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Abstract: The genus Aspergillus contains several species that are important plant pathogens. Plant
pathogenic Aspergillus spp. affect agricultural crops in the field as well as after harvest, often
associated with corn ear rot, cotton boll rot, peanut yellow mold, black mold of onion and garlic, fruit
rot on grapes, pomegranates, olives, citrus, and apples. Coffee berries and coffee beans as well as
tree nuts are also frequently infected by Aspergillus spp. Some of the plant pathogenic Aspergillus
spp. are also mycotoxigenic, produced mycotoxin in the plant tissues leading to contamination of
agricultural products. Over the years, reports of plant diseases caused by Aspergillus in various
crops have increased, suggesting they are commonly encountered plant pathogens. This review
focuses on agricultural crops or cultivated plants infected by Aspergillus spp. The compilation of
plant pathogenic Aspergillus spp. provides information to mycologists, particularly those involved in
plant pathology and crop protection, with updated information on plant diseases caused by various
species of Aspergillus. The updated information also includes the locality or location, province, state
and the country. The knowledge on the prevalence and geographic distribution of plant pathogenic
Aspergillus spp. is beneficial in the application of crop protection.

Keywords: Aspergillus; crops; corn ear rot; cotton boll rot; peanut yellow mold; black mold; fruit
rot; mycotoxins

1. Introduction

Aspergillus species are ubiquitous, found in various types of substrates, and distributed
across all geographic areas and climatic conditions worldwide. Worldwide distribution
of Aspergillus contributes to the conidia, which are common constituents of air, moving or
drifting via air currents and spreading across both short and long distances. When conidia
are deposited on a suitable substrate, they germinate when the conditions are suitable [1],
colonizing the substrates via the degradation process. Agricultural crops and products,
particularly food and feed, are common substrates of Aspergillus, leading to rotting or
spoilage of crops and produce [1].

In earlier studies of plant pathogenic Aspergillus, A. niger and A. flavus have often
been implicated in diseases of agricultural crops. Over the years, particularly after the
introduction of the one fungus, one name concept, and taxonomic revision of the genus
Aspergillus [2,3], other species have been reported as plant pathogens.

Black Aspergillus (section Nigri) often causes postharvest diseases in fruit crops, tree
nuts, and vegetables, and is often found on peanuts, corn, onions, coffee, and grapes [4]. It
is easy to recognize black Aspergillus as masses of black conidia appear on the infected parts
of plants [5]. These conidia contain melanin in the cell wall, which protects them against
UV light, drought, and high salt concentrations [6]. Species of black Aspergillus reported
as plant pathogens are A. niger, A. carbonarius, A. welwitschiae, A. ochraceus, A. awamori,
A. aculeatus, A. tubingensis, A. japonicus, A. uvarum, A. foetidus, A. brasiliensis, A. aculeatinus,
and A. sclerotiicarbonarius, which are mentioned in this manuscript. Some of these species
are producers of ocharatoxin such as A. carbonarius, A. welwitschiae, and A. niger. In addition,
A. niger is also a fumonisin producer [7].
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Aspergillus section Flavi is associated with plant diseases including A. flavus, A. par-
asiticus, A. oryzae, A. tamarii, and A. minisclerotigenes. Among the species, A. flavus is a
well-known aflatoxin producer that is often associated with cottonseed, maize, peanuts,
and tree nuts in the field and postharvest. Aspergillus parasiticus is also an aflatoxin producer
particularly associated with peanuts.

Other species of Aspergillus that have been reported to be associated with plant dis-
eases are A. fumigatus (section Fumigati), A. westerdijkiae, and A. ostianus (section Cir-
cumdati), A. terreus (section Terrei), A. versicolor (section Versicolores), A. candidus (section
Candidi), A. sulphureus (section Aspergillus), and A. ustus (section Usti), as mentioned in
this manuscript.

Due to taxonomic revision of the genus Aspergillus, new species have been described [8,9]
and may affect the identity of plant pathogenic species. As such, the information summarized
in this work, including details on Aspergillus species associated with plant diseases, their
occurrence, and geographic distribution, provides a valuable contribution that can assist
professionals in this field in their efforts to address crop health and protection issues.

2. Pathogenicity of Aspergillus in Plants

Aspergillus species associated with plant diseases are generally opportunistic pathogens,
and wounds or injuries are necessary for infection and colonization of the plant host [10].
Infection by Aspergillus usually occurs because of insect damage after drought or heat stress.
For Aspergillus to cause disease, the conidia must germinate, followed by hyphal pene-
tration and the colonization of the plant tissues. Subsequently, the plant host physiology
is altered, and Aspergillus must adapt to the plant environment. After colonization and
disease occurrence, conidia are produced and dispersed in the environment [10], and are
an important factor for the survival of Aspergillus under hostile conditions [11].

The developmental stages of Aspergillus pathogenesis involve genes that enable infec-
tion and suppress resistance. The expression of the genes involved may be influenced by
plant defense mechanisms and nutrient composition [12]. For Aspergillus, more data are
available on pathogenesis in animals and humans than on pathogenesis in plants. However,
according to Sexton and Howlett [10], fungal pathogenesis in animals, humans, and plants
is similar, and information on pathogenesis in animals and humans can be applied to plants
to understand disease mechanisms.

Conidial germination is an early stage of disease infection. Three morphological stages
of conidial germination have been proposed: dormancy, isotropic growth, and polarized
growth. Conidial dormancy is broken by several factors, including the presence of water
and/or nutrients. Isotrophic growth is the swelling stage of conidia, which involves water
uptake and the formation of new cell wall materials. The formation of a germ tube is
known as polarized growth [11]. Ras protein and Cdc42/Rho GTPases are involved in
fungal development and adaptation of fungal cells [13,14]. In polarized growth, RasA and
RasB genes are essential in hyphal morphogenesis [13]. Detailed information on the genes
and proteins involved in conidial germination and the formation of morphological stages
of Aspergillus is provided in an earlier review by Baltussen et al. [11].

Germination of conidia leads to the formation of hyphae and mycelia, which subse-
quently enter and colonize the plant host. The conidia and hyphae are hydrophobic because
they contain hydrophobins and globular proteins that are associated with pathogenicity,
including hyphae attachment to plant tissues, the dispersal of conidia [15,16] and the
increased longevity of aerial hyphae [17].

During the infection process, Aspergillus does not have access to the nutrients needed
for its energy supply nor the biosynthesis of essential molecules to further colonize the
plant tissues. To obtain the nutrients, the fungus depends on fatty acid metabolism, which
is based on the glyoxylate cycle [18], which plays a role in fungal nutrition, and fungal
virulence [19].

Lytic enzymes, such as proteases, are considered virulence factors in fungal pathogen-
esis as they are active in a wide pH range (pH 4–11) and have broad substrate specificity.
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Aspergillus also produces proteases for metabolism and pathogenicity [20,21]. Lytic enzymes
are also useful for fungal colonization, nutrient uptake, adherence, and dissemination in
plant tissues [22].

Melanin is a component of the fungal cell wall that confers resistance to UV light,
protects against adverse environmental conditions, and contributes to fungal virulence [23].
Melanin also plays a role in conidial survival in plant hosts [10]. Furthermore, Aspergillus
species have been reported to synthesize DHN melanin (1,8-dihydroxynaphthalene) and
pyomelanin [24].

Superoxide dismutases (SOD) may also be virulence factors for the colonization of
plant hosts by Aspergillus, acting together with other virulence factors [25]. Several species,
such as A. niger, A. flavus, A. terreus, and A. nidulans, have been reported to produce
SOD [25]. Reverberi et al. [26] demonstrated that A. flavus exhibited transcriptional changes
in both primary and secondary metabolism genes, depending on the substrate colonized,
as a result of the trophic shift from saprobic growth to invasive pathogenic colonization.
Pathogenic growth of the fungus in living kernels led to the upregulation of oxidative stress
response pathway genes. Oxidative stress conditions arise at the fungus-host interface
due to the plant’s defense mechanisms, and fungal pathogens have evolved strategies to
detect and mitigate ROS accumulation, such as through the secretion of SOD and catalase,
which convert ROS into less reactive molecules. Antioxidant mutants of A. flavus showed
impaired growth and produced less aflatoxins, highlighting oxidative stress responses as a
key factor in the switch from saprobic to pathogenic behavior.

In colonization of a plant host, mycotoxin is also a virulence factor that kills host tissues.
For example, cyclopiazonic acid has been reported to be the main pathogenic factor in the
colonization by A. flavus [27]. As for aflatoxin, Mehl et al. [28] suggested that the production
of the mycotoxin in the soil gives the fungus a better competing ability against soil organisms,
instead of functioning as a pathogenicity factor for colonization in plant tissues.

Colonization creates favorable conditions for the growth and development of As-
pergillus. The fungus reproduces asexually within the plant tissues and produces conidia.
Then, lesions form on the surface of the plant [10].

3. Common Plant Diseases Caused by Aspergillus
3.1. Corn Ear Rot

Aspergillus flavus is one of the main fungal species causing corn ear rot, although A.
parasiticus and A. niger have also been reported to be associated with this disease [29]. Many
studies on Aspergillus ear rot in corn-producing countries worldwide have focused on A.
flavus as it is an aflatoxin producer [30–33].

Aspergillus species that cause corn ear rot survive in the soil and remain in crop debris,
which becomes a source of inoculum. The infection of the ears occurs through silk during
pollination and grain filling. Conidia from sources of inoculum land on the silk and
germinate, develop in the silk, and grow downwards to colonize the ears [30]. The infection
of the kernels occurs once the kernels are mature [31]. The growth of this pathogen is
favored by high temperatures (>28 ◦C) and the high-water activity found in kernels. Under
these conditions, A. flavus tends to become the predominant pathogen in corn kernels and
develops during postharvest.

Drought stress and insect damage contribute to the susceptibility of corn plants to
Aspergillus infection [29]. Drought and heat conditions lead to poor kernel development,
which is suitable for the rapid growth of A. flavus as well as mycotoxin production [31].
Wound or injury produced by earworms and corn borers provide a point of entry for
conidial infection. Drought stress intensifies insect damage to husks, which expedites the
transmission of A. flavus [32,33].

The endophytic infection of corn ear rot by black Aspergillus may occur as the fungus
has been isolated from healthy kernels. Moreover, some species of black Aspergillus can
occur as biotrophic endophytes in corn [7]. Endophytic A. flavus has also been previously
recovered from healthy corn [34,35].
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The appearance of black or green conidial masses on the kernels is an indication of As-
pergillus ear rot, which occurs at wound areas or near the ear tip. Aspergillus flavus typically
form olive-green conidial masses, while A. niger forms a black coloration [29]. Aspergillus
infection can occur in the field in maturing or mature kernels, as well as during harvest,
storage, and processing. Infection in corn does not necessarily imply aflatoxin occurrence
but clearly indicates an increased risk of contamination. For A. flavus, aflatoxin production
occurs at a water activity of 0.87 [36] and an optimum temperature of 27–30 ◦C [37]. Under
suitable conditions, aflatoxin can be produced within 24 h after infestation [38].

Ochratoxin A was also detected in corn under field conditions, suggesting an associa-
tion between black aspergilli, especially A. niger, and corn during crop growth [7,39,40].
Thus, in addition to aflatoxin, ochratoxin is another Aspergillus mycotoxin that has the
potential to contaminate corn.

3.2. Peanut Crown Rot, Root Rot, and Yellow Mold

Peanuts (Arachis hypogaea) are one of the most important cash crops cultivated world-
wide for food and oil. The production of peanuts is affected by various fungal diseases,
of which soil-borne diseases caused by Aspergillus species are among the most common
diseases, leading to substantial losses. Soil-borne diseases in peanuts associated with
Aspergillus include crown/collar rot, root rot, and yellow mold (Table 1).

Table 1. Aspergillus species associated with diseases of peanuts.

Peanuts
(Arachis hypogaea) Aspergillus spp. Country References

Diseases

Crown rot/collar rot A. niger

Oklahoma, USA; Andhra
Pradesh, Karnataka and

Tamil Nadu, India; Jackson
County, Florida, USA.

[41–45]

Yellow mold A. flavus, A.
parasiticus

Tropical and subtropical
areas (country not stated) [46–50]

Root rot A. niger Laizi District, Shandong
Province, China [51]

3.2.1. Crown/Collar Rot

Crown rot, also known as collar rot, is caused by A. niger and occurs in all peanut-
producing countries. Economic losses due to crown rot are difficult to evaluate because the
affected plants are scattered throughout the field; however, in some infected fields, losses
of 50% have been reported [41]. According to Pande and Rao [42], the annual worldwide
loss of peanut crops due to this disease is more than 10%.

The most common symptoms of crown rot are pre-emergence, post-emergence seedling
damping-off, and sudden wilting. Young plants and seedlings are more susceptible than
mature plants, which can lead to higher mortality rates. Older plants may become infected
from the mid- to late season of planting [43].

Peanut seeds are susceptible to pathogens in moist soil environments. When the
seeds germinate, the elongated shoots become infected, causing the hypocotyl to become
water-soaked. Sudden wilting of the seedlings can be observed, as well as a rotation in the
hypocotyl and cotyledon. Once infected, the hypocotyl and rotting roots are covered by
black masses of conidia and mycelia. As infection occurs rapidly, peanut plants often die
within 30 days, although others may survive longer [41,44].

Aspergillus niger causing crown rot in peanuts can be either soil-borne or seedborne.
The pathogen is often present in the soil where peanuts are planted and can also often
be found in the peanut seeds. This pathogen is prevalent in soils in which peanuts have
been planted, often serving as the primary inoculum. The sporulation and growth of the
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pathogen mainly occurs under warm and moist conditions [41,45]. Outbreaks of crown
rot are sporadic, with poor seed quality, changes in soil moisture due to high temperature
during the seedling stage, drought stress, seedling damage due to pesticides, and feeding
by roots and stem borers among the factors contributing to disease incidence [41].

3.2.2. Yellow Mold

Yellow mold in peanuts is caused by yellow-green aspergilli, A. flavus, and A. parasiti-
cus, which are saprophytes and facultative parasites in the soil, plant debris, rotting seeds,
and peanut pods. These yellow-green aspergilli are also often found in healthy peanut
pods. Both aflatoxigenic A. flavus and A. parasiticus infect and contaminate peanuts in the
field. After harvest, during the drying and storage stages, aflatoxin is produced in the
seeds, seedling stems, and pods. In the soil, A. flavus and A parasiticus occur as conidia and
mycelia in plant debris and can infect the plant directly or when the plants are predisposed
to several factors, such as damage by insects and nematodes, as well as dry weather [46].

During the preharvest infection and invasion of peanut seeds, A. flavus has been found to
be more aggressive than A. parasiticus [46,47]. Excessive heat in the soil (27–30 ◦C) and lengthy
drought periods (3–6 weeks) towards the end of the growing season favor Aspergillus invasion
and aflatoxin production. During periods of drought, the leaf canopy recedes due to higher
soil temperatures and soil moisture evaporation. These conditions disrupt the synthesis of
phytoalexin, such that the growth of Aspergillus is no longer inhibited [46]. Severe drought
causes permanent wilting, leaf shedding, and receding canopy, which leads to favorable
conditions for the production of aflatoxin in peanut seeds [46].

The pre-emergence rotting of the seeds and seedlings are indicative of severe peanut
infection. At this stage, necrotic lesions appear with sporulating A. flavus emerging on the
hypocotyls, radicles, and cotyledons of both ungerminated and germinated seeds. This
condition is known as yellow mold. When infected seedlings emerge, plant growth is
stunted, the root system is poorly developed, and the leaves become chlorotic [46].

The contamination of peanuts with aflatoxin in the field increases during drought
stress as the moisture in the seed is reduced, which can lead to pod damage caused by
insects. These conditions also facilitate pathogen infection. Moreover, sucrose exudates
from the roots and peanut pods contribute to the growth of A. flavus and A. parasiticus [48].
Insect damage in peanuts is favored by hot and dry conditions, and wounds on the pods
encourage the penetration and colonization of pathogens. Infected seeds often display
yellow-green discoloration, which may be associated with fungal sporulation. Seed infec-
tion may also occur without noticeable damage to the pod [46].

Aflatoxin contamination in peanuts is more prominent in tropical and subtropical
regions [46]. Aflatoxins are commonly produced at moisture levels greater than 80% and
temperatures exceeding 25 ◦C [49]. Inadequate drying favors fungal growth, and aflatoxins
tend to accumulate in the plant seeds. Fungal growth can be controlled by drying peanut
pods to 7% moisture and storing them at 25–27 ◦C at a relative humidity of 70% [50].

3.2.3. Root Rot

Aspergillus niger has been reported to cause root rot in peanuts in the Laizi District,
Shandong Province, China [51]. During infection, early symptoms in the peanut plants,
including brown spots, appeared on the root and stem base, as well as the plants showing
leaf chlorosis, stunted growth, and sudden wilting. Later, as the disease progressed, rot
symptoms were also visible in the infected stem and root tissues, and numerous brown
and black conidia were observed on the surface of the infected parts [51]. In this case, the
causal pathogen was recovered from the infected roots and the stem base.

3.3. Cotton Boll Rot

One of the most serious diseases of cotton (Gossypium herbaceum) is boll rot, caused by
a complex of fungal pathogens, of which Aspergillus species are among the pathogens. Boll
rot was first reported in the late 1920s in the southwestern states of the USA. Aspergillus niger
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was recovered from several parts of infected cotton, including bolls, young dying squares or
fellow buds, discolored pedicels, and lesions formed on the bracts [52]. Boll rot was initially
known as smut, and the symptoms appeared only in injured bolls, mainly due to infestation
by insects. During a survey on cotton disease in California in 1957–1960, several boll-rotting
fungi, including A. flavus and A. niger, were found on cotton [53]. Table 2 shows the Aspergillus
species associated with cotton boll rot reported in the USA and Bangladesh.

Table 2. Aspergillus species associated with cotton boll rot.

Cotton
(Gossypium herbaceum) Aspergillus spp. Country References

Cotton boll rot

A. niger Oklahoma, USA [52]

A. flavus, A. niger California, USA;
Bangladesh [53,54]

A. flavus Southeast and
Mid-South states USA [55–58]

Cotton boll rot occurs in all cotton-producing countries and affects the yield and fiber
quality of the resulting crop. Two species of Aspergillus, namely A. niger and A. flavus, are
commonly associated with cotton boll rot [54]. However, most reports and publications
have focused on A. flavus, possibly due to its aflatoxin contamination, which is the most
notable problem related to the development of fibers and bolls. The contamination of cotton
by aflatoxin has been reported in cotton-growing areas in the USA [55,56].

Most cotton boll pathogens, including A. flavus, are unable to penetrate healthy plant
tissues. However, the conidia can enter the boll through wounds or holes made by aphids
and other insects, including pink boll worms, tobacco budworms, boll weevils, and cotton
stainers [57,58]. The infection of inner tissues affects the seeds and lint, which rot as a
result. Dry and blackened bolls with black or brown spots are indicative of infection [54].
Temperature and humidity are the main parameters that influence A. flavus colonization,
as well as the production of aflatoxin. Moist lint resulting from the opening of the boll is
susceptible to infection, which causes the lint to weaken and results in the discoloration of
the fiber [58].

3.4. Black Mold in Onion and Garlic

The infection of onions (Allium cepa L.) and garlic (Allium sativum L.) with black mold
results in the appearance of black conidial masses on the bulbs (Figure 1A,B). On onions,
conidial masses are formed between or on the outer layer of the scale leaves. Rot develops
at the neck of the infected bulb, resulting in a shriveling of the scales. On garlic, dark brown
or black conidial masses are formed on the bulb, and dry rot develops [59]. Black mold
often occurs along the bulb veins, and a larger portion of the bulb is enveloped by conidia.
The occurrence of black mold on onions and garlic gives the bulbs a sooty appearance.
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Black Aspergillus, particularly A. niger, is often the causal pathogen of black mold in
onion and garlic. Other Aspergillus species reported include A. awamori and A. ochraceus in
garlic [60,61] and A. welwitschiae in onion [62–64] (Table 3).

Table 3. Aspergillus species associated with black mold of onion and garlic.

Onion (Allium cepa L.) and
Garlic (Allium sativum L.) Aspergillus spp. Country References

Black mold

A. niger (onion) Worldwide [59]

A. niger, A. ochraceus (garlic) USA, China [60]

A. awamori (garlic) Korea [61]

A. welwitschiae (onion) Taif region, Saudi Arabia; Stara
Pazova, Serbia; Paraná State, Brazil. [62–64]

A. niger (onion) Shambat, Sudan; Wellesbourne, UK [65]

A. awamori (onion) Hungary [66]

The infection of onion and garlic bulbs by black mold can occur either in the field or
during postharvest. Aspergillus species associated with black mold in onion and garlic are
mainly saprophytes occupying plant debris and decaying organic matter and can turn into
opportunistic pathogens by conidial infection. The conidia in the soil spread to the bulbs
via the wind or rain. Conidia then enter the plants via wounds. Contaminated seeds are
also sources of black mold inoculum [59]. In addition, endophytic A. niger has also been
suggested as a vehicle of infection [7].

Black mold becomes apparent during storage, transportation, and sale. During the
postharvest period, infection by black mold can cause significant losses, with bulbs becom-
ing discolored and their tissues disintegrating. Black mold often occurs at high temperatures
(27–30 ◦C) and humidity (70–80%), which can also lead to mycotoxin contamination [65].
As a result, the pathogens that cause black mold are widespread in hot and dry climates, but
these can also be a problem in temperate areas when bulbs are stored at high temperatures
and humidity levels. Moreover, the presence of black Aspergillus in onion seed samples has
been reported to be prevalent in seeds grown or stored in warm climates.

Fumonisins (0.3 mg/kg) have been detected in onion samples from Hungary, albeit
at low levels. In this case, the sample was contaminated with black Aspergillus, identified
as A. awomori, which was found in the fleshy part and outer layer of the onion bulb [66].
Fumonisin B2 has also been detected in onion samples in Taif, Egypt, wherein A. welwitschiae
was identified as a potential fumonisin producer [62]. Ochratoxin has yet to be detected
in onion and garlic bulbs. However, under suitable conditions, such as the optimum
temperatures and humidity levels, there is always the possibility that black Aspergillus
produces ochratoxin.

3.5. Aspergillus Fruit Rot

Aspergillus infects various types of fruit crops worldwide. Aspergillus rot is one of the
main postharvest diseases affecting fruit crops and infected fruits cultivated in tropical,
subtropical, and temperate regions. Among these, Mediterranean fruit crops are susceptible
to Aspergillus rot. Infection often occurs during the harvest period, and the most common
Aspergillus species associated with fruit crops is black Aspergillus, especially A. niger, with
other species including A. flavus, A. fumigatus, A. tubingensis, A. parasitus, A. awamori,
A. terreus, A.welwitschiae, A. uvarum, and A. japonicus [67].

Figure 2 illustrates the infection of Aspergillus in fruits crops. The infection of fruit
crops by Aspergillus occurs in the field, during harvest, and postharvest. In the field,
when the sugar content increases during fruit maturation, the population of Aspergillus
increases. When fruits are wounded, Aspergillus can easily infect these weakened fruits. As-
pergillus also infects fruits during harvesting, handling, storage, washing, grading, packing,
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transportation, and sale, up until the product is bought by consumers [68]. Postharvest
Aspergillus infection usually occurs via bruises, or other cuts on fruits, as well as through
natural openings. Infection is favored by conditions of high temperatures and moisture,
which promote conidial germination and fungal growth [68]. Moreover, wounds lead to
the release of nutrients and water from the cells, providing suitable conditions for fungal
growth. Postharvest fruit rot can lead to huge losses in storage and supply chains since
fruits with rot symptoms are unmarketable and unsuitable for consumption.
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Aflatoxin and ochratoxin A produced by mycotoxigenic Aspergillus have been detected
in grapes, figs, pomegranates, and olives, as well as products based on these fruit crops.
Studies on mycotoxin contamination of these fruit crops have received much more attention
compared to studies on mycotoxins in tropical fruit crops, which remain scarce.

3.5.1. Grapes Bunch Rot, Sour Rot, and Vine Canker

Grapes (Vitis vinifera) are one of the most important fruit crops in the world, and are
mainly cultivated for wine production (71%). Only 27% of grapes are consumed fresh, while
2% are turned into dried fruits [69]. In vineyards, Aspergillus species infect grape berries,
particularly during the summer when the conditions of high moisture and temperatures
of 20–30 ◦C are prevalent [69,70]. During maturation, the rates of infection by Aspergillus
spp. are higher, and black Aspergillus dominates at temperatures higher than 37 ◦C [71].
Occasionally, A. flavus and A. parasiticus have been isolated from grapes [72,73]. Some
strains of pathogenic Aspergillus species are also mycotoxigenic, contaminating grapes, as
well as their corresponding final products. In the postharvest period, grapes are processed
according to their intended use. During these processes, contamination by Aspergillus, as
well as other fungi, can occur [69].

Bunch rot, vine canker, and sour rot are diseases often associated with black Aspergillus
in vineyards. The main sources of the inoculum of black Aspergillus in vineyards are soil
and vine debris, from which wind-borne conidia are deposited onto the surface of the
berries [74]. Black Aspergillus, which infects grape berries, is regarded as a secondary
invader or opportunistic pathogen that causes infection when the berries are injured
or wounded by insects or mechanical impact [75]. Prevalent black Aspergillus species
found in infected grapes include A. niger, A. carbonarius, A. aculateus, A. japonicus, and
A. uvarum [76,77], as well as occasionally A. tubingensis [77] and A. awamori [78]. These
species are frequently reported to cause disease in grapes (Table 4).
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Several black Aspergillus species are ochratoxin producers, and ochratoxin A is pro-
duced during veraison to ripening. Although A. carbonarius is the main producer of
ochratoxin A, to a certain extent, A. niger, A. tubingensis, and A. awamori also contribute to
ochratoxin A contamination in grape berries [79,80]. The contamination of ochratoxin A in
wine was first reported by Zimmerli and Dick [80]. Subsequently, studies on ochratoxin A
in wine and other grape products have increased [69,81–85].

Table 4. Aspergillus spp. associated with diseases of grape berries.

Grapes
(Vitis vinifera) Aspergillus spp. Country References

Disease

Bunch rot

A. aculeatus southwestern Ontario [86]

A. niger Chile [87]

A. carbonarius Victoria, Australia [88]

A. niger, A. carbonarius - [89]

A.tubingensis
Kimcheon-si, Gyeongbuk province, Korea [90]

Gimcheon, South Korea [77]

Sour rot

A.carbonarius Kern County, California [91]

A. niger, A. aculeatus, A. oryzae Yantai, Shandong Province, China [92]

A. niger, A. carbonarius Rhodes, Greece [93]

Central and Southern Joaquin Valley, California [94]

Vine canker

A. niger San Joaquin Valley, California [95]

A. niger southeastern Sicily, Italy [96]

A. niger, A. tubingensis, A. carbonarius Sicily, Italy [97]

A. niger and/or A. tubingensis Fresno and Sonoma counties, California [98]

Aspergillus niger and A. awamori (now known as A. welwitschiae) are also fumonisin
producers. Similar to ochratoxin A, fumonisin contamination has been reported in wine
and other grape products [99–103]. According to Varga et al. [99], the accumulation of
fumonisins can occur during the drying process, as mycotoxins are present before drying.

Bunch Rot

Bunch rot in grapes is caused by a range of fungi, including Aspergillus, which infect
grape berries through wounds. Fungal pathogens that infect berries can sometimes be
identified based on their conidial appearance. Aspergillus produces dark brown or black
conidia, Botrytis produces gray conidia, and Penicillium produces green conidia [104].
Several Aspergillus species (Table 4) have been reported to be associated with grape bunch
rot, including A. niger, A. carbonarius [87–89], A. aculateus [86], and A tubingensis [77,90].

Infection with bunch rot pathogens starts at the site of a wounded area and spreads
rapidly to the entire grape cluster. Brown spots emerge on the berries, and as the disease
progresses, the berries rot and black-to-dark brown conidia appear. Rotted berries become
soft, shrivel, or collapse [104]. Bunch rot development is influenced by the wound on the
berries and the compactness of the berry cluster. The sugar content increases as the fruits
ripen, which increases the susceptibility of the wounded berries to infection by bunch rot
pathogens [104]. Growth pressure on grape berry clusters leads to splitting or cracking.
Bunch rot infection is favored by warm and wet conditions, with prolonged wet conditions
leading to an increased rotting of berries [89,104]. Severe outbreaks of this disease can
occur during periods of harvest under warm conditions [87].

Kazi et al. [88] studied the infection process of A. carbonarius in grape berries. Their
findings showed that infection can occur at any stage of berry development if the inoculum
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is sufficient. Lower infection was found to occur when berries were small, green, and hard,
which suggests that young berries are resistant to A. carbonarius infection. Infection was
generally higher during veraison and harvest, which is similar to the findings reported
by Battilani et al. [105] and Ponsone et al. [106]. Guzev et al. [107] also reported that
infection was very low before veraison but often higher at harvest. The occurrence of black
Aspergillus was also higher at harvest [105], which contributes to the incidence of bunch rot.

Sour Rot

Bunch rot often leads to sour rot, which causes the infected berries to appear wet
due to leaking of juice or the oozing of the berry tissues, resulting in the cracking and
collapse of the berries, which also enhances the growth of yeast and bacteria [104,108].
This disease is also known as summer bunch rot. Grape sour rot is a complex disease
involving filamentous fungi, yeasts, acetic acid bacteria, and fruit flies. The disease is
characterized by the smell of acetic acid or vinegar, as yeasts convert sugars to ethanol.
Ethanol is then oxidized to acetic acid by the bacteria [109]. Fruit flies attracted to the
sour smell act as vectors, spreading the filamentous fungi, yeasts, and acetic acid bacteria.
Fruit flies may also cause injury to grape berries, which facilitates infection, particularly by
fungi and bacteria [108,110]. Sour rot development is conducive to a high relative humidity
and longer periods of wetness [94]. The main notable difference between bunch rot and
sour rot is the vinegar-like smell caused by the accumulation of ethanol and acetic acid.
Both diseases result in economic losses as they affect the berries, which in turn affects the
final products.

Many filamentous fungi are involved in the sour rot of grapes, including Aspergillus,
of which A. niger and A. carbonarius are frequently found on infected berries (Table 4). Both
A. niger and A. carbonarius colonize wounded berries, causing bunch rot, followed by sour
rot. Aspergillus niger and A. carbonarius have both been recovered from berries affected by
sour grapes on the island of Rhodes, Greece [93]. Later, Rooney-Latham et al. [91] found
that A. carbonarius was the main organism recovered from berries infected with sour rot in
California. Findings by Gao et al. [92] indicated that A. niger, A. aculeatus, and A. oryzae are
involved in sour rot in Yantai, Shandong Province, China.

Vine Canker

Grapevine canker is commonly associated with fungal pathogens in the families
Botryosphaeriaceae, Diatrypaceae, and Diaporthaceae. Typical symptoms of grapevine canker
include necrosis of the internal part of the trunk, indicating the formation of canker, the
dieback of cordons or the whole vine, stunted shoot development, shoot death, rotting, and
the dropping of berry clusters [98,111].

Aspergillus species causing vine canker have been reported in San Joaquin Valley,
California, and southeastern Sicily, Italy. In California, Michailides et al. [95] reported
A. niger as the causal pathogen of vine canker, in which the disease was detected in one-
year-old cv. Redglobe vines. The disease was detected in the crotch, branching, and along
shoots. Abundant black conidia were observed within the canker, as well as on the surface
of the canker. Vitale et al. [97] identified A. niger, A. tubingensis, and A. carbonarius as
pathogens of vine canker in Italy, of which the virulence was equal among the three species.
Most canker lesions were detected at branch points and on the stems of young shoots, of
which the infected tissues were discolored, and some were dead. Black powdery conidia
are abundant and sometimes appear on the surface of lesions [96]. A recent study by
Zhuang et al. [98] on vine canker in California indicated that A. niger and A. tubingensis, or
both may be the causal pathogens of this disease (Table 4). Further studies on the species
confirmations are currently underway.

Infection by Aspergillus causing vine canker occurs through wounds due to the removal
of lateral shoots or leaves, particularly when the vine is topped to form cordons. Another
method involves growth cracks that often occur in fast-growing one-year-old shoots [95,97].
Aspergillus causing vine canker usually forms black sporulations on the surface and under-
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neath the affected bark tissues, which is the main characteristic differentiating this infection
from other vine canker fungal pathogens. Moreover, multiple canker lesions appear on the
cordon, spurs, and trunk of the vine, with visible brown discoloration in the xylem tissues.
Infected tissues also typically show sporulation, necrosis, and black discoloration [98].

3.6. Fig Fruit Rot

Fig (Ficus carica) is mainly cultivated in the Mediterranean regions as the plant is well
adapted to the Mediterranean climate, with its hot and dry summers and cold winters.
Although fig is widely cultivated in this region, it can also be cultivated in humid tropical
and subtropical regions [112]. For commercial purposes, fig fruits are converted into dried
or preserved forms. Fig fruits are sold fresh for local consumption, as the fruits are easily
perishable, and their shelf life is short [113]. Because the skin of the fruit is soft, it is easily
wounded or damaged, and is thus susceptible to infection by fungi. Moreover, owing to
their high sugar content, various fungi can grow on these fruits, which can lead to fruit
rot [114].

Aspergillus fig rot is caused by several species, including A. flavus, A. parasiticus,
A. fumigatus, A. niger, A. japonicus, and A. carbonarius [115–117], as shown in Table 5.
Aspergillus causes rot in fresh fig fruits and smut in dried figs. Fig cultivars with larger
ostioles are more susceptible, as the ostiole is a natural opening, which permits the fungi
to enter the internal tissues of the fruit. When fruits ripen, abundant conidial masses are
formed in the infected tissues [117]. Wounded or damaged fruits are also susceptible to
Aspergillus infection, as the fungi can directly infect fruits.

Table 5. Aspergillus spp. associated with fig fruit rot and dried fig.

Fig
(Ficus carica) Aspergillus spp. Country References

Fruit rot/
Aspergillus rot

A.cabonarius,
A. japonicus, A. niger California, USA [117]

A. flavus California, USA [118]

Dried fig A. flavus,
A. parasiticus Brazil [119–122]

Ripe and sun-dried fig fruits are susceptible to Aspergillus infection, which provides
favorable conditions for mycotoxin production [118]. According to Buchanan et al. [118]
and Iamanaka et al. [120], dried figs are susceptible to infection by A. flavus and A. parasiticus.
Both species have often been recovered from dried figs [115,119]. Based on a study by
Heperkan and Karbancioglu-Güler [121], A. flavus was found to be prevalent in dried
fig, while A. parasiticus was not frequently isolated. Due to the presence of A. flavus and
A. parasiticus, aflatoxins were detected, particularly in dried figs [121,123,124].

Mycotoxigenic black Aspergillus, particularly A. niger and A. carbonarius, have been
isolated from diseased figs. Aspergillus niger and A. carbonarius are also prevalent during
sun-drying, and both species are tolerant to ultraviolet rays, contributing to their prevalence
during the drying process [71]. Similar to aflatoxins, ochratoxin A has been reported in
dried figs [125–129].

Despite the susceptibility of fig to Aspergillus infection, as well as the contamination
of fruit and fig products with aflatoxins and ochratoxin A, the level of contamination is
generally low [118].

3.7. Olive Fruit Rot

Aspergillus is also the most common fungal flora recovered from olive fruits (Olea
europaea) and has been isolated from fruit rot lesions, as well as from fruits infested by fruit
flies [130,131]. According to Lazzizera et al. [132], most fungi associated with olive fruit rot,
including Aspergillus, are secondary invaders or saprophytes, as the fungi infect olive fruits
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through wound, unlike Colletotrichum and Botryosphaeriaceae fungi, which directly infect
olive fruits. In a study by Chliyeh et al. [133], A. flavus was found to only infect olive fruits
through wounded fruit epicarps.

Aspergillus species that have been isolated from olive fruit rot (Table 6) include
A. ochraceus, A. fumigatus, A. flavus, and A. niger [130,133–135]. Aspergillus niger and A. tub-
ingensis were isolated from olive fruits infested with olive fruit flies [136]. In fresh olive
fruits, A. fumigatus, A. niger, and A. tubingensis have also been reported [131,137], which
may indicate that these species are endophytes. Endophytic Aspergillus species have been
recovered from the twigs and roots of olive trees [137,138]. The main concern regarding
Aspergillus growth on olive fruits is contamination by mycotoxigenic aspergilli, which can
affect the production of olive oil.

Table 6. Aspergillus spp. associated with olive fruit rot and healthy fruits.

Olive
(Olea europaea) Aspergillus spp. Country References

Fruit rot

A. ochraceus Tarom-Zanjan Province, Tabriz, Iran [134]

A. fumigatus Halkidiki, Kalamata, Athens [135]

A. niger Karak, Jordan [136]

A. flavus Gharb and Zoumi, Morocco [133]

A. niger,
A. fumigatus

Sidi Kacem, Meknes, Fes, Taounate, Sefrou, Khenifra,
Errachidia, Goulmima, and Marrakech, Morocco [130]

Healthy fruits A. niger,
A. tubingensis Canakkale province, Turkey [136]

As olives are stored after harvest, improper storage can promote the growth of my-
cotoxigenic Aspergillus, and the production of aflatoxin and ochratoxin A. The occurrence
of mycotoxigenic fungi on olive fruits may lead to the contamination of olive oil with
mycotoxin. In fact, the co-occurrence of aflatoxins and ochratoxin A has been reported in
olive oil in southern Italy [139,140]. Ochratoxin A has also been reported in extra virgin
oil [141] and in olive oil of Greek origin [142,143]. Aflatoxins have also been detected in
olive oil in Greece [144], Iran [145], and Spain [146].

Although aflatoxins and ochratoxin A have been reported in olive fruits and olive
oil, the level of contamination tends to be low, and it is believed to not affect consumers
or cause any public health concerns. However, the continuous intake and exposure to
contaminated products can pose a significant risk to consumers [140,147,148]. Moreover,
the cumulative intake of these olive products may lead to health concerns.

3.8. Pomegranate Fruit Rot

Aspergillus rot of pomegranate (Punica granatum) is commonly associated with fruit
rot and heart rot in pomegranates. This tends to start in the field during flowering and early
fruit development, particularly after rainfall. Rot symptoms appear on the external part of
the fruits near the calyx and manifest as discoloration of the rind, with the rind turning
paler red or brownish red. Inside infected fruits, black powdery conidia are apparent,
resulting in the rotting of the arils and the cracking of the fruit [149,150]. In a study by
Ezra et al. [151], Aspergillus was found to cause fruit rot by penetrating the fruit through a
damaged crown, resulting in the rotting of the fruit mesocarp tissue; however, rotting of
the arils was not observed. Although pomegranate heart rot did not cause any noticeable
symptoms on the rind, the arils rotted, and fungal mycelia were observed. As a result
of the different stages of rot development, some arils exhibited brown/soft rot as well as
black/dry rot [151].
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In most cases, black aspergilli are associated with pomegranate fruit rot, which can
occur both in the field and postharvest (Table 7). In an earlier study, A. variecolor, A. awamori,
A. fumigatus, A. flavus, and A. niger were found to be causal pathogens of pomegranate fruit
rot [152]. Pomegranate fruits in orchards near Cairo, Egypt, were found to be infected with
A. niger, of which the fungus was isolated from the internal parts of the fruits. Aspergillus
niger was also reported to cause the soft rot and dry rot of pomegranates in Shaanxi
Province, China [153]. Infection by A. niger subsequently facilitates infection with bacteria
and yeast [154].

Table 7. Aspergillus spp. associated with pomegranate fruit rot.

Pomegranate
(Punica granatum) Aspergillus spp. Country References

Disease

Heart rot A. niger Cairo, Egypt [154]

Fruit rot
A. niger California, USA [149]

A. tubingensis China [155]

Soft rot and dry rot A. niger Shaanxi, China [153]

Postharvest rot

A. tubingensis,
A. welwitschiae,

A. uvarum,
A. japonicus

Southern Italy [156,157]

After the revision of the taxonomy and nomenclature of the genus Aspergillus, other
species have been found to be associated with pomegranate fruit rot during the preharvest
and postharvest periods. In southern Italy, A. tubingensis, A. welwitschiae, A. japonicus,
and A. uvarum are associated with postharvest pomegranate fruit rot [156]. According
to Mincuzzi et al. [157], A. tubingensis and A. welwitschiae were the main species causing
pomegranate fruit rot, whereas A. uvarum and A. japonicus were minor species. Preharvest
pomegranate fruit rot in Greece and Cyprus were found to be mainly caused by A. niger
and A. tubingensis, although various fungal pathogens, including Alternaria, Colletotrichum,
and Botrytis, were also associated with fruit rot [158]. Guo et al. [155] reported A. tubingensis
as a causal pathogen of pomegranate fruit rot in China.

Pomegranate fruit rot not only reduces the yield and quality of the fruits but also con-
taminated fresh and processed fruits with ochratoxin and fumonisin. Kanetis et al. [158]
reported approximately 20% of A. niger isolates associated with pomegranate fruit
rot could produce ochratoxin A in vitro. Isolates of A. tubingensis (33%) from Greece
also produced ochratoxin A. Only A. niger isolates were able to produce fumonisin
B2 in vitro. The analysis of ocharatoxin A and fumonisin B2 in artificially inoculated
pomegranate fruits indicated that only a small percentage of the isolates were mycotoxin-
producing isolates.

3.9. Citrus Fruit Rot

Aspergillus rot affects citrus fruits (Citrus spp.), including oranges (C. sinensis), lemons
(C. limon), grapefruits (C. paradisi), and lime (C. aurantiifolia), and can occur in the field,
postharvest, during storage and sale. The most common species associated with citrus
fruit rot is A. niger followed by A. flavus (Table 8). However, in a study by Tournas and
Katsoudas [159], A. niger was only recovered from lemons and not from other citrus fruit
samples. Other species associated with Aspergillus rot in citrus include A. westerdijkiae,
A. aculeatus, and A. nidulans (Table 8).
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Table 8. Aspergillus spp. associated with citrus fruit rot.

Citrus
(Citrus spp.) Aspergillus spp. Country References

Lemon A. niger Washington D.C., USA [159]

Lemon and grapefruit A. niger Islamabad, Rawalpindi, Taxila,
and Wah districts Pakistan [160]

Lemon, sweet lemon, lime, sweet orange A. niger, A. flavus Adamawa state, Nigeria [161]

Lemon A. flavus Erzurum, Turkey [162]

Orange

A. flavus, A. niger Oyo State, Nigeria [163]

A. niger El-beida, Libya [164]

A. westerdijkiae Italy [165]

A. niger, A. aculeatus, A. nidulans Mexico [166]

A. niger Nigeria [167]

Ochratoxin and aflatoxin have been reported in citrus infected by Aspergillus, as well
as production of mycotoxins by the fungi. In a study by Marino et al. [165], A. westerdijkiae
inoculated on the surface of an orange fruit was able to produce ochratoxin A and caused
visible rot lesions. The production of ochratoxin A increases at temperatures higher than
26 ◦C, which is the optimum temperature for mycotoxin production [168]. Aflatoxin
was detected in orange samples with a high incidence of A. flavus [163]. Aspergillus niger
from oranges collected from orchards in Mexico was found to produce aflatoxin B1 and
fumonisin B1 [166].

3.10. Tropical Fruit Crops

Aspergillus rot in banana (Musa spp.), mango (Mangifera indica), papaya (Carica papaya),
pineapple (Ananas comosus), and guava (Psidium guajava) is mainly associated with A. niger
and A. flavus. Other species, such as A. tamarii, A. fumigatus, A. terreus, A. ochraceous, and
A. japonicus, have also been reported to cause fruit rot in these tropical fruits (Table 9).
Aspergillus rot has also been reported in jackfruit (Artocarpus heterophyllus) and sapota
(Manilkara zapota) (Table 9). During harvest and handling, it is vital to minimize fruit
bruising and wounding since during storage, bruised and wounded fruits are susceptible
to Aspergillus infection [169].

Table 9. Aspergillus spp. associated with diseases of tropical fruit crops.

Fruit Crop/Disease Aspergillus spp. Country References

Banana
(Musa spp.)

Fruit rot

A. niger, A. flavus Dhaka, Bangladesh [170]

Aspergillus spp. South Gujarat [171]

A. niger, A. flavus Kono, Nigeria [172]

A. niger, A. fumigatus,
A. flavus Sokoto, Nigeria [173]

A. tamarii Malaysia [174]

Crown rot A. niger, A. flavus Jimma town, Ethiophia [175]

Aspergillus sp. Kerala, India [176]
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Table 9. Cont.

Fruit Crop/Disease Aspergillus spp. Country References

Mango
(Mangifera indica)

Fruit rot

A. niger Sri Lanka, Iran [177,178]

A. flavus, A. niger Saudi Arabia,
Faisalabad, Pakistan [179,180]

A. niger, A. oryzae Nasarawa State, Nigeria [181]

A.niger, A. flavus,
A. fumigatus, A. terreus Dhaka, Bangladesh [170]

Pineapple
(Ananas comosus)

Fruit rot

A. flavus Nigeria [167]

A. flavus. A. niger Osun State, Nigeria [182]

black Aspergillus Anambra State, Nigeria [183]

Papaya
(Carica papaya)

Fruit rot

A. niger, A. terreus, A.
flavus, A. ochraceous,

A. tamarii,
A. fumigatus

Gorakhpur, India [184]

A. flavus Maharashtra, India [185]

A. niger Uttar Pradesh, India [186]

A. niger, A. flavus Osun State, Nigeria [182]

Guava
(Psidium guajava)

Crown rot
A. flavus, A. fumigatus,
A. japonicus, A. niger,

A. tamarii
Nueva Ecija, Phillippines [187]

Fruit rot A. awamori Lahore, Pakistan [188]

Soft rot A. niger var. awamori India, Malaysia [189–191]

Dry rot

A. fumigatus Nigeria [192]

A. niger Ethiopia [193]

A. niger, A. flavus,
A. parasiticus

Beheira, El-Sharkia
and Qualubia

governorates, Egypt
[194]

A. niger, A. awamori Aurangabad, India [195]

Jackfruit
(Artocarpus

heterophyllus)

Fruit rot A. niger Nayarit, Mexico [196]

Sapota
(Manilkara zapota)

Fruit rot
A. minisclerotigenes Gujarat, India [197]

A. niger Maharashtra, India [198]

Unlike grapes, fig, olives, and pomegranates, data on the contamination of tropical
fruit crops with Aspergillus mycotoxins is currently lacking. This may be because Aspergillus
infection of many tropical fruit crops is a secondary infection.
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3.11. Strawberry Fruit Rot

Strawberry fruits (Fragaria x ananassa) are fleshy and soft, which makes them highly
perishable and have a limited shelf-life [199]. These factors contribute to the susceptibility
of strawberries to postharvest pathogens that cause fruit rot. Although Botrytis cinerea is
the main postharvest pathogen of strawberry, causing gray mold, Aspergillus spp. have
also been identified as pathogens, causing strawberry postharvest rot. Aspergillus species
reported to be associated with strawberry rot include A. niger, A. flavus, A. fumigatus,
A. tubingensis, A. parasiticus, and A. terreus (Table 10).

In a study by Palmer et al. [200], A. tubingensis was identified as a causal pathogen of
strawberry rot in a field in California. However, the disease is of minor significance as the
fungus was isolated during hot weather that favors the growth of Aspergillus. Most reports
on strawberry rot caused by Aspergillus occur after harvest, particularly during storage and
sale [201–204].

Table 10. Aspergillus spp. associated with strawberry fruit rot and fresh fruit.

Strawberry
(Fragaria x ananassa) Aspergillus spp. Country References

Fruit rot

A. flavus, A. niger Qena city, Egypt [203]

A. niger, A. fumigatus Lahore, Pakistan [201]

A. tubingensis California, USA [200]

A. terreus, Aspergillus sp. Indonesia [204]

Fresh fruit and juice A. flavus, A. niger,
A. parasiticus Saudi Arabia [202]

Mycotoxigenic A. flavus and A. parasiticus associated with strawberry fruit rot were
able to produce aflatoxins, as reported by Saleem [202] and Hussein et al. [203]. Saleem [202]
reported that 30–60% isolates of A. flavus and A. parasiticus recovered from diseased fruits
could produce aflatoxin B at varying concentrations. Aspergillus niger and A. flavus isolated
from strawberry rot were also found to produce ochratoxin and aflatoxin, respectively [203].
These findings highlight the susceptibility of strawberries and strawberry products to
contamination with aflatoxin and ochratoxin.

3.12. Apple Fruit Rot

Fruit rot in apples (Malus domestica) is caused by a range of postharvest pathogens,
including Aspergillus. Aspergillus is not only associated with apple fruit rot; several species
have also recovered from healthy apple fruits. The species isolated from apple fruit rot
include A. oryzae, A. flavus, A. niger, A. terreus, and A. versicolor (Table 11).

Table 11. Aspergillus spp. associated with apple fruit rot.

Apple
(Malus domestica) Aspergillus spp. Country References

Fruit rot

A. flavus, A. niger Assuit, Egypt [205]

A. oryzae Riyadh, Saudi [206]

A. flavus, A. niger,
A. terreus Babylon, Iraq [207]

A. niger, A. terreus Lagos State, Nigeria [208]

A. versicolor Slovak Republic [209]

Aspergillus infection often leads to the contamination of apple fruits with mycotoxins.
Hasan [205] isolated A. flavus from 67% (from 100 samples) of rotted apples, with A. flavus
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being the most isolated fungus from healthy apples. Aflatoxins B1, B2, G1, and G2 were
detected in the lesions of rotted apples. These findings demonstrate an association between
A. flavus infection in apples and the occurrence of aflatoxins. Aspergillus versicolor isolated
from rotten apples produced sterigmatocystin [209], which is a precursor of aflatoxin B1.

3.13. Peach, Cherry, and Kiwi Fruit Rot

Peach (Prunus persica), cherry (Prunus avium), and kiwi (Actinidia deliciosa) are also
highly perishable and have short shelf-life, as well as being predisposed to Aspergillus
infection (Table 12). In peaches, A. flavus, A. niger, and A. aculeatus are associated with
peach rot [210–212]. Wounded peach fruits are more prone to infection by Aspergillus [213].

Aspergillus was the most dominant species recovered from postharvest sour cherries,
and two species, A. niger and A. penicillioides, were identified [214]. Aspergillus niger was also
reported as a causal pathogen of postharvest fruit rot in cherries in northern Greece [215].

Zhu et al. [216] isolated A. flavus from mature kiwifruit with brown lesions in south-
western Shaanxi, China, of which 15% of the fruits in the orchard exhibited soft rot symp-
toms. This study was the first to report A. flavus causing fruit rot in kiwis.

Table 12. Aspergillus spp. associated with fruit rot of cherry, peach, and kiwi.

Disease Aspergillus spp. Country References

Cherry
(Prunus avium)

Postharvest fruit rot
A. niger Imathia and Pella

(northern Greece) [215]

A. niger, A. penicilioides Lithuania [214]

Peach
(Prunus persica)

Soft rot A. aculeatus Shaanxi, China [212]

Fruit rot A. niger Gansu, China [213]

A. flavus Imathia county,
northern Greece [210]

A. niger Jeddah, Saudi Arabia [217]

Postharvest rot A. niger Rawalpindi, Pakistan [211]

Kiwi
(Actinidia deliciosa)

Soft rot A. flavus southwestern
Shaanxi, China [216]

3.14. Tree Nuts

Common tree nuts are almonds (Amygdalus communis L.), Brazil nuts (Bertholletia
excelsa), cashews (Anacardium occidentale), hazelnuts (Corylus avellana), pecans (Carya illi-
noinensis), pistachio nuts (Pistacia vera), macadamia (Macadamia ternifolia), and walnuts
(Juglans regia) [218]. Among these, the most consumed tree nuts are almonds and walnuts,
followed by pistachios, cashews, and hazelnuts [219].

Aspergillus infection of tree nuts occurs in the field, particularly in fruits wounded by
insects as well as wounds caused during harvesting. Conidia are abundant as airborne
inoculum, colonizing nuts and remaining present until their harvest, storage, and process-
ing. These carry-over inoculums can remain in the produce until the processing and final
product stages. When conditions favor fungal growth, the internal parts of nuts are often
infected [220].

In a study on the occurrence of Aspergillus in pistachio, almond, and walnut, Bayman
et al. [220] found that most common species of Aspergillus detected were A. niger, A. flavus,
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A. nidulans, A. tamarii, A. ochraceus, A. melleus, and A. fumigatus. Three species, A. candidus,
A. parasiticus, and A. terreus were not common (less than 2% of the collected nuts). These
results indicate that Aspergillus species are prevalent in tree nuts and suggest that the
handling of nuts during harvest and postharvest has a major influence on the occurrence of
mycoflora [220].

Several mycotoxigenic species have been reported, with aflatoxin and ochratoxin
contamination also occurring in tree nuts. Tree nuts have a low sugar content, low moisture
levels (particularly during storage and transportation), and high levels of water activity,
which may contribute to the production of mycotoxins [221]. The majority of aflatoxin
incidences have been reported in nuts damaged by insects or by the early splitting of the
shell and hull [222]. However, mycotoxigenic Aspergillus species have also been found in
nuts without insect damage or shell and hull splitting.

Aflatoxins have been detected at higher levels in several tree nuts, including almonds,
Brazil nuts, pistachios, and walnuts [223–225]. According to Taniwaki et al. [226], the occur-
rence of aflatoxigenic A. flavus and other aflatoxigenic species on tree nuts is comparable
to that on peanuts. The occurrence of ochratoxin A in almonds, hazel nuts, cashews, and
walnuts was reported by Essawet et al. [227]. Although the contamination of tree nuts with
ochratoxin A is often low, higher levels of mycotoxins have been detected occasionally [228].

3.15. Coffee Beans

Similar to other agricultural crops, coffee beans (Arabica and Robusta) are also infected
by Aspergillus in the field and during storage, and are present at various production
stages, including harvesting, postharvest, handling, processing, and transportation [229].
Black Aspergillus is the most commonly detected species in coffee beans. Black Aspergillus
associated with coffee contamination include A. carbonarius, A. niger, A. sclerotioniger,
A. lacticoffeatus, A. sclerotiicarbonarius, A. aculeatinus, A. tubingensis, and A. foetidus, among
which some species are also ochratoxin A producers (Table 13). Other Aspergillus spp.
recovered from coffee beans include A. westerdijkiae, A. candidus, A. sydowii, A. ochraceus,
A. parasiticus, A. fumigatus, A. flavus, and A. versicolor (Table 13).

Table 13. Aspergillus spp. associated with coffee cherry and coffee bean reported in several countries.

Coffee
(Coffea spp.) Aspergillus spp. Country References

Coffea arabica—cherries
and beans

A. ochraceus (and possibly related
species), A. carbonarius, A. niger

Alta Paulista, Sorocabana, Alta
Mogiana, and Cerrado Mineiro, Brazil [230]

Coffea arabica and Coffea
canephora var. robusta

A. melleus, A. sclerotiorum, A. steynii,
A. westerdijkiae, A. aculeatinus,

A. foetidus, A. niger,
A. tubingensis

Chiang Mai, Chumphon, Thailand [231]

Green coffee bean (Robusta
and Arabica)

A. carbonarius, A. niger,
A. ochraceus and related species in

section Circumdati
southern and central Vietnam [232]

Coffee bean A. carbonarius, A. niger,
A. ochraceus

Paraná, São Paulo and Minas
Gerais, Brazil [233]

Coffea arabica, Coffea canephora
var. Robusta, Coffea liberica,

Coffea excelsea

A. ochraceus, A. westerdijkiae,
A. carbonarius, A. niger, A. japonicus

Benguet, Ifugao; Abra, Cavite, Ifugao,
Cavite, Philippines [234]

Dry parchment, dry cherries
and green coffee beans

A. carbonarius, A. niger,
A. ochraceus

west region of Bafoussam and
Dschang, Cameroon [235]

Coffea arabica, Coffea canephora
L. var. robusta (Robusta coffee)

green coffee beans

A. candidus, A. sydowii, A. niger,
A. ochraceus, A. parasiticus,

A. fumigatus, A. flavus, A. versicolor

Brazil, Timor, Honduras, Angola,
Vietnam, Costa Rica, Colombia,
Guatemala, Nicaragua, India,

and Uganda

[236]
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Table 13. Cont.

Coffee
(Coffea spp.) Aspergillus spp. Country References

Arabica—parchment and
green coffee beans A. niger A. tubingensis, A. foetidus North Thailand [237]

Robusta—dried coffee
cherries and green coffee

beans

A. carbonarius, A. niger,
A. westerdijkiae, A. aculeatinus,

A. sclerotiicarbonarius
South Thailand [237]

Coffee beans

A. brasiliensis, A. flavus, A. lanosus,
A. niger, A. ochraceus A. oryzae,

A. ostianus, A. sulphureus, A. tamarii,
A. tubingensis

Minas Gerais,
Brazil [238]

Infestation by the coffee berry borer (Hypothenemus hampei) has been found to increase
the incidence of fungal contamination in coffee beans, as well as the levels of ochratoxin
A [238]. Ochratoxin A produced during different stages of coffee processing reduces
the quality of coffee and affects its taste [239]. Based on a study by Noonim et al. [231]
on the production of ochratoxin by Aspergillus isolated from coffee beans in Thailand,
A. carbonarius, A. westerdijkiae, and A. steynii were found to produce high amounts of
ochratoxin A. An intermediate amount of ochratoxin A was produced by A. niger and
A. sclerotiorum. Aspergillus carbonarius producing ochratoxin A with significant amount has
been reported by Joosten et al. [240], Pardo et al. [241], and Leong et al. [232]. Although
A. niger is among the most prevalent black Aspergillus contaminating coffee beans, the
species is unlikely to be an important producer of ochratoxin A in coffee beans, as only a
small percentage of A. niger isolates were able to produce the mycotoxin [230,231].

Different species of Aspergillus have been detected in coffee beans from coffee-producing
countries. This suggests that the Aspergillus species depends on the climate of the geo-
graphic region, agricultural practices, pest infestation, and postharvest handling, including
drying and storage [231,242]. In Brazil, A. niger, A. ochraceus, and A. carbonarius have
been frequently isolated from coffee beans. Although A. niger was recovered at a higher
percentage (63%), only 3% of the isolates produced ochratoxin A [230]. Three species,
namely A. niger, A. ochraceus, and A. carbonarius, were also reported in coffee beans in
Vietnam and Cameroon [232,235]. In Vietnam, Leong et al. [232] isolated A. westerdijkiae
and A. steyni, but ochratoxin A was only produced by A. carbonarius., A. westerdijkiae, and
A. steyni [232]. In the Phillipines, five species have been associated with the contamination
of coffee, namely, A. ochraceus, A. westerdijkiae, A. carbonarius, A. niger, and A. japonicus,
all of which were able to produce ochratoxin [234]. Four new species of black Aspergillus,
A. sclerotiorum, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus, were identified
in coffee beans in Thailand. Other species isolated from coffee beans included A. niger,
A. tubingensis, A. foetidus, A. carbonarius, A. niger, and A. westerdijkiae. Among these, only
A. carbonarius and A. niger were able to produce ochratoxins [237].

4. Other Plant Diseases Caused by Aspergillus spp.

Although Aspergillus species are typically weak or secondary pathogens, several
species have been reported to cause foliar diseases, including leaf spot and leaf soft rot.
Although Aspergillus are not common leaf spot pathogens, there are several reports that
identify species of Aspergillus as leaf spot pathogens in several plants. Leaf spots appear
as discolored spots or lesions on the leaf, with necrosis often occurring at the center of
the lesion [243]. The spots on the leaf may coalesce and form irregular blight lesions.
This disease usually occurs under conditions of continuous moisture and humidity. Most
leaf spot pathogens including Aspergillus disseminate through conidia by rain splashing,
irrigation, and wind dispersal [244].
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Aspergillus niger has been reported to cause leaf spots in ginger (Zingiber officinale), in
which severe infection caused defoliation [245] as well as leaf spot of avocado (Persea ameri-
cana) [246]. Aspergillus niger has also been associated with soft rot of an ornamental plant,
mother-in-law’s tongue (Dracaena trifasciata) [247], stem rot in lucky bamboo (Dracaena
sanderiana) [248], and stem rot of Adenium obesum [246]. Another black Aspergillus, A. tubin-
gensis, was reported to cause leaf spots on Jatropha curcas [249], Helleborus species [250], and
cotton [251]. Aspergillus tubingensis has also been reported to cause black pods in tamarind
(Tamarindus indica) [252], act as a pre-emergent pathogen of Phoenix dactylifera [253], and
cause leaf rot in pak choi (Brassica rape spp. chinensis) [254]. Furthermore, three species,
A. niger, A. ustus, and A. flavus, were identified as causal pathogens of foliar diseases in
Terminalia catappa, a deciduous tropical tree [255]. Aspergillus fumigatus was also found to
be a causal pathogen of marigold (Tagetes erecta and T. patula), causing foliage blight [256].
Recently, A. versicolor was identified as a pathogen causing severe fruit rot of tomato [257]
and A. niger causing fruit rot of bilimbi (Averrhoa bilimbi) [258].

5. Control of Aspergillus Diseases

Integrated approaches are commonly employed to manage Aspergillus diseases both
in the field and postharvest. Aspergillus infections in the field are often linked to wounds
caused by insect infestations. The conidia, which reside in plant debris, soil, and mummi-
fied fruits, can be introduced into wounds through soil dust and rain splash. Therefore,
maintaining sanitation in the field or orchard, which includes the removal of dead plant
material and mummified fruits, is highly recommended [149].

Harvesting and postharvest activities predispose the crops and fruits to mechanical
injury. Postharvest activities such as handling, sorting, grading, packing, and transporta-
tion require extensive operations, and often results in bruises, cracks, and cuts on the
produce [259]. Minimizing injury during these activities reduces the risk of infection from
fungal pathogens including Aspergillus.

Before packaging, individual fruits should be washed and cleaned in plenty of clean
water to remove dirt and latex, as well as inoculum of pathogen that can cause rot disease
during storage and transportation. Chlorine, chlorine dioxide, and hydrogen peroxide can
serve as disinfectants for cleaning the fruits [260].

The use of fungicides is the main method of pre- and postharvest disease control. Fungi-
cides should be applied during preharvest to prevent infection during postharvest storage
and to control rot disease [261]. The use of fungicides to control grape berries infected with
black Aspergillus and to reduce ochratoxin A levels was reviewed by Varga et al. [262]. Among
the fungicides used were captan, fludioxonil, mepanipyrim, pyrimethanil, fluazinam, and
iprodione mepanipyrim, pyrimethanil, fluazinam, and iprodione.

The potential of utilizing biological control methods for managing Aspergillus diseases
has garnered significant interest. Among promising biocontrol agents tested is yeast to
reduce infection, and mycotoxin production by different Aspergillus spp. Saccharomyces
cerevisiae has the ability regulate production of aflatoxin by A. flavus during storage [263].
The growth of A. carbonarius can be inhibited by four yeast species, Pichia kluyveri, Hanseni-
aspora uvarum, Meyerozyma guilliermondii, and Hanseniaspora clermontiae, which is achieved
through competition for available substrates [264].

Other potential methods to control Aspergillus growth and production of mycotoxin
are utilizing essential oils and nanocoating. Essential oils extracted from thyme, cinnamon,
basil, clove, mint, oregano, coriander, and anise have been reported to inhibit growth of
Aspergillus [262]. Oregano and mint oils inhibited growth of A. westerdijkiae and ochratoxin
production [265]. Nanocoating based on chitosan and propolis have been demonstrated to
suppress growth of A. flavus and production of aflatoxins [266,267].

6. Conclusions

The compilation of different plant-pathogenic Aspergillus species along with the plant
hosts demonstrated the genus/species global distribution. The plant pathogenic Aspergillus
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infection of a variety of crops may be due to a number of factors. Contributing factors
might include the ability of Aspergillus species to inhabit agriculture environment, effective
conidia dispersal by air, rapid adaptation to the host, growth and survival in a range of
ecological conditions, and extensive use of chemicals in agricultural practices. However,
there are still many scientific problems and knowledge gaps that need to be addressed,
including the adaptation to various ecological areas, host-switching, and infection-causing
mechanisms in various crops and plants.

Aspergillus is currently regarded as a potential emergent plant pathogen and probably
will lead to future outbreaks of plant disease. In this situation, if plant pathogenic Aspergillus
species that cause serious diseases are not detected and identified in a timely manner, and
appropriate plant disease management approaches are not implemented, food safety could
be adversely affected, which would have a significant economic impact.
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