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Abstract: In this work, a MoS2/C heterostructure was designed and prepared through an in situ
composite method. The introduction of carbon during the synthesis process altered the morphology
and size of MoS2, resulting in a reduction in the size of the flower-like structures. Further, by varying
the carbon content, a series of characterization methods were employed to study the structure and
electrochemical lithium storage performance of the composites, revealing the effect of carbon content
on the morphology, structure characteristics, and electrochemical performance of MoS2/C composites.
The experimental setup included three sample groups: MCS, MCM, and MCL, with glucose additions
of 0.24 g, 0.48 g, and 0.96 g, respectively. With increasing carbon content, the size of MoS2 initially
decreases, then increases. Among these, the MCM sample exhibits the optimal structure, characterized
by smaller MoS2 dimensions with less variation. The electrochemical results showed that MCM
exhibited excellent electrochemical lithium storage performance, with reversible specific capacities of
956.8, 767.4, 646.1, and 561.4 mAh/g after 10 cycles at 100, 200, 500, and 1000 mA/g, respectively.

Keywords: MoS2; carbon; heterostructure; in situ synthesis; lithium–ion batteries

1. Introduction

As global technology progresses and environmental challenges intensify, the need for
efficient energy storage solutions has become increasingly urgent. Lithium–ion batteries
(LIBs), as the most mature and widely applied battery technologies today, are consid-
ered crucial for advancing electric vehicles, integrating renewable energy sources, and
developing portable electronic devices [1–3]. However, with rising performance demands,
traditional graphite anode materials have revealed several shortcomings, including a rel-
atively low theoretical capacity (372 mAh/g), slow ion-diffusion rate, and suboptimal
rate performance [4–6]. These limitations restrict the further development of LIBs for
applications requiring high energy density and fast charging/discharging capabilities [7–9].
Consequently, there is a growing focus on exploring promising alternative carbon materials
to address these limitations and enhance battery performance.

MoS2, as a typical two-dimensional layered material, has a graphene-like structure
consisting of three atomic layers of S-Mo-S stacked together [10–12]. The weak van der
Waals forces between the layers facilitate easier shuttling of Li+ ions. With a theoretical
specific capacity of 670 mAh/g, it is significantly higher than that of graphite materi-
als [13–15]. LIBs can benefit from MoS2, which is, thus, considered a promising anode
material. However, the substantial changes in volume during charge and discharge cy-
cles, along with the intrinsic low electrical conductivity, severely restrict the advancement
of MoS2 [16,17]. To address these challenges, researchers have developed two primary
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strategies. The first strategy involves improving the structural design of MoS2 to main-
tain its structural integrity [18]. This can be achieved by fabricating MoS2 with various
morphologies, such as nanosheets and nanospheres, to increase interlayer spacing and
surface area, thereby providing more active sites for electrochemical reactions [19–22].
The second strategy is to construct heterostructure composites by combining MoS2 with
conductive materials to enhance its electrical conductivity [23]. Carbon materials, due
to their excellent conductivity and abundant resource, have been widely applied in this
field. Numerous MoS2/C-based composites have been reported, demonstrating improved
electrochemical performance [24–27]. As is well known, the electrochemical properties
are greatly influenced by the structure; at the same time, the structure is affected by the
composition and content of their components [28,29]. Zhong et al. [8] reported that the
graphene content significantly affects the electrochemical performance and structure of
composite materials. When the mass ratio of MoS2 to graphene is 1:1, performance is
optimal, achieving a specific capacity of 664 mAh/g after 300 cycles at 250 mA/g. Despite
these insights, there remains a gap in understanding how varying carbon content affects the
structure and performance of MoS2/C composites. Further research is needed to elucidate
the relationship between carbon content, microstructure, morphology, and electrochemical
performance in MoS2/C composites.

In this study, MoS2/C composites were synthesized using a simple one-step hydrother-
mal method (Figure 1), and the effects of varying glucose content on the morphology, struc-
ture, and electrochemical performance of the composites were systematically investigated.
The results show that the morphology and microstructure of composites are significantly
affected by the content of the carbon component, and the optimal structure is obtained
for MCM with the addition of 0.48 g of glucose. Meanwhile, benefitting from the in situ-
generated carbon, the stable heterogeneous is formed between MoS2 and carbon. This
unique structural configuration endows the composite with enhanced structural stability
and superior electrochemical performance.
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Figure 1. The synthetic process of MoS2/C composite.

2. Results and Discussion

As shown in Figure 2a, it can be found that the diffraction patterns of all the samples
(MoS2 and MoS2/C composites) present similar characteristics, which are attributed to
hexagonal 2H-MoS2 (JCPDS 37-1492), with distinct peaks observed at 32.8◦ and 58.2◦,
corresponding to the (100) and (110) planes, respectively [30]. Notably, the peaks corre-
sponding to the (002) plane shift progressively to lower angles with increasing carbon
content, observed at 14.3◦, 13.6◦, 13.1◦, and 12.5◦. Additionally, compared to pure MoS2,
the corresponding peak intensities of the MoS2/C composites show a slight decrease. This
is because the in situ-formed carbon derived from glucose in the samples affects the crys-
tallinity of MoS2, resulting in reduced peak intensity in the XRD patterns when crystallinity
is low [16]. According to Bragg’s equation 2dsinθ = nλ, the interlayer spacings at the (002)
plane are calculated to be 0.61, 0.65, 0.67, and 0.69 nm, respectively. This indicates that the
insertion of carbon leads to an increase in the interlayer spacing of MoS2, which facilitates
Li+ deintercalation and intercalation and improves the structure stability [31]. No obvious
impurity peaks were detected, indicating the high purity characteristic of the prepared
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samples. As shown in Figure 2b, both pure MoS2 and MCM exhibit similar spectral patterns
in the first half of the spectrum. Specifically, the peak at 378.0 cm−1 in MCM corresponds
to the E1

2g mode, which is associated with the in-plane bending of sulfur and molybdenum
atoms, while the peak at 402.5 cm−1 is attributed to the A1g mode, related to the out-of-
plane vibration of sulfur atoms [32]. However, the energy difference k1 of MCM (24.4 cm−1)
is significantly lower than k2 for pure MoS2 (26.5 cm−1), indicating that the MoS2 crystals in
MCM are primarily composed of few-layer MoS2 nanosheets, suggesting that the addition
of carbon has alleviated the stacking issue [33–37]. Additionally, for MCM, D, and G bands
are detected at 1363.5 and 1568.3 cm−1, respectively. The D peak represents lattice defects in
carbon, such as N-doping or vacancies, while the G peak is associated with sp2-hybridized
carbon. As shown in Figure S1a, the high intensity ratio of the D and G peaks (ID/IG = 1.21)
indicates the presence of amorphous carbon [38–40]. In addition, Figure S1b shows the
Raman spectrum in the 100–500 cm−1 range, and no Mo-O bonds are observed. Figure
S2 shows the full XPS survey spectrum of MCM, revealing the presence of O, C, Mo, and
S elements within the sample, with their respective contents indicated in the inset. The
Mo-to-S atomic ratio is 2.05, which is in close agreement with the stoichiometric ratio [41].
In addition, a significant amount of O was detected in the full spectrum. However, no Mo-O
bonds are observed in the Raman and FT-IR, indicating that the oxygen originates from sub-
sequent processing rather than the initial synthesis. In the Mo 3d spectrum (Figure 2c), four
distinct peaks at 234.2, 231.5, 228.1, and 225.4 eV are observed, which correspond to Mo-O,
Mo4+ 3d3/2, Mo4+ 3d5/2, and S 2s, respectively [42,43]. Two characteristic peaks at 162.1
and 160.8 eV in the S 2p spectrum (Figure 2d) correspond to the spin-orbit doublet states
of S 2p1/2 and S 2p3/2 in MoS2 [44]. The C 1s spectrum (Figure 2e) exhibits peaks at 288.1,
285.5, and 284.1 eV, corresponding to C=O, C-O, and C-C bonds, respectively, indicating the
formation of in situ-generated carbon material [45,46]. According to the above results, the
heterostructure composed of carbon and MoS2 is proved. The composition of the MoS2/C
materials was further confirmed by FT-IR spectra. As shown in Figure 2f, despite the
functional group signals in the MoS2 sample being relatively weak, the Mo-S bond peak
can still be clearly detected. Besides the Mo-S bond, the pronounced peak (1623.1 cm−1)
of the C=C bond is found in MoS2/C composites, indicating the existence of carbon and
MoS2, and similar characteristic peaks can be found for all the MoS2/C composites [47–49].
In addition, the C=O, C-O, and C-C bonds are also observed in the FT-IR spectrum, which
is highly consistent with the XPS results [50].

To observe and analyze the morphology of the samples, SEM was employed. As
shown in Figure 3, a flower-like microsphere morphology can be detected from all samples.
For pure MoS2, the overall size of the flower-like microspheres is about 2 µm (Figure 3a),
and the microspheres are self-assembled from smooth nanosheets about 150 nm in size.
In contrast, the MoS2/C composites show somewhat suppressed growth of MoS2 due to
the in situ-generated carbon, resulting in the smaller microsphere sizes (Figure 3c,e,g).
As shown in the SEM results, the diameters of MoS2 in MCS, MCM, and MCL are
250–450 nm, 150–250 nm, and 200–600 nm, respectively. It can be found that the flower-like
structure exhibits a smaller and more uniform size distribution in MCM. High-resolution
SEM images (Figure 3d,f,h) further illustrate that the nanosheets in the MoS2/C composites
exhibit a more curled morphology and increased thickness compared to pure MoS2. As
the glucose content increases from 0.24 g to 0.48 g, the size of the microspheres decreases,
and the nanosheets in the MCM sample display greater thickness (Figure 3e). When the
glucose content is further increased to 0.96 g, the nanosheets in the MCL sample exhibit
the smallest size and largest thickness, with noticeable agglomeration (Figure 3g,h). This
agglomeration is attributed to the increased amount of in situ-generated carbon. Based on
this observation, it can be inferred that MCM likely possesses the largest specific surface
area, followed by MCS and MCL, with pure MoS2 having the smallest surface area. A
larger specific surface area facilitates the transfer of ions and electrons, which enhances Li
storage and leads to superior electrochemical performance.
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Figure 4 presents the TEM images used to investigate the microstructural characteris-
tics of the samples. The flower-like structure observed in all samples from the TEM images
(Figure 4a,c,e,g) aligns with the SEM results (Figure 3). The clear lattice fringes with an
interlayer spacing of 0.62 nm in Figure 4b are attributed to the (002) plane of 2H-MoS2 [51].
Additionally, the SAED result (inset of Figure 4b) confirms the polycrystalline nature of
MoS2. The MoS2/C materials exhibit larger interlayer spacing compared to pure MoS2,
which increases gradually with increasing carbon content, from 0.65 nm for MCS (Figure 4d)
to 0.68 nm for MCM (Figure 4f) and 0.70 nm for MCL (Figure 4h). Additionally, the lattice
fringes of the MoS2/C composites are more blurred compared to those of pure MoS2,
indicating a higher degree of structural disorder [52]. This observation is further supported
by the XRD results, which show that the MoS2/C composites have lower crystallinity
compared to pure MoS2.This is because the formation of MoS2 is accompanied by the in
situ generation of disordered carbon derived from the reduction in glucose. The in situ-
formed disordered carbon coats the MoS2 nanosheets and is embedded between the MoS2
layers, partially inhibiting the growth of MoS2. This results in the formation of MoS2/C
composites with smaller sizes, larger interlayer spacing, and lower crystallinity [53,54].
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Figure 5a shows the CV results. Two distinct peaks were observed during the first
cathodic scan at 1.45 V and 0.44 V, which are attributed to the formation of LixMoS2 and
the further lithium insertion process (MoS2 + 4Li+ + 4e−→LixMoS2, LixMoS2 + (4 − x)Li+

+ (4 − x)e−→Mo + 2Li2S) as well as the formation of the SEI layer [55]. The oxidation
peak at 1.56 V during the initial anodic scan corresponds to the partial oxidation of Mo;
while around 2.26 V, another peak is observed, which relates to the oxidation of Li2S to
S [56]. In subsequent cycles, the oxidation peak position remained unchanged, while the
reduction peaks are replaced by two peaks at 1.84 and 1.33 V, resulting from the conversion
processes of MoS2 to LixMoS2 and S to Li2S, respectively [57].The good reversibility of
the electrode is evidenced by the nearly overlapping curves observed in the second and
third cycles. During the charge–discharge process, similar CV results are detected from
pure MoS2, MCS, and MCL composites, as shown in Figure S3, indicating comparable
electrochemical reactions.
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Figure 5b displays the charge–discharge curves of the MCM composite at 100 mA/g
for the first three cycles. The voltage plateaus observed are consistent with the CV results,
and the curves overlap well after the second cycle, demonstrating stable cycling behavior.
The Coulombic efficiency increased from 71.2% to 96.8%, indicating good reversibility of
the material. Moreover, compared to the other samples (Figure S4), the MCM exhibits
superior performance with discharge capacities of 1565.7, 1132.1, and 1101.8 mA h/g in
the first three cycles, respectively. Figure 5c shows the rate performance of pure MoS2
and MoS2/C composites. Evidently, owing to the heterogeneous composite structure,
the MoS2/C composites present superior rate performance in comparison to pure MoS2.
Additionally, among the composite materials, MCM exhibits the highest reversible capacity,
with reversible specific capacities of 956.8, 767.4, 646.1, and 561.4 mAh/g after 10 cycles
at 100, 200, 500, and 1000 mA/g, respectively. After 200 cycles, Figure 5d shows that the
reversible specific capacities of pure MoS2, MCS, MCM, and MCL are 47.8, 152.3, 367.0,
and 146.7 mAh/g, respectively. The results demonstrate that the enhanced electrochemical
lithium storage performance arises from the effective integration of carbon with molyb-
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denum disulfide; moreover, with an appropriate amount of carbon, the MCM composite
displays the superior cycle stability and rate performance. The capacity decline of MCM
during cycling may be related to changes in electrolyte concentration and the presence of
byproducts from electrochemical reactions [58,59].

To further understand the electrochemical performance of MoS2/C electrodes, EIS
tests were performed. Figure 5e presents the EIS spectra of MoS2/C composites; the
inset is the equivalent circuit used for fitting. The Rct values for MoS2/C composites
(MCS, MCM, and MCL) are 192, 134.1, and 174.1 Ω, respectively. Clearly, the Rct value
of pure MoS2 (>>1000 Ω) is much higher than that of MoS2/C composites, indicating
that the addition of carbon significantly enhances the conductivity of the composites [11].
Among the composites, the MCM shows the lowest Rct value, which can be attributed to
its optimal structural configuration and appropriate carbon content. Figure 5f shows the
linear portion of the EIS curves at low frequencies (fitted using the equation Z′ = Rs + Rct +
σω−1/2) to calculate the lithium–ion diffusion coefficient (DLi

+). The DLi
+ for MCS, MCM,

and MCL are calculated to be 6.64 × 10−16, 1.73 × 10−15, and 7.08 × 10−17, respectively,
using the formula DLi

+ = R2T2/2n4F4C2σ2A2 (where T is the temperature, F is the Faraday
constant, R is the gas constant, n is the number of electrons per molecule during oxidation,
σ is the slope from Figure 5f, A is the surface area of the active electrode, and C is the
concentration of Li+) [60]. MCM has the highest DLi

+, which is attributed to its optimal
structure configuration and enhanced electron transport performance contributed by the in
situ-formed carbon [61].

To explore the electrochemical kinetics of the MCM composite, CV tests were per-
formed across scan rates ranging from 0.1 to 1 mV/s. Figure 6a demonstrates that as the
scan rate increases, the shape of the CV curves for MCM remains consistent, highlighting
the excellent electrochemical reversibility [13]. The b values were obtained using the power-
law equation (i = avb). When the b value approaches 1 or 0.5, it indicates that the reaction
kinetics are primarily capacitive-controlled or diffusion-controlled, respectively [62]. The
corresponding b values for peaks 0.67, 0.54, and 0.58 in Figure 6b indicate that capacitive
control predominates in the electrochemical kinetics of the MCM electrode. Using the
equation i(V) = k1v + k2v1/2, the ratio of diffusion and capacitive contributions at different
scan rates can be quantified [4]. At a scan rate of 1.0 mV s−1, Figure 6c demonstrates that
the capacitive contribution of the MCM electrode amounts to 85.49%, significantly higher
than that of pure MoS2 (Figure S5), indicating the superior structural stability and elec-
trochemical lithium storage performance. Figure 6d shows that as the scan rate increases,
the percentage of capacitive contribution increases from 65.32% to 85.49%, indicating that
capacitive control is the dominant reaction behavior during lithium storage, further demon-
strating the excellent electrochemical performance of the MCM composite electrode. Table 1
compares the performance of our work to that of existing MoS2-based composites. It can
be observed that the MCM in this study exhibits comparable electrochemical performance.
The results can be explained by the following factors: Firstly, the electric conductivity of the
composite can be improved by the in situ-formed carbon derived from glucose. Secondly,
an appropriate carbon content ensures that optimal structure and structural stability, such
as the in situ-generated carbon shell, can effectively adsorb and solidify the Mo and Li2S
generated in the electrochemical reaction, the structural collapse can be restrained, and the
enhanced structural stability can be obtained. Moreover, owing to the synergistic effect
of a heterogeneous structure combined with MoS2 and carbon, this results in excellent
electrochemical reaction kinetics.
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Table 1. Comparison of electrochemical properties to existing MoS2-based composites.

Materials
Cyclic

Performance
(mAh g−1/A g−1)

Rate Performance
(mAh g−1/A g−1) Refs

MoS2 nanoflakes 530/0.1
(after 100 cycles)

1080/0.1, 260/1,
400/0.1 [12]

MoS2@Mo2C 145/0.05
(after 100 cycles)

210/0.01, 89/0.2,
210/0.01 [63]

MoS2@SnO2
277/0.1

(after 100 cycles)
600/0.01, 290/0.1,

510/0.01 [64]

MoS2/C 790/0.1
(after 50 cycles)

854.3/0.1, 140.9/3,
734.2/0.1 [6]

MCM 411.7/0.5
(after 100 cycles)

1124/0.1, 585/1,
742/0.1 This work

3. Experimental Section
3.1. Materials Synthesis

All reagents used in this study were of analytical grade and required no further
purification. The synthesis steps for MoS2/C composites are as follows: First, 1.5 mmol of
sodium molybdate dihydrate (Na2MoO4·2H2O, Tianjin Damo Chemical Reagent Factory,
China, AR analytical purity) and 6 mmol of thiourea (H2NCSNH2, Tianjin Fengchuan
Chemical Technology Co., Ltd., Tianjin, China, AR analytical purity) were added to a mixed
solution of 20 mL deionized water and 10 mL ethanol. After stirring the mixed solution for
30 min, 0.48 g of glucose (C6H12O6, Xilong Science Co., Ltd., Shantou, China, AR analytical
purity) was added and stirred until completely dissolved. The resulting solution was then
transferred to a closed reaction vessel and reacted at 220 ◦C for 24 h. After natural cooling,
the sample was washed three times with ethanol and water, followed by drying in an oven,
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which was denoted as MCM. In addition, with a consistent reaction condition except for the
glucose content changing to 0.24 and 0.96 g, the final products were denoted as MCS and
MCL, respectively. Moreover, pure MoS2 was also synthesized using identical methods,
excluding the addition of glucose.

3.2. Material Characterization

The composition of the materials was analyzed using a Philips X’Pert Pro instrument
(XRD, λ = 0.15418 nm, Bruker AXS GmbH, Bellerica, MA, USA) and a Raman spectrometer
(Thermo Fisher DXR Smart Raman, Renishaw, Shanghai, China, 532 nm laser source, in
Regular mode, with a grating of 1800 L/mm (vis), the exposure time was 10 s, the laser
power was set to 10%, and the scan range covered 0–3200 cm−1 Raman shift, using a
50× objective lens). The surface composition was analyzed using X-ray photoelectron
spectroscopy (Thermo Scientific, Shanghai, China, XPS Thermo Scientific K-Alpha+, with
an Al Kα radiation source (hv = 1486.6 eV)). All peak positions were calibrated relative
to the C 1s peak at 284.80 eV. The morphology and structure of the samples were studied
using SU-8100 model field emission scanning electron microscopy (SEM, HITACHII, Beijing,
China) and JEM-2010 model transmission electron microscopy (TEM, JEOL, Beijing, China),
operating at acceleration voltages of 5 kV and 200 kV, respectively.

3.3. Electrochemical Measurements

The battery assembly was conducted inside an Ar-filled glove box (MIKROUNA
Super 900, Shanghai, China), where concentrations of water and oxygen were maintained
below 0.1 ppm. Coin cells of CR2032 type (Keludi, Guangdong, China) were employed,
comprising lithium foil as the electrode and a porous Celgard 2300 separator (Celgard, NC,
USA). The electrolyte composition consists of 1 M LiPF6 mixed with ethylene carbonate
(EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) (VEC:VEMC:VDMC =
1:1:1). The sample, conductive agent (acetylene black), and binder (polyvinylidene fluoride)
were mixed in a mass ratio of 7:2:1 in N-methyl-2-pyrrolidone (NMP) to form a slurry, which
was stirred uniformly for 4 h. Subsequently, the slurry was evenly coated onto copper foil
with a diameter of 14 mm and dried overnight at 120 ◦C in a vacuum oven to form the
anode electrode. The specific capacity in this study was determined based on the weight of
the active material in the anode electrode, with each copper foil carrying approximately
1.2 mg of active material loading. The charge–discharge performance at different current
densities was evaluated using the Shenzhen Neware BTS battery testing system (CT-4008,
Neware, Shenzhen, China). Cyclic voltammetry (CV) experiments at a scan rate of 0.1 mV/s
were conducted using a CHI660e electrochemical workstation (Chenhua, Shanghai, China)
with a voltage range from 0.05 to 3.0 V. Meanwhile, electrochemical impedance spectra
(EIS) were obtained on the same electrochemical workstation, with an amplitude of 5.0 mV
and a scan frequency range from 100 kHz to 1 mHz. Additionally, EIS results were fitted
using Zview 3.1.

4. Conclusions

In summary, MoS2/C composites were synthesized via a straightforward one-step
hydrothermal method. The study systematically examined the impact of varying carbon
content on the structure and electrochemical performance of these composites. The findings
reveal that an optimal carbon content leads to the formation of an ideal composite (MCM),
characterized by a well-defined heterostructure between MoS2 and carbon and uniformly
distributed flower-like microspheres. As an anode for LIBs, MCM demonstrates excellent
electrochemical performance, with a specific capacity of 314.9 mAh/g after 100 cycles at
0.5 A/g and a capacitive contribution of 85.49% at 1.0 mV/s. These results underscore the
composite’s exceptional potential for future energy storage applications.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29184513/s1, Figure S1: The enlarged Raman
spectra in range of (a) 1000–2000 cm−1 and (b) 100–500 cm−1, respectively. Figure S2: Survey spectra
of MCM composite, insets show the actual content of O, C, Mo and S elements. Figure S3: CV curves
at 0.01 mV s−1 of pure MoS2, MCS and MCL. Figure S4: Charge-discharge profiles of pure MoS2,
MCS and MCL. Figure S5: (a) CVs of pure MoS2 electrode (0.1–1.0 V·s−1), (b) Fitting line of log (v,
mV/s)-log (Ipeak, mA), (c) Capacitive contribution at 1.0 mV·s−1, (d) Ratios of pseudocapacitive and
diffusion controlled contributions at different sweep rates.
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