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Abstract: In recent decades, there has been an increased interest in the development of intranasal
delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal dis-
eases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine
delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active
pharmaceutical ingredients, but there are several limitations that recent research in the field of the
intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations,
active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of
the most commonly encountered API delivery systems in the scientific literature include liposomal
systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions,
and solid lipid particles. This article provides a review of research on the development of nasal
preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic
diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disor-
ders (Alzheimer’s disease, Parkinson’s disease, epilepsy, schizophrenia, depression), and vaccine
delivery. The literature data show that active research is underway to reformulate drugs of various
pharmacotherapeutic groups into a nasal form.

Keywords: nasal medications; intranasal drug delivery systems; methods to improve API delivery

1. Introduction

Intranasal administration of drugs has been used for centuries for preventive purposes,
but was mainly limited to the treatment of local diseases of the nasal cavity, such as rhinitis.
The growing number of neurological diseases pushed forward research in the field of drug
delivery by intranasal administration, and in 1991, William Frey patented a method for nasal
delivery of drugs from the nose to the brain for the treatment of neurological diseases [1].
Since then, many interesting studies have been carried out in this area. Nasal drug delivery
systems are being actively developed as an alternative to oral and parenteral administration.
There is an increased interest in obtaining nasal drugs for systemic treatment [2], treatment
of diseases of the CNS [3], and for vaccine delivery [4]. All this is due to the fact that the
nature of the nasal mucosa provides a number of unique characteristics that contribute to the
effective and convenient delivery of drugs. The nasal cavity is well vascularized. Thanks to
this, drug molecules can be quickly transferred through one layer of epithelial cells directly
into the systemic circulation without the hepatic and intestinal metabolism that occurs
with oral administration [5]. This makes it possible to achieve a rapid therapeutic effect,
especially for molecules with low molecular weight. However, it is necessary to introduce
permeability enhancers in compositions containing high-molecular-weight drugs [6]. Nasal
delivery may be suitable for drugs that are effective in small doses and have low oral
bioavailability [7].
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Advantages of nasal drug delivery [8]:

• Suitable for drugs that quickly degrade in the acidic environment of the stomach;
• Ensures rapid absorption of the drug and the onset of its action;
• Provides higher bioavailability of the drug, leading to lower required doses;
• Convenience and good patient compliance;
• Direct transport of the drug into the systemic circulation or central nervous system is

possible;
• Direct delivery of vaccines to lymphatic tissues;
• Convenient for patients undergoing long-term therapy;
• Less risk of overdose;
• Non-invasive.

Limitations of nasal drug delivery [8]:

• The deliverable dose is limited to 25–200 µL;
• Difficulty in delivering high-molecular-weight APIs;
• Protective mechanisms (e.g., mucociliary clearance) may affect drug absorption;
• Topical enzymes in the nasal cavity may degrade some APIs;
• Local side effects may occur (mucous membrane irritation);
• Nasal congestion due to a cold may interfere with the effective delivery of the API.

Typically, intranasally administered drugs are solutions, suspensions, gels, and emul-
sions. When developing formulations for intranasal delivery, much attention is paid to
ensuring uniformity of dosage, stabilization of both the composition and the API, micro-
biological purity and a number of other quality aspects of the finished dosage form. To
optimize and improve the adsorption of APIs during nasal administration, various delivery
systems are being investigated and tested [9]. For example, active pharmaceutical ingre-
dients can be incorporated into liposomal systems, polymer particles with mucoadhesive
properties, in situ gels, nano- and microemulsions, solid lipid particles and dendrimers
(Figure 1 and Table 1).
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Figure 1. Drug delivery systems under investigation. Created with BioRender.com.

The purpose of this paper is to analyze and summarize the state-of-the-art in the field
of nasal drug delivery. The article provides an overview of research of various intranasal
delivery systems for the treatment of local and systemic diseases, diseases of the central
nervous system, and for vaccine delivery.
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Table 1. Intranasal API delivery systems.

Delivery System Description Refs.

Liposomes

Spherical vesicles consisting of one or several bilipid layers surrounding the
aqueous phase. Hydrophilic drugs can be introduced into the aqueous phase,
and hydrophobic drugs can be introduced into the bilipid layer of the
liposome. Encapsulation of drugs in a liposomal system avoids degradation of
the active pharmaceutical ingredient in the body and multidrug resistance.

[10]

Mucoadhesive polymer particles
They have the ability to adhere to the surface of mucous tissue, which leads to
an increase in the concentration of the active pharmaceutical ingredient. This
property allows for a reduction in the administered drug total dose.

[11]

In situ gels

Drug delivery systems that are used in the form of solutions or suspensions
and are capable of phase transition in a certain place of the body under the
influence of external factors such as temperature, pH, etc. These systems
provide targeted release of active pharmaceutical ingredients and maintain
them at a relatively constant concentration.

[12]

Micro- and nanoemulsions
Liquid-dispersed systems with a very fine distribution of droplets. These
systems enable the delivery of hydrophobic drugs at a higher dose and have
improved stability than conventional emulsions.

[9]

Solid lipid particles
They combine the advantages of delivery methods such as emulsions and
liposomes; may have high capacity of active pharmaceutical ingredients and
high API protection against the body environment factors.

[13]

Dendrimers
Highly ordered, branched polymer molecules with a symmetrically branched
structure around a multifunctional central core. They have the ability to highly
selectively encapsulate APIs.

[14]

2. Results and Discussion
2.1. Nasal Preparations for the Treatment of Local Diseases

The first barrier to the penetration of various bacteria and viruses is the nasal mucosa.
The entry of pathogens into the nasal cavity can cause the development of rhinosinusitis,
which is accompanied by symptoms such as nasal congestion, rhinorrhea, sneezing and
itching [15]. Depending on the duration of symptoms, rhinosinusitis is classified as acute
(lasting up to one month), subacute (from one to three months), chronic (more than three
months) or recurrent (four or more repeating episodes of the inflammatory process during
the year, with complete recovery in between) [16]. Until recently, it was believed that this
disease did not have any serious consequences, but during the SARS-CoV-2 pandemic,
the World Health Organization (WHO) declared rhinosinusitis a risk factor for patients
with COVID-19 [17]. It is important to treat this pathology in a timely manner, as it can
contribute to the development of a more dangerous disease.

Nasal administration of drugs is the most suitable method for treating diseases of
the upper respiratory tract, allowing easy administration of a wide range of drugs. The
most common dosage forms of nasal drugs are liquid dosage forms (solution, suspension
or emulsion) for nebulization [18]. They contain one or more medicinal and auxiliary
substance, homogeneously distributed, as a rule, in an aqueous environment. Popular
drugs for the treatment of local diseases of the nasal cavity caused by allergic reactions
or infections are antihistamines and corticosteroids [2]. Compared to oral administration,
nasal preparations require lower doses of active substances. This reduces the risk of
systemic side effects, such as drowsiness, which can occur with oral antihistamines.

Of particular interest is the intranasal administration of antibiotics [19]. Antibiotics
are a group of drugs that act directly on bacteria to treat infectious diseases. Oral adminis-
tration is the most common way to take antibiotics. However, the oral route of antibiotic
administration can lead to numerous side effects [20,21]. Administration of antibiotics by
the nasal route can provide precise treatment to the target site, significantly reducing the
impact on other organs. For example, for the treatment of local nasal diseases (chronic
rhinosinusitis), which last about 2 weeks, intranasal drugs can be used instead of oral
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antibiotics [22]. Intranasal administration of antibiotics is critical to reduce side effects,
along with reducing the frequency of drug use and, importantly, minimizing the risk of
resistance due to patient interruption during long-term treatment. Table 2 provides some
examples of research on intranasal antibiotic delivery systems.

Table 2. Investigational nasal formulations for antibiotic delivery.

Antibiotic Form Therapeutic Indication Refs.

Mupirocin Solution Chronic rhinosinusitis [23–25]

Mupirocin and neomycin Ointment Staphylococcal rhinitis [26]

Tobramycin Spray Bacterial rhinosinusitis [27]
Solution Nasal polyposis [28]

Vancomycin Solution Sinonasal polyposis [29]

Ciprofloxacin
Drops, spray, gel Chronic rhinosinusitis [30]
Microemulsion S. aureus infection [31]

Gel in situ Local infection [32]

Levofloxacin Gel in situ Local infection [33]

The authors of [31] developed a microemulsion for the intranasal delivery of ciprofloxacin
for the treatment of infection caused by Staphylococcus aureus. Ciprofloxacin is a quinolone
antibiotic with a broad spectrum of activity against many pathogenic bacteria, including S.
aureus. To obtain a microemulsion, isopropyl myristate, polysorbate 80/ethyl alcohol (in a
ratio of 2:1) and water in a ratio of 2.5%, 42% and 55%, respectively, were used. After this,
0.30% ciprofloxacin was added to the mixture. The penetration ability of the developed
ciprofloxacin microemulsion was higher than that of pure ciprofloxacin.

The authors of [33] conducted an in situ study of a thermosensitive gel with lev-
ofloxacin. Levofloxacin belongs to a broad-spectrum antibacterial agent from the class
of third-generation fluoroquinolones. As a result of the study, API concentrations were
measured in the nasal mucosa and in blood plasma after intranasal and intravenous ad-
ministration. It was found that the amount of levofloxacin in plasma was minimal after
intranasal administration, indicating a reduced likelihood of adverse reactions. When the
drug was administered to rats, the concentration of levofloxacin in the first 60 min in the
mucous membrane of the anterior part of the nose after intranasal administration showed
a greater value than after intravenous administration.

2.2. Nasal Drugs for the Treatment of Systemic Diseases

In addition to treating local diseases of the nasal cavity and paranasal sinuses, nasal
medications can also be used to treat various systemic diseases. The use of intranasal
delivery of systemic drugs is being studied as an analgesic for the treatment of cardiovas-
cular diseases, for the prevention of infections, for the prevention of gag reflexes, etc. [34].
Researchers’ interest in developing such delivery systems is due to the advantages of
intranasal administration, which were mentioned above. Nasal arterial blood supply is
an essential factor for systemic absorption. Transport of APIs from the nasal epithelium
directly into the bloodstream occurs mainly via intracellular and/or extracellular routes
(Figure 2).

Let us take a closer look at the selected groups of systemic drugs for which research is
being conducted.
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2.2.1. Painkillers

Painkillers are aimed at eliminating headaches and acute, moderate, severe, and
chronic pain caused by surgery, injury or cancer. Cancer patients are the most in dire
need of pain relief. In patients with cancer, pain can be divided into chronic and acute.
Acute pain occurs spontaneously and is known as breakthrough pain. Painkillers to treat
such cases must have a rapid onset of action and a sustained release. Typically, oral and
parenteral analgesic solutions are used to treat breakthrough pain, but they have significant
disadvantages: the initial effect of oral forms is achieved only within 30–45 min after
administration, and the maximum effect is achieved within 1 h [35,36]. In the case of
parenteral analgesics, the effect of the drug is approximately 5 min, but the invasiveness of
administration requires the participation of trained people [36]. Intranasal administration
of analgesics is a promising alternative, providing easy and rapid pain relief and improving
the patient’s quality of life. A wide range of analgesic medications are being studied
for intranasal administration, including morphine, fentanyl, buprenorphine, and others
(Table 3).

Table 3. Investigations of intranasal systemic delivery.

API Delivery System Refs.

Morphine Microparticles [37]

Fentanyl Spray [38]

Buprenorphine hydrochloride Solution [39–41]

Ketamine Solution [42,43]

Sumatriptan
Gel in situ [44]

Nanoemulsion [45]
Powder [46,47]

Zolmitriptan Gel in situ [48]
Nanoparticles [49]

According to the WHO recommendations, morphine is considered the standard anal-
gesic drug for relieving pain in moderate-to-severe cancer. When morphine is administered
orally, its bioavailability is only 20–30% [50]. When administered intranasally, the bioavail-
ability of morphine is also low, amounting to only 10–30%, probably due to its very low
lipophilicity. To increase bioavailability, preparations were developed in which mucoadhe-
sive biopolymers were used as a carrier. In [37], the intranasal administration of chitosan
microspheres with embedded morphine was studied. The bioavailability of the API compo-
sition of chitosan–morphine was 55%, and with the intranasal administration of a morphine
solution, the bioavailability was 27%. In the same work [37], the bioavailability of a drug
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based on starch microspheres in combination with lysophosphatidylcholine was studied.
Bioavailability for sheep was 75%. An increase in bioavailability when mucoadhesive
biopolymers are used as API carriers may be associated with an increase in the residence
time of the drug in the nasal cavity.

One of the most important clinical studies regarding intranasal morphine admin-
istration was to evaluate the pharmacokinetic profile and tolerability of a formulation
consisting of morphine mesylate and chitosan [51]. Thirteen patients were enrolled in a
randomized, complete crossover study with six single-dose morphine routes: intranasal
morphine–chitosan 7.5 mg, 15 mg, and 30 mg; intranasal morphine (without chitosan,
15 mg); oral morphine sulfate (15 mg); and intravenous administration of morphine sulfate
(10 mg). The absolute bioavailability of intranasal morphine with chitosan ranged from
60.4% to 82.3% at three dosage levels. The relative bioavailability of morphine in chitosan
formulations compared to oral morphine sulfate was found to be more than 160%.

In [50], a study was conducted in which eleven patients were administered morphine
solutions with the addition of oleic acid as an absorption stimulant. Improved bioavailabil-
ity of morphine and increased mean residence time following nasal administration were
demonstrated. In addition, patients reported a rapid onset of pain relief.

Unlike morphine, agents such as fentanyl and butorphanol can be absorbed effectively
and rapidly through the nasal mucosa without the use of absorption enhancers. Fentanyl is
a synthetic analgesic with high lipophilicity and low molecular weight, which facilitates
direct penetration through the nasal mucosa. Fentanyl has been approved for marketing
as a drug for the relief of postoperative pain, acute pain, procedural wound care pain,
and breakthrough pain in patients with cancer. It is available in two different forms: an
aqueous solution (Instanyl®) and a pectin-based mucoadhesive formulation (PecFent®).
In a pharmacokinetic study conducted in nineteen cancer patients with breakthrough
pain, fentanyl nasal spray showed rapid absorption through the nasal mucosa, reaching
peak plasma concentrations within 12–15 min when administered in doses of 50, 100, and
200 µg [52].

In [38], a nasal pectin-based fentanyl spray was investigated. Compared to nasal fen-
tanyl spray mixed with aqueous solutions, the pectin-based system reduces the maximum
plasma concentration and provides prolonged release, which more closely matches the
typical onset time of pain in cancer patients.

Triptans (selective serotonin receptor agonists) are another group of analgesics that
are particularly effective for the treatment of migraine. Migraine is a type of headache
usually characterized by moderate-to-severe pain that is throbbing and concentrated in
only one part of the brain. During a migraine attack, pain-causing substances are released
in the brain, causing cerebral blood vessels to dilate and stimulate nerves. Patients with
recurrent migraine or cluster headache are traditionally prescribed oral tablet formulations
of triptans, the most common of which are sumatriptan and zolmitriptan. However,
their oral administration is often accompanied by a slow onset of action, and first-pass
metabolism through the liver leads to low absolute bioavailability (14% for sumatriptan
and 40–45% for zolmitriptan) [53,54].

Intranasal administration of sumatriptan and zolmitriptan is more effective and cost-
effective, and these drugs are currently available in nasal forms. Their high lipophilicity
facilitates passage through the nasal mucosa, which in practice allows for the administration
of simple nasal solutions. Pharmacokinetic studies in healthy human volunteers have
shown that the absorption of zolmitriptan administered as a nasal spray is very rapid,
resulting in therapeutic concentrations in plasma within 2 min of dosing [55] and in the
brain within 5 min [56]. Moreover, patients reported headache relief within 10–15 min
after taking the drug [54]. To increase bioavailability and ensure prolonged release of
sumatriptan, a thermosensitive gel was prepared in situ in [44]. The optimal composition
of the gel was selected based on poloxamer 407 and poloxamer 188 using hyaluronic acid
as a mucoadhesive polymer. Studies in sheep showed drug release (95.98%) within 6 h
without histological or pathological changes in the sheep's nasal tissue.
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2.2.2. Drugs for the Treatment of Cardiovascular Diseases

Table 4 provides some examples of studies on the development of nasal drugs for the
treatment of cardiovascular diseases.

As an alternative to parenteral therapy, ref. [57] developed a nasal drug for the delivery
of metoprolol tartrate, used in the treatment of hypertension and angina. The drug was a mi-
crosphere based on sodium alginate (mucoadhesive biopolymer), the size of which ranged
from 55 to 80 microns. The studies revealed that the maximum concentration of metoprolol
in the blood plasma of rabbits and rats was higher after intranasal administration than after
oral administration. In addition, the microspheres also provided a more sustained and
controlled delivery of metoprolol tartrate compared to oral and parenteral administration.

Table 4. Investigational nasal drugs for the treatment of cardiovascular diseases.

API Delivery System Refs.

Metoprolol tartrate Microspheres [57]
Gel in situ [58]

Nifedipine Solution [59]

Carvedilol
Transfersomes [60]
Microspheres [61,62]

Gel in situ [63]

Nifedipine is a calcium channel blocker often used to treat angina and hypertension.
The authors of [59] conducted a crossover clinical study to investigate the optimal method
of administering nifedipine for the rapid treatment of hypertension in six human volunteers.
This study found that intranasal administration of nifedipine resulted in a lower peak blood
concentration than that obtained with oral administration. Despite this, the mean serum
concentration of nifedipine after 5 min was the highest (and remained the highest until the
next 15 min) when administered intranasally.

Intranasal carvedilol has been studied for the treatment of hypertension and stable
angina [61,62]. Microspheres of sodium alginate and chitosan (particle size 20–50 µm)
were studied as potential delivery systems for carvedilol. Both nasal microsphere systems
showed absolute bioavailability above 65%. It should be noted that the bioavailability of chi-
tosan microspheres was slightly higher than that of alginate microspheres. Studies [61,62]
showed that the mean residence time and half-life were two times higher compared to
intravenous administration. Due to the high mucoadhesive ability of sodium alginate and
chitosan, both dosage forms provided prolonged release of carvedilol.

2.2.3. Antiviral Drugs

Table 5 provides some examples of nasal antiviral drugs.

Table 5. Investigational nasal antivirals.

API Delivery System Refs.

Acyclovir Lipids [64]
Liposomes [65]

Zidovudine Nanoparticles [66]

Darunavir Solution [67]

Acyclovir is an antiviral drug that is primarily used to treat the herpes simplex virus.
Acyclovir is currently available in several dosage forms, which have serious limitations.
Intranasal acyclovir is a promising strategy, but acyclovir is virtually impenetrable through
the nasal mucosa. To improve the effectiveness of intranasal administration of acyclovir,
liposomal delivery systems have been developed [65]. Liposomes with embedded acyclovir
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had higher permeability in the nasal cavity than pure acyclovir. This study [65] used fifteen
rabbits, which were divided into three groups: one group received acyclovir liposomes in
the form of a nasal gel, another group received acyclovir nasal gel, and the third group
received an intravenous injection of acyclovir solution. The absolute nasal bioavailability of
acyclovir, calculated over 8 h, was 60.7% for liposomal gel and only 5.3% for pure acyclovir.

Zidovudine is the first antiretroviral drug developed (for the treatment and prevention
of HIV infection). Since its approval in 1987, it has become a key treatment for acquired im-
munodeficiency syndrome (AIDS). The work [66] describes the preparation and evaluation
of nanoparticles based on a mixture of polylactide with polyethylene glycol (PLA-PEG)
containing zidovudine. Due to the presence of PEG, the trapping efficiency of the API was
increased. The relative bioavailability of nanoparticles based on the PLA-PEG mixture was
2.7 compared to nanoparticles based on PLA, and 1.3 compared to the drug in the form of
an aqueous solution. Thus, PLA-PEG nanoparticles, due to the presence of PEG, increased
the bioavailability of the API compared to its aqueous solution.

Another drug recommended by the WHO for the treatment and prevention of HIV
infection is darunavir. The study [67] compared the biodistribution of darunavir at two
different concentrations, high (25 mg/kg) and low (2.5 mg/kg), using two routes of admin-
istration: intravenous and intranasal. Compared to intravenous administration, intranasal
administration demonstrated significantly better penetration of the API into the brain at
both low and high concentrations.

2.2.4. Antiemetic Drugs

Eliminating attacks of nausea and motion sickness with nasal medications is a de-
sirable alternative to oral and parenteral medications. This is due to the need in acute
situations for a faster onset of action, which can be achieved with intranasal administration.
With oral administration, the absorption of drugs in the intestine can vary significantly
due to impaired gastric motility associated with the pathological situation, while nasal
administration guarantees a constant dosage. Table 6 provides some examples of nasal
antiemetic drugs.

Table 6. Investigational nasal antiemetics.

API Delivery System Refs.

Metoclopramide
hydrochloride

Gel in situ [68,69]
Microspheres [70]

Ondansetron
Solid lipid particles [71]

Lipids [72]
Microspheres [73]

Metoclopramide hydrochloride is a potent antiemetic that is effective in relieving
nausea and vomiting associated with cancer therapy, pregnancy, and migraine. When
administered orally, the bioavailability of metoclopramide varies greatly and ranges from
32% to 98%. In addition, the short half-life of metoclopramide suggests oral administration
of the drug 3–4 times a day. Intranasal administration of metoclopramide is considered
a good alternative to oral administration as it overcomes the problem of heterogeneous
bioavailability. The authors of [69] obtained and studied an in situ gel with embedded
metoclopramide for intranasal administration. The developed systems provided prolonged
release of the drug in vitro for 8 h.

2.3. Nasal Drugs for the Treatment of Diseases of the Central Nervous System

The use of oral and parenteral methods for administering APIs in the treatment of
neurological disorders does not allow effective delivery of drugs to the central nervous
system. This is mainly due to the fact that there are barriers in the brain, primarily the
blood–brain barrier (BBB), which protects the central nervous system from the penetration
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of blood cells, pathogens, mediators, and neurotoxic plasma components [74]. The BBB
consists of endothelial cells tightly adjacent to each other. So-called tight junctions are
formed between endothelial cells, the role of which is that they prevent the penetration of
various undesirable substances from the bloodstream into the brain tissue. Tight junctions
between endothelial cells block intercellular passive transport. In this case, the intercellular
transport of substances is blocked both from the bloodstream to the brain tissue and in the
opposite direction—from the brain to the blood [75]. A non-invasive way to bypass the BBB
is to administer drugs through the nose. The nose is not only located in close proximity to
the brain, but also contains special nerves, the olfactory and trigeminal nerves, which have
a direct connection with the brain, independent of the BBB [76].

At the moment, there are many studies on intranasal drug delivery for the treatment
of disorders and diseases of the central nervous system [2,9,77] (Figure 3).
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Alzheimer’s disease is a slowly progressive neurodegenerative disease characterized
by memory impairment and cognitive decline, which in turn affects behavior, speech,
visuospatial orientation and the motor system, and is the most common form of demen-
tia [78]. These problems are caused by the loss or destruction of neurons that are involved
in cognitive functions in the brain. Oral medications are the most common treatment for
Alzheimer’s disease, but their effectiveness is very limited. Table 7 provides examples of
drugs for the treatment of Alzheimer’s disease.
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Table 7. Investigational nasal drugs for the treatment of Alzheimer’s disease.

API Delivery System Refs.

Rivastigmine
Nanoemulsion [79]
Microemulsion [80,81]

Gel in situ [82]

Piperine Nanoparticles [83]
Solid lipid particles [84]

Insulin Nanogel [85]

Curcumin
Nanoparticles [86]

Gel in situ [87]
Microemulsion [88]

Donzepil

Nanosuspension [89]
Liposomes [90]

Gel [91,92]
Microemulsion [93]

Resveratrol
Gel in situ [94]

Solid lipid particles [95]

In the study [83], chitosan nanoparticles with embedded piperine were obtained and
studied. Piperine is a phytopharmaceutical with neuroprotective potential in Alzheimer’s
disease. The effectiveness of nanoparticles with piperine was studied on 48 animals
in which Alzheimer’s disease was induced. It was found that cognitive function was
effectively improved as an injection of the standard drug (donpezil), but nanoparticles
with piperine had the additional benefits of acetylcholinesterase inhibition and an
antioxidant effect.

In [85], a gel based on poly-N-vinylpyrrolidone with covalently cross-linked insulin
was obtained. When the resulting form was administered intranasally to mice, no changes
or immunogenic response of the nasal mucosa were observed. In addition, an increase
in insulin delivery to various brain regions and its biological activity was demonstrated
compared to the administration of pure insulin.

The work [87] developed a method for delivering transfersomes with curcumin in-
tegrated into a nasal gel. Transfersomes are ultra-flexible vesicles with an aqueous core
surrounded by a complex lipid bilayer. An in vivo study showed that the concentration
of curcumin in the brain after intranasal administration was markedly higher than its
concentration after intravenous administration. Curcumin transfersomes integrated into a
nasal gel prolong mucosal contact time and release the drug in a controlled manner. The
authors of [90] developed a liposomal form with donepezil for intranasal administration.
These liposomal formulations were found to provide rapid and increased concentrations of
donepezil in the brain. The research results showed that the bioavailability of the resulting
form was doubled compared to the oral and parenteral routes of administration. In a
study [94], a hybrid intranasal delivery system was obtained, including a nanosuspension
of resveratrol as an API and deacetylated gellan gum. Deacetylated gellan gum is used as a
gelling matrix in situ (in the nasal cavity) to increase residence time and improve absorption
of the API. The results of studies [94] showed that with intranasal administration of the
obtained form, the maximum concentration of resveratrol in the brain was 2.88 times higher
than with intravenous administration of the standard form.

Parkinson’s disease is the second most common neurodegenerative disease, affecting
1.5% of the world’s population over 65 years of age [96]. Parkinson’s disease is characterized
by progressive degeneration of the nigrostriatal dopaminergic system, which causes a
loss of dopamine. Symptomatically, Parkinson’s disease is characterized by impaired
motor function (slowness of movement, tremors, rigidity, and loss of balance) and other
complications, including cognitive decline, mental disorders, sleep disturbances, pain, and
sensory disorders [96]. Current treatment strategies for Parkinson’s disease primarily focus
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on relieving motor symptoms by increasing dopamine levels in the CNS or stimulating
dopamine receptors. The most common treatment is oral levodopa. However, its long-term
administration leads to serious side effects [97]. Thus, new approaches are needed that can
increase the effectiveness of treatment for Parkinson’s disease. Table 8 provides examples
of investigational nasal medications for the treatment of Parkinson’s disease.

Table 8. Investigational nasal drugs for the treatment of Parkinson’s disease.

API Delivery System Refs.

Celegiline Chitosan nanoparticles [98]
Nanoemulsion [99]

Bromocriptine Chitosan nanoparticles [100]

Rasagiline mesylate
Gel in situ [101]

Chitosan glutamate nanoparticles [102]
Chitosan-coated PLGA nanoparticles [103]

Peonol Gel in situ [104]

Dopamine Chitosan nanoparticles [105]
Borneol and lactoferrin co-modified nanoparticles [106]

Pramipexole Chitosan nanoparticles [107]

In a study [98], chitosan nanoparticles with selegiline were obtained as an API for
intranasal administration. Studies in rats showed that selegiline concentrations in the brain
and plasma were 20 and 12 times higher, respectively, after intranasal administration than
after oral administration.

Chitosan nanoparticles loaded with pramipexole dihydrochloride were obtained
in [107]. In pharmacodynamic studies, the results showed an improvement in motor func-
tions in a group of rats that received intranasal administration of the resulting nanoparticles,
compared with pramipexole nasal solution or oral tablets.

Epilepsy is a chronic neurological disease that manifests itself in the body’s predispo-
sition to the sudden onset of seizures [108]. Table 9 provides examples of nasal medications
being studied for the treatment of epileptic seizures.

Table 9. Investigational nasal antiepileptic drugs.

API Delivery System Refs.

Lamotrigine Liposomes [109]
Nanoparticles [110]

Letrozole Nanoemulsion [111]

Lorazepam Gel in situ [112]

Oxcarbazepine Microemulsion [113]

Phenytoin Nanoemulsion [114]

Lamotrigine is widely used as an antiepileptic drug [115]. Due to poor solubility in
water, it has low effectiveness when administered orally. In [110], PLGA-based nanoparti-
cles loaded with lamotrigine were obtained. In vivo studies were conducted on rats, and
the delivery efficiency of lamotrigine nanoparticles was more than 120%. The maximum
concentration of APIs in the brain was found to be 3.82 µg/mL 1.5 h after intranasal
administration, while after oral administration, it was 1.4 µg/mL after 1.5 h.

Schizophrenia is a severe mental disorder that affects approximately 20 million people
worldwide [116]. People with schizophrenia may suffer from positive (delusions, auditory
hallucinations) and/or negative symptoms (social isolation, disorganized speech, inability
to concentrate). Symptoms of schizophrenia can be effectively suppressed with atypical
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antipsychotics [117]. Table 10 presents some studies on the development of drugs for the
intranasal delivery of atypical antipsychotics.

Table 10. Investigational nasal drugs for the treatment of schizophrenia.

API Delivery System Refs.

Quetiapine fumarate Nanoemulsion [118]
Liposomes [119]

Asenapine maleate Nanoemulsion [120]
Gel in situ [121]

Risperidone Liposomes [122]

Paliperidone Microemulsion [123–125]
Gel in situ [126]

In [119], a liposomal delivery system for quetiapine fumarate was studied. Quetiapine
fumarate has an oral bioavailability of 7–8% due to its low solubility in water. The use of
liposomes as a delivery system for quetiapine fumarate for intranasal administration can
increase the bioavailability of the drug by up to 32%. In a study [120], a nanoemulsion of
asenapine maleate was prepared with the addition of the mucoadhesive polymer Carbopol
971 to increase the residence time on the nasal mucosa. The maximum concentration in
the brain of asenapine maleate was 284.33 ± 5.5 ng/mL 1 h after intranasal administration,
while with intravenous administration, it was 79.86 ± 8.2 ng/mL 3 h after administration.

The authors of [127] obtained chitosan nanoparticles loaded with risperidone. The
developed composition of chitosan nanoparticles showed a significantly higher release
of the API (81%), and its bioavailability was increased up to three times compared to the
conventional dosage form in the form of a solution when delivered nasally.

Depression is a mental disorder that is characterized by emotional disturbances and
can affect a person’s thoughts, behavior, and physical well-being [128]. Antidepressants
are drugs that are used primarily for the treatment of depression and affect the level of neu-
rotransmitters, particularly serotonin, norepinephrine, and dopamine. Intranasal delivery
as a promising treatment for depression has been explored with several antidepressants.
Table 11 presents some studies on the development of drugs for the intranasal delivery of
antidepressants.

Table 11. Investigational nasal medications for treating depression.

API Delivery System Refs.

Agomelatine Gel in situ [129]
Microemulsion [130]

Doxepin Gel in situ [131]

Duloxetine hydrochloride Microemulsion [132]
Gel in situ [133,134]

Fluoxetine hydrochloride Gel in situ [135]

Paroxetine
Nanoemulsion [136]

Gel in situ [137]

Venlafaxine Nanoparticles [138,139]

Thus, in [129], the intranasal delivery of agomelatine in the form of a gel in situ was
studied, which had a sol–gel transition temperature of 31 ◦C, a mucociliary transport time
of 27 min, and a release after 1 h of 46.3%, after 8 h—70.9%. A pharmacokinetic study of the
gel revealed a 2.7-fold increase in the concentration of APIs in the rabbit brain compared to
oral administration. The authors of [136] developed and studied a nanoemulsion containing
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paroxetine. Paroxetine is a selective serotonin reuptake inhibitor and is used to treat de-
pression and anxiety problems. The results of a study of paroxetine nanoemulsion showed
an increase in penetration by 2.57 times compared to a paroxetine suspension adminis-
tered orally. Behavioral studies (forced swimming test and locomotor activity test) were
conducted on rats to study the therapeutic effect of the resulting composition. Treatment
of depressed rats with paroxetine nanoemulsion administered intranasally significantly
improved behavioral activity compared with paroxetine suspension administered orally.
In [135], chitosan nanoparticles loaded with venlafaxine were obtained for intranasal deliv-
ery. Venlafaxine is a dual-acting antidepressant (serotonin and norepinephrine reuptake
inhibitor). Chitosan nanoparticles were prepared by ionic gelation of chitosan with sodium
tripolyphosphate and freeze drying. Venlafaxine was dissolved in a chitosan solution at a
ratio of 1:1 before adding sodium tripolyphosphate. The concentration ratio of venlafaxine
in brain tissue and blood plasma 0.5 h after delivering the intravenous administration was
0.0293; for the intranasal administration of venlafaxine, it was 0.0700; and for the intranasal
administration of chitosan nanoparticles with venlafaxine, it was 0.1612. The research
results showed that chitosan nanoparticles with venlafaxine have faster API transport and
a higher percentage of direct transport (80.3%).

2.4. Nasal Formulations for Vaccine Delivery

Most pathogens that cause severe illness (e.g., influenza, meningitis, coronavirus
infection, and measles) enter the body through the nasal cavity. The nasal cavity has good
anatomical characteristics and immune potential to combat infectious agents. Parenteral
delivery of vaccines is the most common method of immunization, but can only have
a systemic effect. Compared to parenteral delivery, intranasal delivery of vaccines can
provide both systemic effects and induce local immunity. In addition, the nasal cavity
is a highly vascularized area that allows for non-invasive vaccine delivery. Intranasal
delivery of vaccines is a promising alternative to vaccinations and is suitable for mass
vaccination [140].

Mucous membranes are endowed with powerful mechanical and chemical protection
factors. The mechanisms of innate and adaptive immunity protect these surfaces, and
therefore the internal environment of the body, from the potentially damaging effects of
environmental factors, particularly infectious ones [141]. The secretion of the nasal mucosa
contains various types of immunoglobulins, such as IgG, IgA, IgE, and IgM. When the
vaccine is delivered to the nasal cavity, it stimulates the production of local secretory
antibodies IgA and IgG [142].

The live attenuated influenza vaccine FluMist® was first approved in 2003 for the
treatment of people aged 5 to 49 years [143]. FluMist® is an intranasally administered triva-
lent seasonal influenza vaccine containing three live influenza viruses: two type A viruses
(subtypes H1N1 and H3N2) and one type B. In 2012, the Food and Drug Administration
(FDA) approved FluMist Quadrivalent, a product containing two type A and two type B
viruses, for use in individuals aged 2 to 49 years.

The success of FluMist® and the demand for more effective vaccines against many
different diseases have inspired the scientific community to conduct research on intranasal
vaccine delivery [4].

Table 12 shows some research work on the development of nasal vaccines.
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Table 12. Investigational nasal vaccines.

API Delivery System Refs.

Avian influenza antigen (H5N1) Gel in situ [144]

Influenza A (H1N1) antigen Particles [145]

Norovirus virus-like particles Particles [146]

Shigellosis antigen Spray [147]

Hepatitis B antigen Nanoparticles [148,149]

Bovine serum albumin Nanoparticles [150]

Ovalbumin Nanoparticles [151]

Clostridium botulinum type Nanoparticles [152]

SARS-CoV-2 antigen Microparticles [153–157]

Tetanus toxoid Nanoparticles [158]

Recombinant antigens Nanoparticles [159]

Brucella abortus malate dehydrogenase
antigen Nanoparticles [160]

Influenza A antigen (PR8) Nanoparticles [161]

Intranasal vaccines require a carrier (adjuvant) to ensure antigen delivery and high
efficiency with an immunostimulating effect [162]. As carriers, as a rule, biodegradable,
non-toxic, and biocompatible compounds with immunostimulating properties are used.
These include, for example, chitosan and its derivatives, hyaluronic acid, and sodium
alginate [163,164].

The work [148] studied the production of a plasmid vaccine against hepatitis B using
chitosan and human serum albumin as a carrier. Studies in mice showed that intranasal
vaccinations induced a strong systemic and local immune response. The authors of [161]
studied the production of nanoparticles loaded with influenza A virus antigen (PR8 sub-
type) based on chitosan or its water-soluble derivative trimethyl chitosan, with or without
coating with sodium alginate. It was found that after intranasal administration, trimethyl
chitosan-based nanoparticles caused a weaker immune response compared to chitosan-
based nanoparticles. It was also found that sodium alginate-coated nanoparticles can
induce a stronger immune response compared to uncoated nanoparticles, especially for
trimethyl chitosan-based nanoparticles.

At the end of 2019, an outbreak of infection caused by the SARS-CoV-2 virus was
registered in Wuhan (China). In 2020, the WHO declared a pandemic. The SARS-CoV-2
virus causes coronavirus infection (COVID-19), which is an acute respiratory disease
and can occur in both mild and severe forms [165]. All licensed COVID-19 vaccines are
administered parenterally (intramuscularly), which is ineffective for developing mucosal
immunity. Intramuscular injections cause a systemic humoral response to the vaccine,
which leads to the formation of first secretory immunoglobulin IgM and then IgG [166].
However, with respiratory viruses such as SARS-CoV-2, the mucosal immune system is the
first line of defense, with the mucosal immune response causing the formation of secretory
immunoglobulin IgA. This means that systemically vaccinated individuals are susceptible
to SARS-CoV-2 infection through the upper respiratory tract. Intranasal vaccine delivery
can induce both mucosal and systemic immune responses [166]. Nasal vaccination can not
only provide protection against infection, but also prevent its spread.

In [154], intranasal vaccines were developed using PLGA-based microspheres loaded
with peptides and oligonucleotides as carriers. The resulting vaccine was studied on rhesus
monkeys. Clinical symptoms and viral infection were assessed in comparison to a control
group and showed that vaccinated macaques had less infection and clinical symptoms.
The authors of [157] studied the immunogenicity of the receptor-binding domain of the
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SARS-CoV-2 spike glycoprotein loaded into trimethyl chitosan nanoparticles. The results
showed that intranasal delivery of the resulting vaccine to mice induces strong local mu-
cosal immunity, as evidenced by the presence of IgG and IgA immunoglobulins. In addition,
mice administered intranasally with this immunogen platform developed strong systemic
antibody responses, including serum IgG, IgG1, IgG2a, IgA, and neutralizing antibodies.

2.5. API Carriers for Intranasal Delivery

In order to optimize and improve the adsorption of APIs during nasal administration,
various delivery systems are being researched and tested. Polymer-based micro- and
nanoparticles, in situ gels, nano- and microemulsions, solid lipid particles, and liposomes
are innovative and the most popular methods of delivering APIs.

Figure 4 shows an analysis of the ScienceDirect scientific publication database for
the keywords “intranasal microparticles”, “intranasal nanoparticles”, “intranasal gels in
situ”, “intranasal microemulsions”, “intranasal nanoemulsions”, “intranasal liposomes”,
“intranasal solid lipid particles”, and “intranasal dendrimers” for the period 2000–2023.
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The presented diagram shows that micro- and nanoparticles (33%), solid lipid particles
(23%), and in situ gels (21%) are of the greatest interest.

2.5.1. Polymer Micro- and Nanoparticles

Polymer micro- and nanoparticles are solid porous particles in which the API is
encapsulated or chemically bound to a polymer matrix. These delivery systems provide
sustained/controlled release of the API, are biodegradable and biocompatible, and are
inexpensive to manufacture [167]. To obtain particles, both natural and synthetic polymers
are used (Table 13).
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Table 13. Polymers used to prepare particles for intranasal delivery systems.

Polymer Type Polymer Refs.

Natural polymers
Chitosan [61,70,83,98,100,107,127,148–150,155,159,160]

Chitosan derivatives [49,102,105,157,158]
Sodium alginate [57,62,70]

Synthetic polymers

Copolymer of polylactic and glycolic acids
(PLGA) [106,110,154]

Polylactide (or polylactic acid, PLA) [66]
Polycaprolactone [86]

As a result of the ScienceDirect scientific publication database analysis for the above-
mentioned period, the frequency of implementing various polymers to obtain micro- and
nanoparticles was determined (Figure 5).
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Chitosan is of the greatest interest for obtaining particles as carriers. The advantages
of chitosan over other polymers have been repeatedly demonstrated in a number of studies.
For example, in [70], microspheres were obtained based on chitosan, bovine serum albumin,
and sodium alginate containing metoclopramide hydrochloride. The results of the study
showed that the highest loading of metoclopramide hydrochloride was achieved in chitosan
microspheres and is equal to 91.95%.

Chitosan is the second most common polysaccharide in nature and is a cationic het-
eropolymer obtained from chitin, a natural polysaccharide that is the main component of
the exoskeleton of arthropods and is part of the cell walls of fungi, a number of bacteria,
and blue-green algae [168]. The physical and chemical properties of chitosan depend on its
molecular weight and the degree of deacetylation. High-molecular-weight chitosan has
low solubility in neutral aqueous solutions, which limits its use. A study [169] examined
the effect of chitosan molecular weight on the characteristics of methotrexate-loaded chi-
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tosan microspheres. Microspheres consisting of low-molecular-weight (40 kDa), medium-
molecular-weight (480 kDa), and high-molecular-weight (850 kDa) chitosan with the same
degree of deacetylation (96%) were obtained by spray drying. The results of the study
showed that microspheres with low-molecular-weight chitosan have better flowability and
the highest bulk density, but have weak adhesion. Microspheres of medium-molecular-
weight chitosan showed the strongest adhesion to the surface of the mucous membrane.
Microspheres with high-molecular-weight chitosan exhibited lower adhesion and lower
API release rates than medium-molecular-weight chitosan.

Chitosan has mucoadhesive properties, that is, the ability to adhere to mucous mem-
branes due to electrostatic interactions, as well as bonds formed between the functional
groups of chitosan and the molecules of the mucous membrane. In an acidic environment,
the amino groups of chitosan are positively charged and, thus, can interact with negatively
charged mucin molecules in the mucous membrane, which leads to mucoadhesion and
promotes the release of APIs [149].

PEGylated nanoparticles can also be considered as promising API delivery systems for
intranasal administration [170,171]. The article [171] shows that PEGylated nanopar-ticles
were non-mucoadhesive, and hence displayed mucus-penetrating properties.

2.5.2. Solid Lipid Particles

Solid lipid particles (SLPs) are dispersed systems consisting of a liquid dispersion
medium and a solid dispersed phase. The main components of SLPs are water, lipids,
and surfactants. Fatty acids, waxes, and esters of glycerol are used as lipids. Additionally,
excipients (gelling agents, mucoadhesive agents, permeability enhancers, etc.) can be added
to SLP-based systems [172]. SLPs can be coated with polyethylene glycol or its derivatives.

SLPs are obtained using high-pressure homogenization, solvent diffusion, emulsi-
fication or solvent evaporation methods [173]. SLPs protect the APIs from the action of
enzymes in the nasal cavity and prevent its premature metabolic breakdown. In addition,
they are considered to have low toxicity to humans due to the absence of toxic organic
solvents during their production [173]. However, these systems have disadvantages such
as poor storage stability, which can lead to particle aggregation, phase separation, and
cause premature release of the APIs [172].

In the article [71], ondansetron-embedded SLPs were obtained for the treatment of
postoperative nausea and vomiting caused by chemotherapy. SLPs were obtained by
solvent diffusion using lecithin and co-surfactant Poloxamer 188 as a surfactant. Glycerol
monostearate was used as a lipid material. The authors stated that when conducting
in vitro release experiments, biphasic behavior was observed, which consisted of an initial
rapid release of ondansetron from the particle surface, followed by a slow-release phase
associated with the diffusion of the APIs from pores on the particle surface. Additionally,
the study found that the resulting formulation was stable for 3 months.

The authors of [84] obtained and studied SLPs with incorporated piperine for the
treatment of Alzheimer’s disease. SLPs based on glyceryl monostearate and epicuron 200
were obtained by the emulsification–solvent diffusion method. The authors conducted
studies on rats of a pure piperine preparation, an SLP-based delivery system with an
embedded drug, and an SLP-based delivery system with an embedded piperine after
3 months of storage. The results of the study demonstrated that the maximum concentration
(Cmax) of piperine in the brain for SLP-based delivery systems is achieved 3 times faster
than for pure piperine (60 min and 180 min, respectively). The Cmax for SLP-based delivery
systems is 2.5 times higher than the Cmax of pure piperine. Thus, the authors demonstrated
the effectiveness of using intranasal delivery systems based on SLPs, and demonstrated
their stability for 3 months.

2.5.3. In Situ Gels

In situ gels are an API delivery system that can transition from a liquid to a gel state
under the influence of certain factors [9]. In the field of nasal API delivery, the use of
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in situ gels represents a promising approach to control the release and delivery of active
substances into the nasal cavity. In situ gels can be divided into several types [174]:

• Thermosensitive systems, which demonstrate a phase transition at temperatures in
the range of 25–37 ◦C;

• Ion-sensitive systems, which demonstrate a phase transition due to reactions with ions
present in the nasal mucosa.

Examples of temperature-sensitive and ion-sensitive systems, as well as reactants
responsible for the phase transition, are presented in Table 14.

Table 14. Thermal- and ion-sensitive in situ gel systems for intranasal delivery.

Type of In Situ Gel Reacting Agent Refs.

Thermosensitive systems
Pluronic® F-127 [32,33,129,133]
Poloxamer 407 [36,82,91]

Chitosan derivatives [92,131,134,144]

Ion-sensitive systems
Xanthan gum [61,175]
Gellan gum [63,87,94,112,135,137]

Carbopol®, HPMC [58,101,126]

To obtain temperature-sensitive systems, so-called “Pluronics” are widely used, having
the trade names Pluronic and Poloxamer with a three-digit code indicating the molecular
weight of the polyoxypropylene core and the percentage of polyoxyethylene in the poly-
mer [176]. In aqueous solutions, with increasing temperature, Pluronics form micelles in
order to reduce the free energy of the solution. Some of the most popular Pluronics for
producing in situ gels are Pluronic F-127 and Poloxamer 407, which are biocompatible
nonionic block copolymers with thermosensitive properties.

Some chitosan derivatives are capable of undergoing a phase transition with a change
in temperature. For example, the authors of [144] developed a thermosensitive hydrogel
based on N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride, which is a
cationic derivative of chitosan. This composition is in a liquid state at room temperature,
and it turns into a gel state at body temperature.

In situ ion sensing systems can be obtained using gums such as gellan and xanthan.
Gellan gum is an extracellular anionic water-soluble polysaccharide produced by the
bacteria Sphingomonas elodea. Xanthan gum is a natural polysaccharide formed as a result
of the fermentation of the Gram-negative bacterium Xanthomonas campestris [12]. Gel
formation is carried out by forming a complex with cations (sodium and calcium) present
in the nasal mucosa.

Carbopol® is a high-molecular-weight polyacrylic acid polymer that turns into a gel
when pH increases. The acidic nature of this polymer can cause irritation, so hydroxypropyl
methylcellulose (HPMC) is added to reduce its concentration and increase viscosity.

The authors of [101] prepared and studied in situ nasal gels with rasagiline mesylate.
Nasal gels were prepared using various polymers such as hydroxypropyl methylcellulose,
Carbopol® 934, and sodium alginate. Studies have shown that a formulation containing
sodium alginate provides better controlled release of the APIs than other formulations.

In [32], a thermosensitive gel in situ with ciprofloxacin was studied. One of the main
problems of intranasal administration is the residence time of the drug in the nasal cavity.
The temperature-sensitive in situ gel, due to its increased viscosity and mucoadhesion,
can provide complete absorption and prolonged release of the API. The results of the
study showed that the concentration of ciprofloxacin in the mucous membrane of both
the anterior and posterior parts of the nose after intranasal administration was higher
compared to intravenous administration. This made it possible to reduce the concentration
of the antibiotic by 41 times compared to the drug for intravenous administration and
avoid side effects.
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2.5.4. Micro- and Nanoemulsions

Microemulsions are dispersed systems consisting of a hydrophilic phase, a lipophilic
phase, surfactants, and co-surfactants. Microemulsion droplets have sizes ranging from 10
to 200 nm. Microemulsions differ from conventional emulsions in the absence of turbidity.
By using microemulsions, improved solubility and hence better stability, longer shelf life
and increased bioavailability for poorly soluble APIs can be achieved [177].

Microemulsions are prepared by adding lower alcohols to water-in-oil (w/o) or oil-in-
water (o/w) emulsions. In this case, lower alcohols act as co-surfactants and are responsible
for reducing the interfacial tension between the aqueous and oil phases, ensuring the
formation of a microheterogeneous system. Depending on the type of microemulsion,
amphiphilic molecules are oriented in a certain direction. In the o/w system, the non-polar
part of the molecules is directed into the dispersed phase; in w/o systems, this is vice versa.
o/w systems are especially interesting for drug delivery, since the hydrophobic drug is
easily dissolved in the internal oil phase of the microemulsion and is better transported
and absorbed into the bloodstream due to the external aqueous phase. Highly lipophilic
drugs are particularly suitable for microemulsions as drug delivery systems [177].

In contrast to microemulsions, nanoemulsions can be characterized as emulsions with
a narrower droplet size distribution, lying in the range of 0.1–100 nm. Nanoemulsions
are thermodynamically unstable disperse systems. As with microemulsions, o/w systems
are especially important for API delivery systems. To ensure stability in the production of
nanoemulsions, as well as for microemulsions, surfactants and co-surfactants are used as
stabilizers [178].

For micro- and nanoemulsions of the o/w type, the solubility of the APIs in the oil
phase is extremely important. The work [79] assessed the solubility of rivastigmine hy-
drochloride in oils (Capmul® MCM, sunflower oil, fish oil, almond oil, olive oil, castor
oil, Til oil, coconut oil, and Kalonji oil), surfactants (Cremophor® EL, Cremophor® RH
40, Capryol® 90, Labrafil® M, Labrasol®, and Tween® 80) and co-surfactants (Captex®

200-P, PEG-400, sorbitan sesquioleate, and Transcutol® P). Among the selected oils, ri-
vastigmine hydrochloride had the highest solubility in Capmul® MCM (80 ± 2.64 mg/mL).
Therefore, Capmul® MCM was chosen as the oil phase. Among surfactants, rivastigmine
hydrochloride showed the highest solubility in Tween® 80 (45 ± 2 mg/mL). Therefore,
Tween® 80 was chosen as a surfactant. Tween® 80 belongs to the class of nonionic sur-
factants and is widely used because it is less toxic compared to ionic surfactants. Among
co-surfactants, Transcutol® P showed the highest solubility, which is 60 ± 1.5 mg/mL.
Therefore, Transcutol® P was chosen as a co-surfactant. Transcutol® P has the ability to
form transparent and stable nanoemulsions.

To increase the residence time on the nasal mucosa, mucoadhesive polymers are
added to some nanoemulsions. For example, in [120], Carbopol® 971 was added to the
nanoemulsion. The delivery of asenapine maleate was studied. Asenapine maleate is used
to treat schizophrenia and has very poor water solubility and a high first pass effect, such
that the final bioavailability is less than 2%. The research results showed that the maximum
API concentration in the brain with the intranasal administration of a mucoadhesive
nanoemulsion increased from 79.86 ± 8.20 ng/g to 284.33 ± 19.5 compared with the
intravenous administration of a nanoemulsion.

2.5.5. Liposomes

Liposomes are spherical vesicles with a hydrophilic core and a shell consisting of one
or more phospholipid bilayers. A key advantage of the liposomal delivery system is the
ability to deliver both hydrophilic and lipophilic (hydrophobic) APIs. Hydrophilic APIs
dissolve in the liposome core, while lipophilic APIs dissolve in the lipid bilayer [179].

The most common method for producing liposomes is the thin film hydration method.
This method involves dissolving phospholipids and lipophilic ingredients in an organic
solvent, such as chloroform, and then evaporating it under reduced pressure to obtain a
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thin lipid film. When an aqueous phase is added to the resulting thin lipid film under
intense mechanical action, liposomes are formed.

In [109], using the thin film hydration method, liposomes with incorporated lamotrig-
ine were obtained. The composition was prepared using Phospholipon® 90 G, cholesterol,
and Tween® 80 as starting ingredients. The study showed that the resulting liposomes with
lamotrigine have higher bioavailability than the suspension with lamotrigine. In addition,
a toxicity study showed that this composition is safe for intranasal delivery.

The work [122] investigated the preparation of a liposomal delivery system for risperi-
done. Risperidone is a drug with low molecular weight and high lipophilicity, due to which
its bioavailability is low. To increase bioavailability, risperidone was introduced into lipo-
somes. Liposomes consisting of soya phosphatidylcholine and cholesterol were prepared
by thin film hydration. The authors of the study found that the maximum concentration
of APIs in the brain, when liposomes were administered, was two times higher and four
times faster than when the pure substance was administered.

2.5.6. Dendrimers

Dendrimers are nanosized molecules with a symmetrical and branched structure. The
physical and chemical properties of dendrimers depend directly on their three-dimensional
structure. This structure consists of a multifunctional central core in which other molecules
can be trapped, branched branches emanating from the central core, and outer surface
groups. Dendrimers are characterized as macromolecules that are predictable, control-
lable, and reproducible with great accuracy, having symmetrical channels and pores in
the branched structure of macromolecules. Dendrimers are capable of highly selective
encapsulation of various substances and, accordingly, can be used for various purposes,
including intranasal delivery. The encapsulation of guest molecules is driven by noncova-
lent interactions (ionic, H-bonding, and van der Waals interactions) and can be tailored for
various drugs at the same time [180].

Dendritic polymers with their regular and well-defined unimolecular architecture,
which can be further chemically modified at either the core (to increase hydrophobicity) or
the shell (to increase hydrophilicity), are currently attracting interest as so-called dendritic
nanocarriers for applications in drug solubilization and delivery [181].

In the article [182], the authors explore the preparation of dendritic polyglycerol-
derived nano-architectures that can be used for the intranasal delivery of APIs. The
article [183] presents the results of studies of polyamidoamine dendrimers (PAMAM) with
amino groups on the surface for the delivery of haloperidol to the brain after intranasal and
intraperitoneal administration. To obtain the drug, PAMAM dendrimer, ethanol, Tween 20
and haloperidol were used. It was shown that the inclusion of haloperidol in the PAMAM
dendrimer increased the solubility of haloperidol by 100 times. The results of preclinical
studies show that the delivery system based on dendrimers with haloperidol made it
possible to reduce the dosage of the drug administered intranasally by 6–7 compared to the
intraperitoneal drug while maintaining therapeutic activity.

2.6. Advantages and Limitations of Intranasal Administration

As already noted, nasal dosage forms have a number of limitations. Firstly, they are
characterized by relatively low dosages due to a relatively small absorption area; secondly,
bioavailability may be limited due to the short residence time of the drug in the nasal cavity
under the influence of mucociliary clearance. The most common liquid nasal forms require
the use of preservatives to reduce the risk of their microbial contamination, which can
negatively affect the mucous membranes, especially during a long course. In the case of
dry nasal forms, there is a risk of particle aggregation during storage due to interaction
with air moisture and surface phenomena. Nevertheless, due to the advantages of nasal
dosage forms, more and more companies are showing interest in their development.

The use of the considered delivery systems should be justified primarily by achieving
the target profile of the drugs being developed. It should be noted that nasal dosage forms
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for a number of APIs make it possible to avoid or significantly reduce the “first pass effect”
that occurs for such drugs when administered orally or intravenously. As has been shown,
the use of delivery systems in nasal dosage forms allows, in addition to this advantage,
to solve the problems of increasing the bioavailability of the API (increasing solubility,
adsorption, permeability), reducing the therapeutic effect onset time or increasing the
action duration of the API’s targeted delivery.

Mucociliary clearance is a protective function of the body, which, in the case of using
nasal dosage forms, does not allow the drug to have long-term contact with the nasal
mucosa. The inclusion of micro- and nanoparticles in the composition and use of in situ
gels containing mucoadhesive polymers, as well as thickeners, allows for the contact
duration of the drug with the mucosa to be increased to several hours, which leads to
higher adhesion rates. In addition, the ability to vary the physicochemical properties of
the polymer matrix or in situ gel allows for controlling the rate of release of the API and
achieving a longer therapeutic effect.

The use of solid lipid particles, micro- and nanoemulsions, and liposomes allows for
some APIs to achieve higher permeability. It has been shown that emulsions, liposomes
and dendrimers allow for a higher dosage due to better solubility of the API in them.

Much attention in research is paid to the delivery of the API directly to the central
nervous system, bypassing the BBB. In all studies where the “nose to brain” pathway is
discussed, the dosage form contains nano-objects. These can be polymer nanoparticles,
solid lipid nanoparticles, liposomes, nanoemulsions, or dendrimer-based nanocarriers.
Nevertheless, the considered micro-sized delivery systems (polymer microparticles, mi-
croemulsions, in situ gels without included nano-objects) can be successfully used in the
treatment of local infections, such as the treatment of rhinitis.

The complication of the nasal formulation when using delivery systems leads to higher
risks of toxicity, decreased drug stability, shorter shelf life and more stringent requirements
for storage conditions, and complexity of dosing, especially for drugs that require long-
term administration.

This review has shown a higher efficiency of the developed intranasal delivery systems
in comparison with both traditional solutions and oral and injection forms. The advantages
of nasal delivery over oral delivery are rapid absorption and high adsorption, which ensure
a rapid onset of therapeutic action. This effect is associated with a large number of blood
vessels in the nasal cavity and high blood supply. Additionally, with nasal delivery, there is
no presystemic metabolism and degradation of the API in the gastrointestinal tract.

High bioavailability of small molecules is ensured, and the bioavailability of larger
molecules is increased. Compared with oral and intravenous administration, nasal prepa-
rations require smaller doses of active substances. This reduces the risk of overdose and
the occurrence of systemic side effects. Nasal administration leads to a decrease in the
frequency of drug use and, importantly, minimizes the risk of resistance due to interruption
of long-term treatment by the patient.

The nasal delivery method is non-invasive, convenient for patients, and can be used
for nausea, vomiting, coma, fainting, and difficulty swallowing in children and the elderly.

Many successful developments of drugs are based on nanoscale delivery systems;
examples of successful preclinical and clinical studies on the intranasal administration
of such drugs are considered, which is confirmed by this review. Characteristics such as
toxicity, safety and side effects can be limiting and critical during the launch of such drugs
to the market.

3. Conclusions

A review of the scientific and technical literature showed that in the field of the
development of nasal drugs, active research is underway to reformulate some therapeutic
groups into a nasal form. The increased interest in this area is due to the fact that the nasal
cavity has a unique set of anatomical characteristics for the delivery of active pharmaceutical
ingredients. Intranasal delivery allows for non-invasiveness, rapid onset of action, and the
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absence of hepatic and intestinal metabolism. Today, the market offers nasal preparations
of not only local, but also systemic action. An important task remains to improve the
efficiency of this API delivery method. Various drug delivery systems are being researched
and tested to optimize and improve drug adsorption. The article lists a wide range of drugs
and describes the various dosage forms used in this delivery method.
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