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Abstract: Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory
drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address
these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However,
complexing CDs with low molecular weight drugs like NA can lead to low CE. This study explores
the development of inclusion complexes of NA with 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD),
including the effect of converting NA to its sodium salt (NAs) and adding hydroxypropyl methyl-
cellulose (HPMC) on complex formation. Inclusion complexes were prepared using co-evaporation
solvent and freeze-drying methods, and their CE and Ks were determined through a phase solubility
study. The complexes were characterized using physicochemical analyses, including FT-IR, DSC,
SEM, XRD, DLS, UV-Vis, 1H-NMR, and 1H-ROESY. The dissolution profiles of the complexes were
also evaluated. The analyses confirmed complex formation for all systems, demonstrating drug–
cyclodextrin interactions, amorphous drug states, morphological changes, and improved solubility
and dissolution profiles. The NAs-2HP-β-CD-HPMC complex exhibited the highest CE and Ks
values, a 1:1 host-guest molar ratio, and the best dissolution profile. The results indicate that the NAs-
2HP-β-CD-HPMC complex has potential for delivering NA, which might enhance its therapeutic
effectiveness and minimize side effects.

Keywords: niflumic acid; 2-hydroxypropyl-β-cyclodextrin; inclusion complex; complexation effi-
ciency; drug delivery; solubility; dissolution profile

1. Introduction

The improvement of the pharmacokinetic profile of classical drugs using modern
pharmaceutical formulations, such as controlled drug delivery systems (CDDSs), is an
important research field because it is less expensive than developing new drugs [1]. CDDSs
allow for a longer period of drug release, hence reducing the frequency at which the drug
has to be taken. These formulations may be roughly categorized into the following three
primary types based on their evolution [2]: (i) first-generation formulations were designed
to control the physiochemical characteristics of the drugs by using dissolution, diffusion,
or osmosis and are typically administered once or twice a day; (ii) second-generation
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formulations aimed to deliver the drug over a longer period with better control using
a zero-order release mechanism, but it still has limited targeting capabilities for specific
organs; (iii) third-generation formulations focus on administering the drug without invasive
methods, such as targeted drug delivery that bypasses the blood–brain barrier, but it still
faces challenges in overcoming physiological and biological barriers.

To achieve optimal pharmacodynamic properties, such as a rapid onset of action [3],
many studies have been conducted to improve drugs’ solubilities and dissolution rates.
These strategies include reducing the particle size or crystallinity of the drug [4,5], preparing
microspheres [6], formulating cocrystals, and using polymer carriers [7]. In addition, the
oral route is the most preferred method of drug administration due to its cost-effectiveness,
favorable outcomes, and safety for patients compared to other forms of treatment [8].
However, when drugs are orally administered, they are prone to quick denaturation
and degradation and must overcome many obstacles before reaching the desired target,
resulting in low drug bioavailability [9].

One effective method to overcome these drawbacks is complexation with cyclodextrins
(CDs). CDs are cyclic oligosaccharides with six (α-CD), seven (β-CD), and eight (γ-CD)
glucopyranoside units linked by α-1,4-glycosidic bonds, with hydrophilic moiety at the
surface and hydrophobic moiety at the center [10]. The torus shape of CDs allows them
to form inclusion complexes with several drugs through non-covalent interactions like
hydrogen bonds and van der Waals forces [11,12].

CD-based inclusion complexes offer several advantages over other polymer carriers,
such as micelles and vesicles [13]. Unlike polymer carriers, CDs enhance drug solubility,
stability, and bioavailability, requiring versatile formulation processes. Additionally, CDs
provide protection against the degradation of drugs, offer high flexibility for drug release
profiles through chemical modifications, and are generally non-toxic [14].

In order to enhance the solubility and stability of β-CD, making it more suitable
for pharmaceutical applications, chemically modified forms of β-CD were synthesized.
For example, 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD) is a β-CD derivative, in which
hydroxyl groups of the C6 atom of the glucose units are replaced with the 2-hydroxypropyl
group [15]. It is recognized as safe and well-tolerated by the US FDA [16], being widely
used to improve drugs’ solubility, dissolution rate, and chemical stability and reduce the
gastrointestinal side effects of drugs [17–19].

It is known that drugs with molecular weights between 200 and 400 Da and CDs
with molecular weights between 1200 and 1500 Da often result in low CE [20,21]. As a
result, numerous studies have been conducted to enhance the CE of drugs into CDs using
different methods, such as salt formation, adding water-soluble polymers, charge–charge
interactions, multiple complexations, and metal complexes [22]. In this context, the addition
of small amounts of hydrophilic polymers [23] has demonstrated significant potential,
including a reduction in the number of CDs used for complexation [24], acting as film-
forming agents, enteric film-coated materials, and matrix-forming agents [2]. Moreover,
using synergistic excipients can increase the CE and stability of the system and adjust the
desired drug release kinetics from CDDSs [25–27].

Hydroxypropyl methylcellulose (HPMC) is a hydrophilic polymer often used to
generate controlled and sustained-release formulations for many oral drugs due to its
mucoadhesive properties through a longer residence duration in the gastrointestinal tract
(HPMC is chemically stable at a pH range of 3 to 1), biocompatibility, biodegradability,
and swelling ability [15]. Furthermore, HPMC promotes cellular permeability because of
its numerous hydroxyl groups, which allow HPMC to adhere to negatively charged cell
membranes via electrostatic or hydrogen bonds [8].

Niflumic acid (NA) (2-[[3-(trifluoromethyl)-phenyl]-amino]-3-pyridine carboxylic acid)
is a non-steroidal anti-inflammatory drug (NSAID) known for its anti-inflammatory, anal-
gesic, and antipyretic properties [28]. It provides significant benefits for relieving acute pain
and treating rheumatoid arthritis, arthrosis, and other joint diseases [29]. According to the
Biopharmaceutics Classification System (BCS), NA is categorized as a class II compound,
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characterized by its poor water solubility (26 µg/mL at 25 ◦C), lipophilicity, and high
permeability [30]. Additionally, the maximum concentration of NA varied widely, ranging
from 188 to 4121 ng/mL, depending on the analytical methods used [31,32]. These proper-
ties contribute to its limited dissolution rate and poor oral bioavailability, thereby impacting
its therapeutic efficacy. It also induces several side effects, such as gastrointestinal irritation
and ulceration, renal insufficiency, hepatotoxicity, and cutaneous reactions, along with poor
selectivity between normal and inflamed tissues [33].

In order to improve the physicochemical and pharmacokinetic profile and pharmaco-
logical effects of NA, several studies focused on NA-based CD inclusion complexes were
reported [34–36]. Given that the molecular weight of NA is approximately 282.22 Da, the
CE of NA into CD derivatives like 2HP-β-CD could be reduced. Referring to NA-2HP-
β-CD, there is limited research focused on simultaneously optimizing inclusion complex
formation and maintaining stability. The combination of two approaches, such as salt
formation and adding hydrophilic polymers, could effectively enhance both the CE and
apparent stability [37,38].

The main goal of our study was to evaluate the synergistic effect of 2HP-β-CD and
HPMC, as well as the salt formation on the pharmacokinetic profile of NA, focusing on
key parameters, such as complexation efficiency (CE) and the stability constant (Ks) of the
resulting complex. More specifically, binary and ternary inclusion complexes based on
NA and NAs were synthesized and studied in terms of the CE, solubility, physicochemical
properties, and dissolution rate of the drug. This objective is accomplished through a
comparative study aimed at identifying the most effective formulation for optimizing NA
delivery. The physicochemical properties of these complexes in the solid and liquid states
were evaluated using FT-IR, DSC, XRD, SEM, DLS, UV-Vis, and 1HNMR spectroscopy.
Furthermore, the phase solubility and in vitro dissolution profiles were assessed

2. Materials and Methods
2.1. Materials

Niflumic acid (NA) was a kind gift from Saidal Group (Oued Smar, Algiers, Algeria);
2-hydroxypropyl-β-cyclodextrin (2HP-β-CD) with a molar substitution of 0.8 hydrox-
ypropyl groups per glucopyranose unit and a molecular weight of ~1460 Da (hydrox-
ypropyl)methylcellulose (HPMC), with a molecular weight of 86 kDa, was purchased
from Sigma Aldrich (Steinheim, Germany). All remaining chemicals and solvents were of
analytical grade and were used without additional purification.

2.2. Phase Solubility Studies

Phase solubility studies were conducted for both binary and ternary complexes accord-
ing to the method described by Higuchi and Connors [39]. In a series of 25 mL volumetric
flasks containing different concentrations of 2HP-β-CD (ranging from 0.003 to 0.015 M) in
the presence and absence of 50 mg of HPMC (0.2% (w/v)), 25 mL of distilled water (pH 7.4)
mixed with an excess amount of NA (200 mg) was added. Similarly, the phase solubility
study for NAs was conducted, in which excess amounts of NAs (200 mg) were added to
aqueous solutions containing increasing concentrations of 2HP-β-CD (0.002 to 0.009 M)
in the presence and absence of 50 mg HPMC (0.2% w/v). The suspensions were then
mechanically shaken at 300 rpm (Heidolph Titramax 100, Heidolph, Hamburg, Germany)
for 72 h at room temperature (25 ◦C) until equilibrium was reached. After equilibration,
the solutions were filtered (Cloup syringe filter, PVDF, 0.22 µm pore size) and diluted
accordingly (2 mL in 25 mL of distilled water). The drug concentration in each solution
was determined spectrophotometrically (UV-Vis Cintra 2020, GBC Scientific Equipment,
Keysborough, Australia) at 289 nm. Each experiment was performed in triplicate.

The apparent stability constants (Ks) and the complexation efficiency (CE) were calcu-
lated from the slope of the phase solubility diagrams using Equations (1) and (2) [40,41], as
follows:

Ks = Slope/S0(1 − slope) (1)
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CE = Slope/(1 − slope) (2)

where S0 represents the solubility of the drug in water in the absence of 2HP-β-CD (for the
binary system) or 2HP-β-CD and HPMC (for the ternary system). The slope was obtained
from the plot of NA and NAs concentration against 2HP-β-CD and 2HP-β-CD-HPMC,
respectively.

2.3. Preparation of the Inclusion Complexes
2.3.1. Preparation of NA Binary and Ternary Inclusion Complexes

Binary (NA-2HP-β-CD) and ternary (NA-2HP-β-CD-HPMC) systems were prepared
using a combination of the following two methods: solvent co-evaporation and freeze-
drying [42,43]. To achieve a 1:1 molar ratio of the drug and CD, an aqueous phase containing
a solution of 2HP-β-CD (0.012 mol/L) in 15 mL of distilled water, with and without an
optimized quantity of HPMC (0.2%, w/v), was combined with an organic phase containing
a solution of NA (0.088 mol/L) in 2 mL of ethanol. This ratio has been identified as optimal
in the literature [35,44]. The aqueous and organic phases were stirred and heated to 50 ◦C
for 2 h. Next, the ethanol was removed under vacuum using a rotary evaporator (Büchi,
R-215, Flawil, Switzerland). The resulting suspensions were filtered using membrane filters
(Merk Millipore, Burlington, MA, USA) with a pore size of 0.22 µm. The filtrate was then
frozen at −20 ◦C and freeze-dried for 10 h using a lyophilizer (Christ Alpha 1-2LD Plus,
Martin Christ, Osterode am Harz, Germany). The resulting complexes were powdered and
stored in a desiccator for further analysis.

2.3.2. Preparation of the NAs’ Binary and Ternary Inclusion Complexes

NA was converted to its sodium salt by adding 4.65 g (0.01 mol) of NA to an aqueous
solution containing 0.02 mol of NaOH. The resulting suspension was boiled and filtered
while it was still hot. The filtrate was then refrigerated until precipitation occurred, and the
resulting solution was evaporated to obtain dry NAs [45].

The NAs-based systems (NAs-2HP-β-CD and NAs-2HP-β-CD-HPMC) were prepared
using the same method as corresponding NA-based systems (NA-2HP-β-CD) NA-2HP-β-
CD-HPMC).

2.4. Drug Content Quantification

The content of the drug (NA, NAs) in the complexes was determined using solvent
extraction. Each complex (10 mg) was dissolved in ethanol in a 10 mL volumetric flask,
stirred overnight, and sonicated for 15 min. The solution was then adjusted to the desired
volume (10 mL) with ethanol, filtered through a 0.22 µm Cloup syringe filter, and appropri-
ately diluted (2 mL in 10 mL of ethanol for NA binary and ternary complex and 0.5 mL
in 10 mL of ethanol for NAs ternary complex). The solutions were analyzed using UV-Vis
spectroscopy at 289 nm. The extraction was performed in triplicate, and the drug content
of each sample was calculated using Equation (3) [46], as follows:

The drug content (%) = (mass of extracted drug/mass of complex) × 100 (3)

2.5. Physicochemical Characterization of the Inclusion Complexes
2.5.1. Ultraviolet-Visible Spectroscopy (UV-Vis)

A UV-Vis spectrophotometric analysis was performed using a Cintra 2020 (GBC
Scientific Equipment, Keysborough, Australia) UV-Vis spectrophotometer with 1.0 cm
quartz cells. The wavelength of 289 nm was selected for the quantification of NA. The
presence of 2HP-β-CD and HPMC did not interfere with the spectrophotometric assay of
the drug.

2.5.2. Fourier Transform Infrared Spectroscopy (FT-IR)

The samples were assessed using the FT-IR method by evaluating changes in peak
shape, position, and intensity. The FT-IR spectra of the samples were obtained using an
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ABB MB3000 FT-IR (ABB, Québec, QC, Canada) analyzer in the wave number range of
4000–650 cm−1, with a resolution of 2 cm−1 in transmission mode at ambient temperature.

2.5.3. Differential Scanning Calorimetry (DSC)

The DSC curves were recorded using a DSC 200 F3 Maia instrument (Netzsch, Wald-
kraiburg, Germany). A total of 5.5 mg of each sample was added to aluminum crucibles,
which were then sealed with pierced lids. The samples were heated at a rate of 10 ◦C/min
under a nitrogen flow rate of 50 mL/min, which served as an inert working atmosphere.

2.5.4. Scanning Electronic Microscopy (SEM) and X-ray Powder Diffraction (XRD)

The particle morphology and crystalline structure of NA, 2HP-β-CD, HPMC, and
corresponding inclusion complexes were investigated using a Verios G4 UC scanning
electron microscope (Thermo Fisher Scientific, Brno-Černovice, Czech Republic) equipped
with an energy-dispersive X-ray spectroscopy analyzer (Octane Elect Super SDD detector,
Pleasanton, CA, USA). For SEM examination, the samples were fixed on aluminum stubs
with double-adhesive carbon tape and coated with 6 nm platinum using a Leica EM
ACE200 sputter coater (Leica, Vienna, Austria) to provide electrical conductivity and
prevent charge accumulation during electron beam exposure. The morphological study
was carried out using a secondary electron detector (ETD detector—Everhart–Thornley
detector) to highlight the shape and size of the particles. The SEM micrographs were made
using an acceleration voltage of 5 kV and a spot size of 0.4 nA. For X-ray powder analysis,
the samples were analyzed with a 2θ angle range of 2–50◦ and a scan rate of 1◦/min, with
a step size of 0.01.

2.5.5. Dynamic Light Scattering (DLS)

The hydrodynamic diameter of the lyophilized complexes and their components were
measured using a flow cell module on a Delsa Nano C Submicron Particle Size Analyzer
(Beckman Coulter, Brea, CA, USA). Prior to the measurements, the suspensions were
prepared by resuspending the complexes and their components in deionized water. Each
measurement was performed in triplicate in a 5 mL cuvette.

2.5.6. Nuclear Magnetic Resonance Spectroscopy (NMR)

NMR spectroscopy is a crucial tool for confirming the inclusion phenomenon of a guest
drug molecule within a host CD molecule. The 1H-NMR spectra and 2D 1H,1H-ROESY
spectra were recorded using a 600 MHz Bruker Avance NEO spectrometer (Bruker Biospin,
Ettlingen, Germany) equipped with a 5 mm inverse detection z-gradient probe. The NMR
spectra were acquired at 27 ◦C. For the NMR analysis, the inclusion complexes and their
components were dissolved in D2O. The chemical shift values (δ) were reported in ppm.

2.6. In Vitro Dissolution Studies

Dissolution studies for NA and its complexes were performed using the United States
Pharmacopoeia Paddle Method (Apparatus II) [47], with some modifications on a Distek
Dissolution System 2500 (Distek, Inc., North Brunswick, NJ, USA). A total of 0.7 mg of NA
and an equivalent amount of each complex, which contained 0.7 mg of NA, were added
to 75 mL of 0.1 M phosphate buffer (pH 6.8) as the dissolution medium. The medium
was maintained at 37 ± 0.5 ◦C and stirred at 100 rpm. A total of 5 mL of solution was
withdrawn by means of a syringe at time intervals of 2, 5, 10, 15, 20, 30, 45, and 60 min.
The sample was then filtered through a 0.22 µm syringe filter and analyzed immediately
using a UV-Vis spectrophotometer at 289 nm. Each experiment was performed in triplicate.
The dissolution profiles were created by plotting the cumulative percentage of the drug
released over time.

In addition, several mathematical models were applied in order to analyze the experi-
mental data. These models, including the zero-order, first-order, Higuchi, Hixson–Crowell,
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and Korsmeyer–Peppas models, are reported in the literature for their effectiveness and
applicability for kinetic profile studies [48].

2.7. Statistical Analysis

A statistical analysis was performed using OriginPro 2024 (OriginLab, Northampton,
MA, USA), the data were expressed as the mean value ± standard deviation (SD) of
three independent experiments. The findings were compared and assessed statistically
using one-way analysis of variance (ANOVA) with Tukey’s test, with p < 0.05 considered
significant.

3. Results and Discussions
3.1. Phase Solubility Studies

The phase solubility diagram for binary (NA/NAs-2HP-β-CD) and ternary (NA/NAs-
2HP-β-CD-HPMC) systems shows a linear increase in drug solubility (Figure 1). Also,
according to Higuchi and Connors [39], NA/NAs-2HP-β-CD and NA-2HP-β-CD-HPMC
are type-AL complexes, while the NAs-2HP-β-CD-HPMC system can be classified as a
type-AN system. It was observed that the aqueous solubility of the complexes increased
linearly with increasing 2HP-β-CD concentrations. This is likely due to the formation of
the inclusion complex through hydrophobic interactions between the drug and the walls of
the 2HP-β-CD macrocyclic cavity [35].
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However, in the concentration range from 0.005 to 0.009 M of 2HP-β-CD, a deviation
from linearity occurs in the NAs-2HP-β-CD-HPMC complex. This may be associated with
ligand-induced changes in the dielectric constant of the solvent, changes in the physical
properties of the solution, or the self-association of the ligands at high CD concentrations [4].
This observation indicates that at higher concentrations, CD is less effective [49,50]. Con-
sequently, a reduced quantity of CD is required to formulate the NAs-2HP-β-CD-HPMC
complex, resulting in economic advantages. The phase solubility data are presented in
Table 1.
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Table 1. Phase solubility data of binary (NA/NAs-2HP-β-CD) and ternary (NA/NAs-2HP-β-CD-
HPMC) systems.

System S0 (M) Slope ± SD Ks (M−1) ± SD CE ± SD R2

NA-2HP-β-CD 0.00014 0.00786 ± 0.0004 55.29 ± 2.86 0.0079 ± 0.0004 0.98807
NA-2HP-β-CD-HPMC 0.00014 0.00868 ± 0.0007 62.54 ± 5.00 0.0087 ± 0.0007 0.96595

NAs-2HP-β-CD 0.00810 0.16155 ± 0.0209 23.79 ± 2.63 0.19 ± 0.021 0.92233
NAs-2HP-β-CD-HPMC 0.00810 0.54571 ± 0.0099 148.30 ± 1.23 1.2 ± 0.01 0.99934

Data were presented as mean ± SD, n = 3.

It has been reported that hydrophilic polymers can increase the Kc and CE of the com-
plex and improve the aqueous solubility of the drug when used at low concentrations [51].
In our experiment, it was observed that when HPMC was added, the Ks and CE values
were increased in both the binary and ternary systems, with more intense improvement
being recorded in the case of NAs-2HP-β-CD-HPMC. In the case of NAs-2HP-β-CD-HPMC,
the value recorded for Ks and CE was approximately 6.3-fold higher than that of NAs-
2HP-β-CD (Table 1). Converting NA into NAs also resulted in a more notable influence of
Ks and CE. The CE was increased in both binary and ternary systems, with the increase
being 24-fold in the case of NAs-2HP-β-CD vs. NA-2HP-β-CD binary and approximately
140-fold in the case of NAs-2HP-β-CD-HPMC vs. NA-2HP-β-CD-HPMC ternary systems.
This improvement is attributed to the increased aqueous solubility of NAs compared to
NA drugs, which facilitated the interaction with CD and consequently enhanced the CE.

More interesting data were obtained referring to Ks values. In the case of NAs-2HP-β-
CD, Ks was 2.3-fold less than NA-2HP-β-CD, which means that NAs could destabilize the
complex in an aqueous solution. Similar data were obtained by Yesook et al., who found
that ziprasidone salt decreases the apparent Ks while increasing its CE [52]. At the same
time, in the case of NAs-2HP-β-CD-HPMC, the value recorded for Ks was approximately
threefold higher than NAs-2HP-β-CD-HPMC, which supports the favorable influence of
HPMC on the stability of the systems and the drug’s complexation efficiency.

If we discuss the phase solubility profile, in terms of Ks and CE, of NAs-2HP-β-CD-
HPMC vs. NA-2HP-β-CD, we can observe the synergic effect of NAs and HPMC, with the
values recorded for NAs-2HP-β-CD-HPMC being approximately 3-fold (Ks) and 150-fold
(CE) higher than NA-2HP-β-CD.

It was reported that complexes with a Ks between 100 and 1000 M−1 are more stable
and proper for biological applications, while the complexes with a Ks lower than 100 M−1

are highly unstable, and those with a Ks higher than 1000 M−1 could negatively impact
drug absorption [53]. Based on our results, we can conclude that NAs-2HP-β-CD-HPMC
is the most stable complex, while NA/NAs-2HP-β-CD and NA-2HP-β-CD-HPMC are
unstable systems (Table 1).

Although these findings pertain to the liquid state, future studies are essential to
evaluate the complex’s stability in the solid state, which is a critical factor in assessing the
long-term performance of the complexes. Such studies will also aid in determining the
complex’s behavior under recommended storage conditions and establishing its shelf life.

3.2. Drug Content Quantification

The drug content (%) and the amount of the drug in the 10 mg complex were calculated
(Table 2). The drug content (%) value of ternary systems (NA/NAs-2HP-β-CD-HPMC)
was higher than the value recorded for the NA-2HP-β-CD complex. The highest value was
recorded for NAs-2HP-β-CD-HPMC, which was 18.5-fold higher than that of NA-2HP-β-
CD and 9.6-fold higher than that of NA-2HP-β-CD-HPMC. These data strongly support
the efficiency of the NAs-based ternary complex.
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Table 2. Drug content (%) and the amount of the drug in binary (NA-2HP-β-CD) and ternary
(NA/NAs-2HP-β-CD-HPMC) systems.

Complex Drug Content (%) ± SD Drug (mg) in 10 mg Complex ± SD

NA-2HP-β-CD 0.67% ± 0.03% 0.067 ± 1.91
NA-2HP-β-CD-HPMC 1.29% ± 0.04% 0.129 ± 1.76
NAs-2HP-β-CD-HPMC 12.40% ± 0.08% 1.24 ± 2.65

Data were presented as mean ± SD, n = 3.

3.3. Physicochemical Characterization of the Inclusion Complexes
3.3.1. Fourier Transform Infrared Spectroscopy (FT-IR)

Infrared spectroscopy is commonly used to characterize the molecular interactions
between host and guest molecules. After complexation, the absorption bands or intensities
of certain functional groups may change when the guest drug molecules are encapsulated
in the CD cavity [54]. Figure 2 shows the FT-IR spectra of NA, 2HP-β-CD, HPMC, and
the inclusion complexes. For NA, the spectrum showed an absorption peak at 3321 cm−1

(N–H stretching vibration) and a broad signal at 3090 cm−1 (C–H stretching vibration
from the benzene ring). Major characteristic peaks were observed at 1661 cm−1 (C=O
stretching), 1613 cm−1 (primary amine), 1424 cm−1 (O–H stretching), 1326 cm−1 (CF3
group signal), 1237 cm−1 and 1147 cm−1 (C–N aliphatic and aromatic bands), and 887 cm−1

(C–H band) [55].
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Figure 2. FT-IR spectra of NA, 2HP-β-CD, HPMC, binary (NA-2HP-β-CD), and ternary (NA/NAs-
2HP-β-CD-HPMC) systems.

HPMC was characterized by a main peak at 1053 cm−1 (C–O–C stretching). The
2HP-β-CD spectrum showed a broad band between 3050 cm−1 and 3615 cm−1 (O–H
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stretching vibration), the bands from 2968 cm−1 and 2926 cm−1 (C–H stretching), the peaks
at 1647 cm−1 (H–O–H bending) and 1149 cm−1 (C–O stretching), and the peak at 1020 cm−1

(C–O–C stretching). Absorption peaks at 943 cm−1, 850 cm−1, and 755 cm−1 are specific to
CDs and are attributed to backbone vibration due to α-1,4-glycosidic bonds, anomeric CH
deformation, and pyranose ring vibration, respectively [56].

The inclusion complexes spectra showed a notable decrease in the peak intensity of
NA, and shifts were observed, which indicates that a host–guest interaction has occurred
and confirms the formation of the NA-based inclusion complex [57]. In the case of NA-
based complex (NA-2HP-β-CD and NA-2HP-β-CD-HPMC complexes) spectra, the NA
peaks were shifted to 1513 cm−1, 1459 cm−1, 1368 cm−1, and 1331 cm−1. The spectrum
of NAs-2HP-β-CD-HPMC showed more significant changes, indicating the formation
of a more efficient and amorphous complex [58,59]. Therefore, in the NAs-2HP-β-CD-
HPMC spectrum, the characteristic peaks of NA at 1661 cm−1, 1613 cm−1, 1424 cm−1,
1326 cm−1, and 1237 cm−1 were shifted to 1593 cm−1, 1513 cm−1, 1454 cm−1, 1382 cm−1,
and 1331 cm−1.

3.3.2. Differential Scanning Calorimetry (DSC)

DSC is a method used to record the heat flow vs. temperature for a wide range of
materials, including but not limited to polymers. It provides crucial information about
solid-state interactions [60–63]. In this study, we used DSC to examine the interaction
between host and guest molecules. When drug molecules are included in the CD cavity,
their melting points usually shift to different temperatures or disappear [64]. Figure 3
shows the DSC curves of the studied inclusion complexes. The broad endothermic profiles
up to approximately 180 ◦C (curves b–f) represent the loss of physical and/or crystallized
water from the host molecule 2HP-β-CD and HPMC, respectively. The guest molecule,
pure NA, displayed a sharp and intense melting profile at 206 ◦C, which is in accordance
with the literature [14], with an enthalpy (∆HNA) value of 122.4 J g−1 (curve a). Upon
analyzing the DSC curve of the binary inclusion complex NA-2HP-β-CD, it is evident that
the melting profile of NA significantly decreases in intensity (∆HNA-2HP-β-CD = 0.7599 J g−1)
and shifts to a higher temperature by more than 10 ◦C (217 ◦C) (curve b). This suggests the
formation of a new solid amorphous phase through complexation [65].
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2HP-β-CD (d); NA-2HP-β-CD-HPMC (e); NAs-2HP-β-CD-HPMC (f); HPMC (g) (second heating);
NA-2HP-β-CD-HPMC (h) (second heating); and NAs-2HP-β-CD-HPMC (i) (second heating).

The same aspect may be observed for the ternary inclusion complexes NA/NAs-2HP-
β-CD-HPMC, in which the melting profile of NA almost disappeared (∆HNA-2HP-β-CD-HPMC
= 0.02929 J g−1), with its value displaced to 201 ◦C for NA-2HP-β-CD-HPMC (curve e) and
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completely disappearing for NAs-2HP-β-CD-HPMC, respectively (curve f), which could be
proof of the formation of the ternary inclusion complex [66]. Similar results were reported
by Grebogi et al. [67].

The melting profile of the guest molecule (NA, NAs) in inclusion complexes decreased
and disappeared due to the thermal protection provided by the cavity in which the drug is
entrapped [68–70].

Curve c from Figure 3, shows that the pristine HPMC exhibited a glass transition
temperature domain (Tg) at 163 ◦C on the first heating run [71]. To best highlight Tg, a
second heating run was conducted on all structures containing HPMC in order to eliminate
any previous thermal history (curves g–i). The pristine HPMC has a Tg of 155 ◦C (curve g).
It is a known fact that the Tg is a transition consistent with the amorphous phase, and its
degree increases with a decrease in Tg. From curve i, it can be seen that the Tg of HPMC in
NA-2HP-β-CD-HPMC (curve h) has decreased by 10 ◦C, from 155 ◦C to 145 ◦C, and curve
i showed a significant decrease in Tg for NAs-2HP-β-CD-HPMC, from 155 ◦C to 125 ◦C.

3.3.3. Scanning Electronic Microscopy (SEM) and X-ray Powder Diffraction (XRD)

In this study, SEM is used to characterize the surface morphology of the pristine mate-
rials (NA, 2HP-β-CD, and HPMC) and NA-/NAs-based inclusion complexes (Figure 4).
Although this method alone may not conclusively demonstrate the formation of true in-
clusion complexes, the captured images serve to verify the structural changes that occur
after complex formation and act as key indicators for predicting their formation [35]. The
following two magnifications were used to capture the micrographs: 250×, except for NA
and HPMC, which were captured at 150× to highlight sample homogeneity, and 5000×
to highlight morphological details. Pure NA manifested as long cylindrical crystals of
irregular size, whereas 2HP-β-CD particles appeared amorphous, spherical, and perfo-
rated, and HPMC showed elongated, crumpled, and thin fibers. All inclusion complexes
showed morphological changes, exhibiting distinct, amorphous, irregular structures and
bulk agglomerates. Notably, strong morphological similarities were observed between the
binary and ternary systems, with only minor differences observed in the ternary complexes.
In particular, HPMC was observed to be adsorbed on the surface in micrographs magnified
at 5000×. This is in agreement with other studies indicating that HPMC cannot be included
in the CD cavity because its effective diameter is higher than that of the CD cavity [72].
In this case, intramolecular hydrogen bonds between CD and HPMC could occur. These
findings are consistent with the X-ray diffraction results and provide compelling evidence
for the formation of inclusion complexes.

X-ray diffraction analysis is essential to confirm the formation of supramolecular
complexes. It is used to compare the diffraction patterns of the drug and its complexes;
if optimal complexes have been obtained, these diffraction patterns must be clearly dis-
tinct [66]. NA showed high-intensity peaks at the following specific 2θ values: 08.06◦,
12.79◦, 16.22◦, 20.72◦, 23.06◦, 25.77◦, and 29.26◦, indicating drug crystallinity (Figure 5);
these values are in agreement with those documented by Radacsi et al. [73]. In contrast, the
diffractograms of 2HP-β-CD and HPMC revealed two broad halos, suggesting an amor-
phous state. A hollow pattern, similar to that of the pure 2HP-β-CD, was also recorded for
the inclusion complexes (Figure 5) without any distinct peaks, except for the binary complex
NA-2HP-β-CD, which shows a peak characteristic of NA at a 2θ value of 29.26◦, indicating
an incomplete complexation between NA and 2HP-β-CD. For the ternary complexes, the
absence of any peaks corresponding to NA indicated the formation of a true inclusion
complex, this result being in full agreement with the DSC analysis. On the other hand, a
comparison between the patterns of the pure NA and the inclusion complexes indicates
the amorphous state of these complexes, meaning a transformation from crystalline to the
amorphous state, and is strongly associated with the increased rate of dissolution rate seen
in inclusion complexes [54].
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Figure 5. XRD patterns of NA, 2HP-β-CD, HPMC, NA-2HP-β-CD, NA-2HP-β-CD-HPMC, and
NAs-2HP-β-CD-HPMC.

3.3.4. Dynamic Light Scattering (DLS)

Figure 6 shows the results of the DLS analysis used to determine the size of the ob-
tained complexes to illustrate their functionalization. According to the DLS histograms,
dimensionally homogeneous assemblies appeared, with a notable increase in hydrody-
namic diameter with different functionalizations.
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Figure 6. The hydrodynamic diameter (Dh) of 2HP-β-CD (a), NA-2HP-β-CD-HPMC (b), NA-2HP-β-
CD (c), NAs-2HP-β-CD-HPMC (d), NA (e), and HPMC (f).

The hydrodynamic diameter of 2HP-β-CD (Figure 6a) was initially observed to be
520 nm. Subsequently, NA-2HP-β-CD (Figure 6c) was successfully synthesized, and the
functionalization was confirmed through a noticeable increase in the precursor’s diame-
ter, which measured 849 nm. The process of functionalization resulted in the precursor
NA-2HP-β-CD-HPMC (Figure 6b), which significantly increased the diameter to 940 nm.
Similarly, the NAs-2HP-β-CD-HPMC (Figure 6d) showed a substantial increase in hydro-
dynamic diameter, reaching 1058 nm. This increase indicates that the drug has successfully
formed a complex with the 2HP-β-CD structure, resulting in a larger and more complex
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molecular assembly. To provide further context, it is important to note that NA (Figure 6e),
on its own, has a diameter of 778 nm, while HPMC (Figure 6f) has a diameter of 555
nm. This information underscores the stepwise functionalization process, in which each
component contributes to the overall increase in diameter, ultimately leading to the for-
mation of inclusion complexes with such hydrodynamic diameters. Another reason for
the increase in diameter is the strong tendency for the agglomeration of the 2HP-β-CD
as a consequence of the self-assembly in aqueous solutions to form aggregates with inter-
molecular linkage attributed to the OH groups located at the edges of the donut-shaped
2HP-β-CD molecules [74,75]. The complexes are ranked by diameter, as follows: NAs-2HP-
β-CD-HPMC > NA-2HP-β-CD-HPMC > NA-2HP-β-CD. It is noteworthy that the particle
size increased significantly after the formation of the ternary complexes. This increase is
due to the high mobility of 2HP-β-CD complexes in solution and the possible interaction
of non-ionic polymers with the outer surfaces of both CD and the inclusion complexes,
which may enhance the interaction strength of the drug with 2HP-β-CD by forming large
complex aggregates [76]. These results were confirmed by SEM micrographs. The diam-
eter of the NAs-2HP-β-CD-HPMC complex was observed to be larger than that of other
complexes, which can be attributed to enhanced attractive van der Waals forces resulting
from the use of the NA salt. These intermolecular interactions cause the aggregation of
NAs-2HP-β-CD-HPMC in the solution [74,77].

3.3.5. Nuclear Magnetic Resonance Spectroscopy (NMR)

Compared to previously described techniques, which cannot definitively distinguish
between inclusion complex formation and adsorption phenomena or determine the struc-
tural conformation of molecules, NMR spectroscopy is a powerful tool for identifying the
formation of an inclusion complex [78]. It provides direct evidence for the inclusion of a
guest molecule in the CD cavity. If the guest molecule is included in the CD cavity, the H-3
and H-5 protons inside the cavity will be affected by the changed environment, resulting in
characteristic chemical shift changes observable in the ¹H-NMR spectrum [79]. Figure 7
shows the ¹H-NMR spectra of NA, 2HP-β-CD, and the inclusion complexes. The proton
signal assignments for NA (Figure 7a) and 2HP-β-CD (Figure 7b) were determined based
on the relevant literature [35,80,81]. Thus, for 2HP-β-CD, most protons from glucose and
propyl residues resonate in the interval of 3.48–4.01 ppm, with methyl groups resonating at
1.14–1.15 ppm and glucose H1 protons resonating at 5.08 and 5.26 ppm. NA has several sets
of signals associated with the pyridine ring at 6.97 (H3), 8.01 (H2), and 8.37 (H4) ppm and
with the phenyl ring at 7.56 (H8), 7.61 (H9), 7.66 (H10), and 7.89 (H12) ppm. The spectra
of the inclusion complexes showed the proton signals of both NA and 2HP-β-CD, and
their chemical shift values are presented in Table 3. Because, in the case of substituted CDs
like 2HP-β-CD, the proton signals are severely overlapped and individual assignments are
difficult to make, we followed the chemical shift variations of the guest protons (Table 3).

Table 3. 1H NMR chemical shift change (ppm) data of NA protons in the free state and inclusion
complexes (∆δ = δcomplex − δfree).

Proton δ (Free) δ (NA-2HP-
β-CD) ∆δ

δ (NA-2HP-β-
CD-HPMC) ∆δ

δ (NAs-2HP-β-
CD-HPMC) ∆δ

NA

H-2 8.01 8.30–8.32 0.29–0.31 8.30–8.32 0.29–0.31 8.27–8.30 0.26–0.29
H-3 6.97 7.01 0.04 7.01 0.04 6.99 0.02
H-4 8.37 8.30–8.32 −0.07–−0.05 8.30–8.32 −0.07–−0.05 8.27–8.30 −0.1–−0.07
H-8 7.56 7.39 −0.17 7.39 −0.17 7.39 −0.17
H-9 7.61 7.72 0.11 7.71 0.10 7.67 0.06

H-10 7.66 8.12 0.46 8.12 0.46 8.02 0.36
H-12 7.89 8.01 0.12 8.00 0.11 7.97 0.08
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For the binary and ternary complexes, the protons located in both phenyl and pyridine
rings showed significant variations, indicating that the NA molecule interacts with the
interior of the 2HP-β-CD cavity [35].

Considering the dynamic nature between host and guest, these variations indicate the
following two possible inclusion modes: one with the incorporation of trifluoromethylphenyl
residue in the 2HP-β-CD cavity and the second one with a pyridine ring inside. These two
inclusion modes are supported by the NOE cross-peaks visible in the 2D ROESY spectra
(Figure 8). The figure emphasizes through-space interactions (circled in green) between
protons from NA and 2HP-β-CD, situated less than 5 Å, which confirms the insertion of the
guest molecule into the 2HP-β-CD cavity, providing additional conformational information
about the synthesized binary and ternary inclusion complexes [54].

Pharmaceutics 2024, 16, x FOR PEER REVIEW 15 of 23 
 

 

 

(e) 

Figure 7. 1H NMR spectra of NA (a), 2HP-β-CD (b), NA-2HP-β-CD (c), NA-2HP-β-CD-HPMC (d), 
and NAs-2HP-β-CD-HPMC (e). 

For the binary and ternary complexes, the protons located in both phenyl and pyri-
dine rings showed significant variations, indicating that the NA molecule interacts with 
the interior of the 2HP-β-CD cavity [35].  

Considering the dynamic nature between host and guest, these variations indicate 
the following two possible inclusion modes: one with the incorporation of trifluoro-
methylphenyl residue in the 2HP-β-CD cavity and the second one with a pyridine ring 
inside. These two inclusion modes are supported by the NOE cross-peaks visible in the 
2D ROESY spectra (Figure 8). The figure emphasizes through-space interactions (circled 
in green) between protons from NA and 2HP-β-CD, situated less than 5 Å, which confirms 
the insertion of the guest molecule into the 2HP-β-CD cavity, providing additional con-
formational information about the synthesized binary and ternary inclusion complexes 
[54].  

 
(a) 

 
(b) 

  

Figure 8. Cont.



Pharmaceutics 2024, 16, 1190 16 of 23

Pharmaceutics 2024, 16, x FOR PEER REVIEW 16 of 23 
 

 
(c) 

Figure 8. Two-dimensional ROSY spectra of NA-2HP-β-CD (a), NA-2HP-β-CD HPMC (b), and 
NAs-2HP-β-CD-HPMC (c). 

The molar ratios of the formed inclusion complexes were determined by analyzing 
the relative integrals of H1 protons from 2HP-β-CD and H9 protons from NA [82]. The 
analysis revealed a 1:24 molar ratio of NA to 2HP-β-CD for the NA-2HP-β-CD complex 
and a 1:12 ratio for the NA-2HP-β-CD-HPMC complex, while the NAs-2HP-β-CD-HPMC 
complex displayed a 1:1 stoichiometry ratio. Thus, only the NAs-2HP-β-CD-HPMC com-
plex achieved the theoretical 1:1 host–guest molar ratio used during the initial prepara-
tion. This suggests that the NAs-2HP-β-CD-HPMC inclusion complex is more effective or 
stable [67]. These findings are consistent with the results of FT-IR, DSC, RDX, and the Kc 
and CE values obtained from the phase solubility study. 

Table 3. 1H NMR chemical shift change (ppm) data of NA protons in the free state and inclusion 
complexes (Δδ = δcomplex- δfree). 

Proton δ (Free) 
δ (NA-2HP-β-

CD) Δδ 
δ (NA-2HP-β-CD-

HPMC) Δδ 
δ (NAs-2HP-β-CD-

HPMC) Δδ 

    NA    
H-2 8.01 8.30–8.32 0.29–0.31 8.30–8.32 0.29–0.31 8.27–8.30 0.26–0.29 
H-3 6.97 7.01 0.04 7.01 0.04 6.99 0.02 
H-4 8.37 8.30–8.32 −0.07–−0.05 8.30–8.32 −0.07–−0.05 8.27–8.30 −0.1–−0.07 
H-8 7.56 7.39 −0.17 7.39 −0.17 7.39 −0.17 
H-9 7.61 7.72 0.11 7.71 0.10 7.67 0.06 

H-10 7.66 8.12 0.46 8.12 0.46 8.02 0.36 
H-12 7.89 8.01 0.12 8.00 0.11 7.97 0.08 

3.4. In Vitro Dissolution Studies 
This study assessed the dissolution rate of the drug and its complexes in simulated 

intestinal fluid as key parameters for understanding its potential bioavailability and 
evaluating the influence of complexation-induced physicochemical changes on the 
dissolution  ]83[ . Figure 9 shows the dissolution profiles of NA, NAs, binary (NA-2HP-β-
CD), and ternary (NA/NAs-2HP-β-CD-HPMC) inclusion complexes. An analysis of these 
profiles revealed that the binary and ternary inclusion complexes exhibited a significantly 
higher dissolution rate than pure NA and NAs. This increase in dissolution rate was 
attributed to the formation of inclusion complexes, which was confirmed by FT-IR, DSC, 
XRD, and 1H-NMR studies. This complexation induced several physicochemical changes 
to the drug molecule, such as amorphization, improvement of the wetting property, and 
the hydrophilicity of 2HP-β-CD [84,85]. For inclusion complexes, the cumulative drug 
release (%), after 20 min, was 82.53% for NAs-2HP-β-CD-HPMC, 72.02% for NA-2HP-β-

Figure 8. Two-dimensional ROSY spectra of NA-2HP-β-CD (a), NA-2HP-β-CD HPMC (b), and
NAs-2HP-β-CD-HPMC (c).

The molar ratios of the formed inclusion complexes were determined by analyzing
the relative integrals of H1 protons from 2HP-β-CD and H9 protons from NA [82]. The
analysis revealed a 1:24 molar ratio of NA to 2HP-β-CD for the NA-2HP-β-CD complex and
a 1:12 ratio for the NA-2HP-β-CD-HPMC complex, while the NAs-2HP-β-CD-HPMC com-
plex displayed a 1:1 stoichiometry ratio. Thus, only the NAs-2HP-β-CD-HPMC complex
achieved the theoretical 1:1 host–guest molar ratio used during the initial preparation. This
suggests that the NAs-2HP-β-CD-HPMC inclusion complex is more effective or stable [67].
These findings are consistent with the results of FT-IR, DSC, RDX, and the Kc and CE values
obtained from the phase solubility study.

3.4. In Vitro Dissolution Studies

This study assessed the dissolution rate of the drug and its complexes in simulated
intestinal fluid as key parameters for understanding its potential bioavailability and evaluat-
ing the influence of complexation-induced physicochemical changes on the dissolution [83].
Figure 9 shows the dissolution profiles of NA, NAs, binary (NA-2HP-β-CD), and ternary
(NA/NAs-2HP-β-CD-HPMC) inclusion complexes. An analysis of these profiles revealed
that the binary and ternary inclusion complexes exhibited a significantly higher dissolution
rate than pure NA and NAs. This increase in dissolution rate was attributed to the for-
mation of inclusion complexes, which was confirmed by FT-IR, DSC, XRD, and 1H-NMR
studies. This complexation induced several physicochemical changes to the drug molecule,
such as amorphization, improvement of the wetting property, and the hydrophilicity of
2HP-β-CD [84,85]. For inclusion complexes, the cumulative drug release (%), after 20 min,
was 82.53% for NAs-2HP-β-CD-HPMC, 72.02% for NA-2HP-β-CD-HPMC, and 74.74% for
NA-2HP-β-CD-HPMC. In similar conditions, the dissolution rates for NA and NAs were
only 47.9% and 59.14%, respectively. Notably, NAs-2HP-β-CD-HPMC showed the highest
dissolution profile, probably due to its high complexation efficiency [27], as evidenced by
phase solubility studies (Section 3.1). However, it is important to consider that the presence
of HPMC can introduce additional factors affecting the release profile. Compared to the
binary complex NA-2HP-β-CD, which reached its peak release rate at 15 min (74.74%),
the ternary complexes with HPMC (NA-2HP-β-CD-HPMC and NAs-2HP-β-CD-HPMC)
exhibited delayed peak dissolution rates, occurring at 60 min (77.39%) and 90 min (84.75%),
respectively. This delay can be attributed to the swelling of the HPMC upon contact
with the dissolution medium, which forms a hydrophilic layer and slows down the drug
diffusion rate. This observation aligns with the findings of Soe et al. and Jug, M. and
Becirevic-Lacan [86,87].
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Figure 9. Dissolution profiles of NA, NAs, NA-2HP-β-CD, NA-2HP-β-CD-HPMC, and NAs-2HP-β-
CD-HPMC (n = 3, coefficient of variation < 3%, error bars not shown for clarity).

In order to obtain a more comprehensive understanding of the release mechanism,
a variety of mathematical models, including the zero-order, first-order, Higuchi, Hixson–
Crowell, and Korsmeyer–Peppas models, were fitted to the kinetic data. This study con-
centrated on the first part of the release curves (Figure 10). Different behaviors among the
examined samples were identified by analyzing the correlation coefficients obtained from
the mathematical models (Table 4).

Table 4. The data obtained by applying various mathematical models to analyze the release kinetics
of free drug during the initial phase (2–20 h) of the release process.

Sample
Zero-Order First-Order Higuchi Hixson–Crowell Korsmeyer–Peppas

R2 K0 R2 Kt R2 KH R2 k R2 k n

NA 0.96 2.28 0.88 −0.09 0.98 13.71 0.97 −0.045 0.98 0.06 0.705
NAs 0.94 0.27 0.93 −0.005 0.98 1.55 0.94 −0.007 0.99 0.52 0.041

NA-2HP-β-CD 0.89 0.35 0.88 −0.005 0.96 2.16 0.90 −0.013 0.99 0.66 0.041
NA-2HP-β-CD-HPMC 0.77 2.31 0.67 −0.05 0.87 14.64 0.83 −0.060 0.90 0.21 0.446
NAs-2HP-β-CD-HPMC 0.90 1.10 0.89 −0.01 0.96 6.74 0.93 −0.042 0.97 0.57 0.124

where R2 is the correlation coefficient, K is the proportionality constant, and n is the release exponent.

The release model that worked best for this type of system was selected from among
mathematical models with correlation coefficients higher than 0.8. As a result, all math-
ematical models were adequate for the release data of the studied systems, producing
correlation coefficients between 0.88 and 0.99; the only exception was the system NA-2HP-
β-CD-HPMC, which had the lowest correlation coefficients between 0.67 and 0.90 on all
applied models. Among the models that were examined, the Higuchi (Figure 10c) and
Korsmeyer–Peppas (Figure 10e) models showed the best fit and had the greatest correlation
coefficients of all the studied models.

Plotting the logarithm of cumulative percent drug release against the logarithm of time
allowed us to establish the release exponent (n), which was used to investigate the release
mechanism. The obtained values for the release exponent that are presented in Table 4
show that the NA and NA-2HP-β-CD-HPMC systems presented a non-Fickian diffusion
mechanism, with values of the release exponent between 0.43 and 0.85; meanwhile, the
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systems NAs, NA-2HP-β-CD and NAs-2HP-β-CD-HPMC presented a Fickian diffusion
mechanism, with values of the release exponent below 0.43 [88].
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Figure 10. Linear fitting of the mathematical models applied for the drug release: zero-order model
(a); first-order model (b); Higuchi model (c); Hixson–Crowell model (d); and Korsmeyer–Peppas
model (e).

Moreover, the rate of drug release is indicated by the release constant (k), whose value
is directly proportional to the diffusion constant (lower values suggest a slower release rate,
while larger values indicate a quicker release rate) [89]. In our study, the slower release rate
was observed in the case of the NA system, which presented the lowest value of the release
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constant. The other system presented similar values with the fastest release rate in the case
of the NA-2HP-β-CD system, which is closely followed by NAs-2HP-β-CD-HPMC and
NAs systems.

The Higuchi and Korsmeyer–Peppas models were found to be the most appropriate
models for this kind of system based on an analysis of the applied release kinetics using
mathematical models. The results obtained from this study confirm that the mechanism of
drug release depends on the nature of the encapsulated drug, as well as the nature of the
components that were used in the composition of the final system.

4. Conclusions

This study successfully developed and characterized the binary and ternary inclusion
complexes of NA and its sodium salt with 2HP-β-CD and HPMC. A co-evaporation solvent
and freeze-drying approach were employed for complexation. Extensive characterization,
including a phase solubility study with an additional control group (NAs-2HP-β-CD) to
evaluate the impact of using NAs alone, was conducted. This analysis determined the CE
and Ks as key parameters of the formation efficiency of the complexes. Additionally, the
drug encapsulation percentage was determined, and various physicochemical techniques
(FT-IR, DSC, DLS, SEM, XRD, 1H-NMR, and 2D-ROESY) were utilized alongside dissolution
studies. Physicochemical analyses confirmed complexation in all formulations, with the
dissolution profiles of the complexes significantly exceeding those of pure NA and NAs.
Notably, while the phase solubility study revealed that individual additions of HPMC or
NAs offered modest improvements in either complexation efficiency or stability in the
liquid state, their combined use in the NAs-2HP-β-CD-HPMC complex demonstrated a
synergistic effect.

Among the studied complexes, the NAs-2HP-β-CD-HPMC formulation demonstrated
the most promising results. It exhibited the highest CE and Ks values, the greatest drug
loading, a 1:1 experimental molar ratio matching the theoretical value, substantial drug
amorphization, and the most favorable dissolution profile. These findings suggest that the
NAs-2HP-β-CD-HPMC complex holds significant potential as a candidate for improved
NA delivery, potentially leading to enhanced bioavailability and therapeutic efficacy.

This study emphasizes the importance of optimized inclusion complexes for improved
NA delivery. The comparative approach and diverse characterization techniques provided
valuable insights that support further advancements in drug delivery systems, ultimately
aiming to optimize therapeutic efficacy while minimizing side effects. Additionally, in vivo
studies are necessary to confirm its clinical application potential.
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