebo and treatment).

AA (%) DHA (%) EPA (%)

Timepoints Placebo Treatment Placebo Treatment Placebo Treatment

Baseline 8.32 ± 1.80 # 8.40 ± 1.51 # 2.04 ± 0.80 1.90 ± 0.64 # 0.34 ± 0.13 # 0.37 ± 0.14
Post-running 8.55 ± 1.67 # 8.45 ± 1.07 2.02 ± 1.00 1.85 ± 0.50 # 0.34 ± 0.12 0.37 ± 0.14
After 1.5 h 8.62 ± 1.54 8.69 ± 1.18 # 2.06 ± 0.82 2.01 ± 0.57 # 0.34 ± 0.11 * 0.38 ± 0.14 *,#

After 3 h 9.08 ± 1.54 # 8.95 ± 1.43 # 2.12 ± 0.66 2.11 ± 0.73 # 0.36 ± 0.12 # 0.39 ± 0.15 #

After 24 h 8.45 ± 1.69 * 8.10 ± 1.22 *,# 1.91 ± 0.75 1.79 ± 0.59 # 0.32 ± 0.12 # 0.35 ± 0.12 #

AA = arachidonic acid; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid. * significant difference
between the two arms; # significant difference over time.
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Regarding the AA/EPA ratio, no statistically significant variation was found over
time (Figure 5B). In detail, at baseline, the AA/EPA ratio was equal to 26.8 ± 9.5 in the
placebo group and 24.68 ± 8.45 in the treatment group. The AA/EPA ratio was similar
in the placebo group immediately post-running (26.84 ± 10.03) and at 3 h post-running
(26.86 ± 9.36). In contrast, the treatment group exhibited a small increase, with an AA/EPA
ratio of 25.05 ± 8.63 immediately post-running and 25.09 ± 8.29 at 3 h post-running.
AA/EPA is higher in the placebo group compared to the treatment group at 24 h post-
running. Indeed, the AA/EPA ratio had decreased to near baseline levels in the treatment
group (25.26 ± 8.25), while the AA/EPA ratio remained increased in the placebo group
(27.74 ± 25.26). The p-values of the interaction terms (treatment x time) are shown in
Table S2.

3.5. Creatine Phosphokinase (CK)

The results showed a significant effect of time on CK levels for both the placebo arm
(p = 0.001) and the treatment arm (p = 0.005). Specifically, the changes from baseline to the
three time points after exercise (e.g., immediately post-running, after 3 h, and 24 h) were
significantly different for both arms. In particular, the CK values for the placebo group
were at baseline 259.92 ± 321.55 IU/L, immediately post-running 360.96 ± 377.80 IU/L
(p < 0.001), 3 h post-running 348.12 ± 352.36 IU/L (p < 0.001), and 24 h post-running
410.77 ± 486.56 IU/L (p = 0.002). For the treatment group, the values were at baseline
207.62 ± 111.37 IU/L, immediately post-running 294.77 ± 153.09 IU/L (p < 0.001), 3 h
post-running 287.27 ± 139.04 IU/L (p < 0.001), and 24 h post-running 316.73 ± 198.14 IU/L
(p = 0.009). The differences in CK values between the two arms showed that the CK levels
were generally lower but not statistically different in the treatment group compared to the
placebo group.

The linear regression model was used to evaluate the association of the AA/EPA ratio
at baseline on CK variation (from baseline to 24 h post-running). The AA/EPA ratio was
categorized as <20, 20–30, and >30. Even though it was not statistically significant, there is
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a borderline association observed between baseline AA/EPA ratios and increments in CK
levels (β = 5.16, CI 95% = [−0.39; 10.71], p = 0.068). High baseline values of the AA/EPA
ratio (particularly if >30) are associated with a statistically significant increase in CK 24 h
post-running (p = 0.031) (Figure 6).
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4. Discussion

This study shows that supplementation with a high dosage of 2:1 maltodextrin–
fructose formulation to medium-to-high-level athletes before, during, and after a 15 km
run at 90% vVO2max intensity may mitigate acute post-activity inflammatory stress, with a
concomitant reduction in white blood cells, particularly neutrophils, IL-6, cortisol, and CRP
levels. Previous studies that investigated the association of carbohydrate supplementation
during exercise on inflammation have shown conflicting results and critical limitations
mainly attributable to the following aspects: inadequate carbohydrate supplementation
(less than 60 g/h, the maximum glucose oxidation rate) and athletes involved in exercise
at intensities where carbohydrates were not the only energy source [13–15,26,31,38]. In
our study, the athletes ran at an intensity where carbohydrates were used exclusively as
an energy source, as evidenced by the mean lactate values at the end of the test, and they
were supplemented with the carbohydrate intake currently considered optimal during
prolonged high-intensity endurance exercise (80 g/h) [39]. Carbohydrates from a single
source, such as glucose, can only be oxidized at approximately 60 g/h because there is a
limitation in the intestinal absorption rate of a single type of carbohydrate due to trans-
porter saturation [40]. The ingestion of carbohydrates that use different transporters may
increase total carbohydrate absorption and their oxidation efficiency, allowing for the
optimal carbohydrate intake during high-intensity endurance exercise. Indeed, when a
combination of carbohydrates is ingested (e.g., glucose and fructose, maltodextrins, and
fructose, or glucose, sucrose, and fructose), it is possible to achieve oxidation rates of more
than 100 g/h, avoiding potential gastrointestinal complications [41–47]. Regarding the
glycemic levels during the test, it is important to note that both arms exhibited a peak
in glycemic levels after exercise, with the treatment arm showing a significantly more
pronounced increase. This increase in glycemic levels in both arms may be attributed to
the strong adrenergic activation induced by the endurance test [48]. The peak in glycemic
levels rapidly decreased in both arms 3 h post-running, with a more significant reduction
observed in the treatment group, avoiding hypoglycemia.

Our main findings suggest that carbohydrate supplementation may mitigate the
short-term inflammatory and stress response induced by endurance running. Indeed,
following endurance running, which involves repetitive eccentric muscle contraction and
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the depletion of muscle glycogen stores, it is known that there is a transient increase in
the pro-inflammatory state accompanied by the mobilization of white blood cells, particu-
larly neutrophils, and an increase in CRP, as confirmed by our data [9–12]. The effect of
supplementation with a high dose of 2:1 maltodextrin and fructose ensures a significant
reduction in these inflammatory parameters compared to the placebo within 24 h after the
end of exercise. In parallel, there is the activation of compensatory mechanisms, where
IL-6 may play a crucial role. It is acutely released from active muscle fibers in response
to increased exercise duration, intensity, and muscle glycogen depletion. IL-6 promotes
communication between muscles and other organs, aiding in the coordinated response
necessary to maintain muscle energy homeostasis and anti-inflammatory behavior [20].
Optimal supplementation with high doses of a maltodextrin–fructose supplement be-
fore, during, and after exercise maintains energy availability, particularly carbohydrate
availability, during high-intensity endurance performance, reducing metabolic stress and
subsequently lowering anti-inflammatory mechanisms such as the IL-6 release [21,22]. The
reduction in metabolic stress may be linked to the direct or indirect (IL-6-mediated) effects
of maltodextrin–fructose on the hypothalamic–pituitary–adrenal axis, leading to a decrease
in cortisol levels, a hormone also known for its hyperglycemic activity [16,23–25].

The endogenous response of ω-3 and ω-6 fatty acids in inflammatory processes in run-
ning has been inadequately explored [49]. Moreover, there is no information regarding their
role in transient inflammatory mechanisms after endurance exercise. It is well established
that AA-derived eicosanoids promote inflammation and other physiological processes,
while EPA and DHA-derived mediators have potent anti-inflammatory properties and
contribute to resolving inflammation [29,50]. In both arms, an increase in AA levels is
observed, reaching its peak at 3 h post-running, likely as an inflammatory response induced
by high-intensity endurance running. However, it is noteworthy that 24 h post-running,
the reduction in these levels, which occurs in both arms, is marked in the treatment arm
compared to the placebo, reaching values lower than baseline. A similar trend is observed
for DHA in both arms, although the effect of time is significant only in the treatment group.
Regarding EPA, there is a more rapid increase in the treatment arm at 1.5 h post-running,
which is significant compared to the placebo, but this significance is lost after 3 h. Overall,
these fluctuations in polyunsaturated fatty acids appear to be associated with high-intensity
endurance activity, but are more pronounced in the treatment arm, suggesting a specific
mechanism related to this type of fatty acids. Supporting this observation, the lack of
variation in saturated fatty acid levels indicates that the changes in polyunsaturated fatty
acid levels are not the expression of their possible use as energy substrates, with a possible
specific contribution to inflammatory regulation. Equally interesting is the AA/EPA ratio
trend, which remains consistently higher in the placebo group than in the treated group
24 h post-test. In the treated group, the ratio values normalized, returning to baseline
levels. This supports the idea that in the absence of carbohydrate supplementation, a
pro-inflammatory state persists for a longer duration in athletes. While acute supplements
did not directly influence post-running CK levels, the high pre-activity AA/EPA values
were associated with higher muscle damage post-activity, as indicated by elevated CK
levels at 24 h, particularly in athletes with a very high AA/EPA ratio (>30).

Although the strengths of this study listed so far are numerous, the main limitations
include (1) the small number of runners involved; (2) the limited number of women enrolled
in the study population, without complete information about the phase of their menstrual
cycle [51]; and (3) the narrow range of inflammatory cytokines analyzed, which restricts a
more comprehensive evaluation of this type of supplementation. Future research is needed
to elucidate fully the mechanisms behind carbohydrate supplementation and its benefits
on running training, performance, and recovery.

5. Conclusions

Supplementation with a high-carbohydrate mixture of maltodextrin–fructose at a
2:1 ratio can acutely mitigate inflammation during a one-hour endurance activity of
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moderate-to-high intensity. Additionally, at 24 h after the endurance activity, this supple-
mentation may significantly reduce the post-endurance increase in AA levels. These effects
could be beneficial for athletes engaging in frequent, high-intensity activities. However,
dedicated prospective studies are needed to verify this hypothesis.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nu16183078/s1: Table S1: Baseline characteristics of the en-
rolled athletes. Table S2: Descriptive statistics of interaction effects for all lipidomic parameters.
Figure S1: Consort flow diagram depicting the flow of participants through the cross-over trial.
Figure S2: total saturated fatty acids (A) palmitic acid (B) and stearic acid (C) at baseline, post-activity,
after 1.5, 3, and 24 h post-running.
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