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Abstract: Background: Consumption of flavonoid-rich orange juice has been shown to reduce adiposity
and liver steatosis in murine models of diet-induced obesity. However, little is known about the effects
of whole orange intake, independent of body weight changes, on liver function and steatosis in
individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). The goal is to
understand the direct impact of orange consumption on metabolic health. Methods: Sixty-two men
and women aged 30–65 with MASLD (Controlled Attenuation Parameter, (CAP) > 275 dB/m) were
randomly assigned to consume either 400 g of whole oranges or non-citrus fruits daily for 4 weeks.
Baseline evaluations included medical assessments, blood tests, and body composition. Liver health
was assessed using transient elastography (FibroScan®) for steatosis and fibrosis, conducted by blinded
personnel. This clinical trial was registered at ClinicalTrials.gov (NCT05558592). Results: After 4 weeks
of orange supplementation, liver steatosis decreased in the treatment group, with 70.9% showing
steatosis compared to 100% in controls (p < 0.004), indicating a 30% reduction in liver disease prevalence.
There were no significant changes in fibrosis or plasma liver enzymes, though plasma gamma glutaril
transferase (GGT) levels decreased significantly. Body weight, waist circumference, body composition,
lipid profile, fasting glucose, insulin, and C-reactive protein levels remained unchanged. Dietary
analysis revealed no change in caloric intake, but vitamins C, A, thiamine, and riboflavin increased
in the orange group. Conclusions: Our findings suggest that phytochemical-rich foods, especially
whole fruits like oranges, may enhance liver function as an adjunct treatment for MASLD. The notable
reduction in liver steatosis prevalence occurred independently of body weight changes. Further studies
are needed to investigate the long-term effects of orange supplementation on steatosis and fibrosis
progression and to identify the specific bioactive compounds and mechanisms involved.
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1. Introduction

Diets enriched with flavonoids have been closely associated with the prevention and
treatment of various metabolic diseases, including obesity, dyslipidemia, insulin resistance,
hepatic steatosis, type 2 diabetes, cancer, and atherosclerosis.

Flavonoids exhibit potential health benefits due to their antioxidant, anti-inflammatory,
and hypolipidemic properties, making them promising nutraceutical agents for handling
various pathological conditions [1–3].

Flavonoids are phytochemicals found abundantly in vegetables and fruits, particularly
in citrus fruits, especially in the albedo and membranes separating orange segments [1]. Key
flavonoids include narirutin, naringenin, and tangerine, with hesperidin being the major
component. Known for their antioxidant, anti-inflammatory, and hypolipidemic properties,
flavonoids have been hypothesized to offer significant metabolic health benefits [2,4].

Moreover, in vitro, flavonoids extracted from oranges of the “Tacle” variety have
demonstrated an inhibitory action on cholesterol synthesis and biomarkers levels involved
in inflammation [5]. Under normal conditions, adipose tissue stores lipids in the form
of triglycerides, whereas during obesity, hyperlipidemia causes excessive infiltration by
macrophages in the adipose tissue and liver, resulting in the production of proinflammatory
cytokines, such as tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and inducible nitric
oxide synthase (iNOS) [6,7], associated with systemic inflammation and atherogenesis [8,9].

For instance, protocatechuic acid administration for 10 weeks reduced lipogenic
enzyme expression and hepatic lipid accumulation in high-fat-diet mice [10]. Preliminary
clinical trial data suggest that 2 weeks of orange juice consumption positively affects lipid
metabolism, particularly triglyceride-specific fatty acid chains and cholesterol esters in
individuals with obesity and insulin resistance [11]. However, the interpretation of data
from these preclinical and clinical studies is often confounded by lifestyle and weight
changes among subjects randomized to consume orange juice.

Consumption of juice from anthocyanin-rich oranges for 12 weeks has demonstrated
multiple beneficial effects in murine models of diet-induced obesity, including preventing
weight gain, improving insulin sensitivity, reducing serum total cholesterol and triglyc-
erides, lowering liver enzymes, and reversing liver steatosis [12,13]. These benefits are be-
lieved to be mediated through the induction of peroxisome proliferator-activated receptor-α
(PPAR-α) and its target gene acyl-CoA oxidase, a key enzyme involved in lipid oxidation.
However, the specific effects of orange fruit intake, independent of weight loss, on indi-
viduals with metabolic dysfunction-associated fatty liver disease (MASLD) remain largely
unknown, particularly concerning liver function, steatosis, and fibrosis as assessed by
vibration-controlled elastography (VCTE) using FibroScan®.

Recent evidence suggests that hesperidin may potentially improve non-alcoholic fatty
liver disease (NAFLD) by exerting hypoglycemic effects, promoting fatty acid β-oxidation
through activating silent information regulator 1 (SIRT1)/ peroxisome proliferator-activated
receptor gamma coactivator 1α (PGC1α), and, finally, modifying lipid profiles [14].

NAFLD, now known as metabolic dysfunction-associated fatty liver disease (MAFLD),
represents the most common cause of chronic liver disease worldwide, with a 20–30%
prevalence in Western countries [15].

MAFLD, unlike the term NAFLD, emphasizes metabolic risk and focuses on alterations
in glucose (insulin resistance) and lipid metabolism (lipotoxicity, oxidative stress, etc.) as
well as the significant role of inflammatory processes in hepatocytes [16,17].

In this scenario, the main aim of this randomized clinical trial was to investigate
the effects of 4-week consumption of “Navelina” whole oranges, independent of weight
changes, on metabolic and liver function in 62 middle-aged overweight men and women
diagnosed with MAFLD.

To isolate the independent effects of orange supplementation on metabolic and liver
function, each subject was contacted by one of the investigators at least once every week by
phone to review their medical condition and reinforce the importance of maintaining their
usual food intake and physical activity, ensuring stable body weight. We hypothesized that
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ingesting the entire fruit, including its flavonoid-rich albedo, would offer favorable effects
on liver function and steatosis, independent of weight modifications. This focus is crucial
as it aims to understand the direct impact of orange fruit consumption on metabolic health,
removing the confounding variable of weight change.

2. Materials and Methods
2.1. Orange

The “Navelina” variety oranges used in this study were biological oranges purchased
by a BioFarm from the Cosenza (Calabria Region, Italy).

The physicochemical properties, polyphenol content, and total antioxidant activity of
oranges were analyzed by the Council for Agricultural Research and Economics (CREAVE),
Turi, BA, Italy. Polyphenolic profiles were determined by high-performance liquid chro-
matography (HPLC) 1100 (Agilent Technologies, Palo Alto, CA, USA) equipped with a
diode array detector (DAD) analysis (Table 1).

Table 1. Physicochemical properties, polyphenol content, and total antioxidant activity of “Naveline”
oranges.

Physicochemical Properties of Navelina Orange

Fruit weight (g) 192.85 ± 25.59
Equatorial diameter (mm) 74.83 ± 2.14
Fruit height (mm) 75.83 ± 3.43
pH 3.46 ± 0.17
TA (g citric acid/L) 8.92 ± 1.14
TSS (◦ Brix) 9.75 ± 0.57
Maturity index (TSS/TAA) 11.09 ± 1.70

Polyphenols and total antioxidant activity of Navelina orange

Total phenolic content (mg/kg flesh tissue) 1061.1 ± 136.8
Total phenolic content (mg/L juice) 134.0 ± 12.00
Hesperidin mg/L juice 505.7 ± 51.60
DPPH (mM TE/L juice) 7.90 ± 0.20
DPPH (mM TE/kg FW) 63.20 ± 3.70
ORAC (mM TE/kg FW) 155.40 ± 12.10

As mean and standard deviation (M ± SD).

2.2. Participants

Seventy men and women aged 30–65 years diagnosed with MAFLD were recruited
from the outpatient nutrition clinic of the National Institute of Gastroenterology “S. de
Bellis” between February 2023 and November 2023. Inclusion criteria required participants
to exhibit liver steatosis (CAP score > 275 dB/m) along with either overweight status (Body
Mass Index, BMI > 25), type 2 diabetes, and/or metabolic syndrome. All of the subjects had
had a stable weight (with fluctuations of no more than 2 percent of the body weight) for
at least two months and had been sedentary (exercising for less than one hour per week)
for at least six months before entering the study. Approval for this study was obtained
from the Human Studies Committee of the IRCCS Oncological Hospital—Giovanni Paolo
II, Bari, Italy (Approval Number #184 del 13 May 2022).

All participants provided informed consent following the principles outlined in the
Declaration of Helsinki. The CONSORT diagram illustrating participant enrollment is
depicted in Figure 1. This clinical trial was registered at ClinicalTrials.gov (NCT05558592).

https://clinicaltrials.gov/
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2.3. Study Design

At baseline, all participants underwent a comprehensive medical and nutritional
assessment, including routine blood tests. Potential subjects were excluded if they had
a history of gastroesophageal disease, chronic inflammatory disease, a recent history or
evidence of malignancy, anticoagulant therapy use, or adherence to a special diet. Eligible
participants were randomly assigned to one of two groups: consuming 400 g of oranges (net
of waste) daily for 4 weeks or consuming 400 g of non-citrus fruits daily. The “Navelina”
variety oranges used in this study were sourced organically from a BioFarm in the Calabria
Region, Italy. The physicochemical properties, polyphenol content, and total antioxidant
activity of the oranges were analyzed by the Research Center for Viticulture and Enology
of Council for Agricultural Research and Economics (CREAVE) in Turi (BA), Italy. Analysis
of polyphenolic profiles was conducted using high-performance liquid chromatography
(HPLC) 1100 (Agilent Technologies, Palo Alto, CA, USA) equipped with a diode array
detector (DAD) as shown in Table 1.
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All study participants were provided with dietary guidelines, which included rec-
ommendations to restrict the intake of alcohol, caffeine, and foods rich in vitamin C
(Supplementary Table S1). A total of 62 research volunteers (17 females and 45 males)
began the intervention. Each subject was contacted by an investigator at least once a
week via phone. During these calls, the investigator reviewed the participant’s medical
condition, reinforced the importance of adhering to their usual diet and physical activity
levels, and emphasized the necessity of maintaining a stable body weight throughout the
study. This regular communication was designed to ensure that any observed effects could
be attributed specifically to orange consumption rather than changes in weight or other
lifestyle factors. All study personnel performing assessments were masked to treatment
assignment. Participants were advised to maintain their usual dietary and physical activity
habits throughout the study.

2.4. Anthropometrics and Dietary Assessment

Body weight was measured in duplicate in the morning following a 12 h fast with
the subject wearing a hospital gown and no shoes. Height and waist circumference were
measured twice using a wall-mounted stadiometer and tape measure. BMI was calculated
as weight divided by the square of height (kg/m2). Changes in body weight and body
fat mass were assessed by bioelectrical impedance analysis—BIA (BIA 101, Akern SRL,
Pontassieve, Italy). The phase angle (PhA) was calculated using the arctangent of the
extracellular water (ECW) ratio, directly derived from Rz and Xc values with Bodygram
PLUS Software v. 1.0 (Akern SRL, Pontassieve, Italy) utilizing medically validated algo-
rithms. Seven-day food diaries were used to estimate self-reported intake. Participants
received detailed instructions on how to weigh, measure, and record all food and beverages
consumed during the collection. Research dietitians reviewed the diaries with participants
and then analyzed them using MetaDIETA Professional 4.0.1 (Meteda, Rome, Italy).

2.5. Blood Analyses

Venous blood was sampled for metabolic and hormone concentrations after an overnight
fast. Samples were collected in serum and edetic acid plasma tubes, immediately cen-
trifuged to separate the plasma, aliquoted, and stored in a −80 ◦C freezer until use. All
serum and plasma samples were analyzed by the Core Laboratory at the National Institute
of Gastroenterology “S. de Bellis”; technicians performing assessments were masked to
treatment assignment.

2.6. Liver Fibroscan®

Non-invasive transient elastography (FibroScan®, Echo-Sens, Paris, France) was per-
formed to evaluate hepatic steatosis and fibrosis after fasting for at least 4 h. All FibroScan®

measurements were taken by highly trained technicians who were masked to treatment
assignment. Steatosis was assessed by CAP (dB/m), and liver stiffness was measured
in kPa.

2.7. Statistical Analysis

All participants who provided both baseline and 4-week data were included in the
analyses. Data are presented as mean and standard deviation (M ± SD) for continuous
variables at each time point and for the change between baseline and 4 weeks, while data
are presented as frequency and percentages (%) for categories. Baseline characteristics were
compared between groups with the Chi-square test employed for categorical variables
as needed, while the Wilcoxon rank was used for continuous variables. The Wilcoxon
matched-pairs signed-rank or McNemar’s test was applied for continuous or categorical
parameters to evaluate variations after and before 4 weeks of observation. To test the asso-
ciation between the independent groups, the Chi-square test was employed for categorical
variables as needed, while the Mann–Whitney test was used for continuous variables. All
statistical tests were two-tailed, and significance was accepted at p < 0.05. All analyses were
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performed using StataCorp. 2023 software, version 18 (College Station, TX, USA: StataCorp
LLC), while RStudio (“Chocolate Cosmos” Release) was used for the plots.

3. Results
3.1. Study Participants

A total of 70 participants were screened for eligibility, with 62 being randomized and
starting the intervention. All participants completed the 4-week intervention (Figure 1).

Subjects randomized to the orange supplementation group (n = 31; age 51.8 ± 10.3 years)
and the control group (n = 31; age 50.1 ± 9.8 years) had similar baseline characteristics,
except for higher plasma concentrations of total cholesterol and GGT levels and lower HDL
cholesterol in the treatment group (Table 2).

Table 2. Baseline study subjects’ characteristics (n = 62).

Parameters 1 Control
(n = 31)

Treatment
(n = 31) p 2

Age (yrs) 50.06 ± 9.77 51.77 ± 10.31 0.45
Gender (M) (%) 21 (67.74) 24 (77.42) 0.39 3

Anthropometric parameters
Weight (kg) 91.95 ± 11.42 91.98 ± 9.96 0.99

BMI (kg/m2) 32.31 ± 4.14 32.07 ± 4.25 0.97
Neck circumference (cm) 42.36 ± 11.17 39.61 ± 8.05 0.91
Waist circumference (cm) 108.60 ± 12.83 108.32 ± 12.72 0.53
Hip circumference (cm) 112.88 ± 10.02 109.77 ± 23.88 0.76

Whole body phA◦ 6.43 ± 0.66 6.11 ± 1.76 0.99
FFM (kg) 62.45 ± 9.50 58.40 ± 17.89 0.81
FM (kg) 30.49 ± 10.34 29.59 ± 15.94 0.44

Biochemical parameters
Total cholesterol (mg/dL) 183.26 ± 42.88 202.29 ± 40.25 0.05
HDL cholesterol (mg%) 51.44 ± 10.43 47.10 ± 13.15 0.05

LDL cholesterol (mg/dL) 119.18 ± 39.86 132.11 ± 37.64 0.16
Triglycerides (mg/dL) 121.45 ± 70.41 132.10 ± 53.32 0.14

Fasting glucose (mg/GI) 94.71 ± 9.45 101.00 ± 21.62 0.27
Fasting insulin (µUI/mL) 15.24 ± 7.03 16.08 ± 8.55 0.58

HOMA-IR 3.58 ± 2.13 4.10 ± 2.50 0.39
AST (U/L) 23.48 ± 7.83 23.42 ± 9.93 0.70
ALT (U/L) 30.35 ± 15.74 36.68 ± 23.74 0.20
GGT (U/L) 29.71 ± 10.78 40.48 ± 23.01 0.05

Alkaline phosphatase (U/L) 69.77 ± 21.00 67.64 ± 19.99 0.76
CRP (mg/dL) 0.29 ± 0.23 0.34 ± 0.43 0.52

Ferritin (ng/mL) 191.35 ± 95.77 241.05 ± 170.98 0.48
1 As mean and standard deviation for continuous variables and as frequency and percentage (%) for categorical.
2 Wilcoxon rank-sum test (Mann–Whitney) or 3 Chi-square test where necessary. Abbreviations: BMI, body mass
index; Rz, resistance; XC, reactance; phA, phase angle; BCM, body cell mass; FFM, free fat mass; FM, fat mass;
TBW, total body water; ECW, extracellular water; CAP, controlled attenuation parameter; RBC, red blood cell;
AST, Aspartate Aminotransferase; Alanine Transaminase; ALT, Alanine Transaminase; GGT, Gamma-Glutamyl
Transferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA, homeostatic model assessment;
CRP, C-reactive protein.

The analysis of an adherence questionnaire demonstrated compliance with the recom-
mended diet. The macronutrients contained in the diet used and daily calorie consumption
are shown in Supplementary Figure S1.

3.2. Orange Supplementation Does Not Affect Body Composition or Key Cardiometabolic Markers

After 4 weeks of orange supplementation, body weight, waist circumference, and
body composition measured by BIA (fat mass and fat-free mass) did not change (Table 3).
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Table 3. Anthropometric parameters before and after intervention.

Parameters 1
Group

Between-Group 2

Control Treatment

Weight (kg)
Baseline 91.95 ± 11.42 91.98 ± 9.96
28 Days 91.03 ± 11.47 91.26 ± 9.53
Change −0.010 ± 0.017 −0.007 ± 0.021 0.43

Within-Group 3 0.30 0.26
BMI (kg/m2)

Baseline 32.31 ± 4.14 32.07 ± 4.25
28 Days 31.93 ± 4.35 31.95 ± 4.28
Change −0.012 ± 0.019 −0.003 ± 0.030 0.17

Within-Group 3 0.42 0.57
Neck Circumference (cm)

Baseline 42.36 ± 11.17 39.61 ± 8.05
28 Days 39.78 ± 3.54 39.27 ± 8.04
Change −0.035 ± 0.110 −0.044 ± 0.182 0.19

Within-Group 3 0.07 0.15
Waist circumference (cm)

Baseline 108.60 ± 12.83 108.32 ± 12.72
28 Days 107.57 ± 12.51 107.32 ± 12.13
Change −0.009 ± 0.015 −0.009 ± 0.018 0.91

Within-Group 3 0.45 0.05
Hip circumference (cm)

Baseline 112.88 ± 10.02 109.77 ± 23.88
28 Days 112.19 ± 9.85 111.86 ± 11.30
Change −0.006 ± 0.014 −0.010 ± 0.023 0.68

Within-Group 3 0.04 0.04
Whole Body phA◦

Baseline 6.43 ± 0.66 6.11 ± 1.76
28 Days 6.48 ± 0.75 6.32 ± 1.39
Change 0.009 ± 0.060 0.004 ± 0.069 0.56

Within-Group 3 0.56 0.85
FFM (kg)
Baseline 62.45 ± 9.50 58.40 ± 17.89
28 Days 62.38 ± 10.08 61.19 ± 15.53
Change −0.002 ± 0.042 0.013 ± 0.053 0.49

Within-Group 3 0.14 0.58
FM (kg)
Baseline 30.49 ± 10.34 29.59 ± 15.94
28 Days 29.37 ± 10.80 28.99 ± 13.36
Change −0.041 ± 0.116 −0.032 ± 0.097 0.97

Within-Group 3 0.14 0.14
1 As mean and standard deviation for continuous variables and as frequency and percentage (%) for categorical.
2 Wilcoxon rank-sum test (Mann–Whitney); 3 Wilcoxon matched-pairs signed-rank test. Abbreviations: BMI,
body mass index; Rz, resistance; XC, reactance; phA, phase angle; BCM, body cell mass; FFM, free fat mass; FM,
fat mass.

Analysis of multiple 7-day food diaries indicated no significant change in daily caloric
intake before and after the 28-day period (2026.91 ± 230.67 vs. 2036.65 ± 242.16, respectively,
p = 0.15). Analysis of 7-day food diaries showed a significant increase in several key
vitamins, including vitamin C, vitamin A, thiamine, and riboflavin, in the treatment group
(Figure 2).
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Figure 2. Changes in specific nutrient intake. Split-violin plots of vitamins, thiamine (A), riboflavin (B),
vitamin A (C), and vitamin C (D) distribution between treatment time and groups.

Plasma substrates and hormones (glucose, insulin, and plasma lipids), markers of
inflammation (C-reactive protein [CRP] and ferritin), and the homeostasis model assess-
ment of insulin resistance (HOMA-IR) score did not change after orange supplementation
(Table 4).

Table 4. Metabolic parameters before and after intervention.

Parameters 1
Group

Between-Group 2

Control Treatment

Total Cholesterol (mg/dL)
Baseline 183.26 ± 42.88 202.29 ± 40.25
28 Days 186.03 ± 35.94 193.39 ± 40.83
Change 0.033 ± 0.134 −0.033 ± 0.145 0.07

Within-Group 3 0.85 0.28
LDL Cholesterol (mg/dL)

Baseline 119.18 ± 39.86 132.11 ± 37.64
28 Days 121.22 ± 39.23 130.94 ± 35.58
Change 0.046 ± 0.217 0.012 ± 0.160 0.69

Within-Group 3 0.10 0.47
HDL Cholesterol (mg/dL)

Baseline 51.44 ± 10.43 47.10 ± 13.15
28 Days 51.80 ± 11.94 47.53 ± 10.74
Change 0.007 ± 0.101 0.034 ± 0.173 0.92

Within-Group 3 0.20 0.72
Triglycerides (mg/dL)

Baseline 121.45 ± 70.41 132.10 ± 53.32
28 Days 112.29 ± 70.34 123.06 ± 53.55
Change −0.056 ± 0.257 −0.032 ± 0.267 0.66

Within-Group 3 0.14 0.72
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Table 4. Cont.

Parameters 1
Group

Between-Group 2

Control Treatment

Fasting Glucose (mg/dL)
Baseline 94.71 ± 9.45 101.00 ± 21.62
28 Days 95.71 ± 9.22 99.59 ± 26.83
Change 0.012 ± 0.057 −0.018 ± 0.074 0.09

Within-Group 3 0.18 0.72
Fasting Insulin (µUI/mL)

Baseline 15.24 ± 7.03 16.08 ± 8.55
28 Days 15.53 ± 8.21 16.42 ± 9.06
Change 0.036 ± 0.317 0.067 ± 0.294 0.58

Within-Group 3 0.71 0.36
HOMA-IR

Baseline 3.58 ± 2.13 4.10 ± 2.50
28 Days 3.63 ± 2.22 4.19 ± 2.94
Change 0.055 ± 0.322 0.058 ± 0.337 0.94

Within-Group 3 0.99 0.99
AST (U/L)

Baseline 23.48 ± 7.83 23.42 ± 9.93
28 Days 22.90 ± 7.45 24.29 ± 7.29
Change −0.010 ± 0.141 0.088 ± 0.241 0.11

Within-Group 3 0.99 0.05
ALT (U/L)

Baseline 30.35 ± 15.74 36.68 ± 23.74
28 Days 29.93 ± 15.16 34.93 ± 18.50
Change −0.001 ± 0.138 0.008 ± 0.317 0.45

Within-Group 3 0.42 0.28
GGT (U/L)

Baseline 29.71 ± 10.78 40.48 ± 23.01
28 Days 28.29 ± 10.31 34.22 ± 21.68
Change −0.041 ± 0.113 −0.160 ± 0.206 0.005

Within-Group 3 0.12 0.0001
Alkaline Phosphatase (U/L)

Baseline 69.77 ± 21.00 67.64 ± 19.99
28 Days 71.58 ± 21.42 68.74 ± 19.88
Change 0.029 ± 0.067 0.019 ± 0.069 0.66

Within-Group 3 0.56 0.58
hsCRP (mg/dL)

Baseline 0.29 ± 0.23 0.34 ± 0.43
28 Days 0.30 ± 0.31 0.30 ± 0.41
Change 0.201 ± 1.365 0.090 ± 0.740 0.79

Within-Group 3 0.03 0.58
Ferritin (ng/mL)

Baseline 191.35 ± 95.77 241.05 ± 170.98
28 Days 188.07 ± 92.61 231.52 ± 163.94
Change −0.001 ± 0.155 −0.046 ± 0.206 0.32

Within-Group 3 0.85 0.15
1 As mean and standard deviation for continuous variables and as frequency and percentage (%) for categorical.
2 Wilcoxon rank-sum test (Mann–Whitney); 3 Wilcoxon matched-pairs signed-rank test. Abbreviations: LDL,
low-density lipoprotein; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment for insulin
resistance; AST, Aspartate Aminotransferase; ALT, Alanine Transaminase; GGT, Gamma-Glutamyl Transferase;
hsCRP, high-sensitivity C-reactive protein.

3.3. Orange Supplementation Reduces Liver Steatosis

After four weeks of orange supplementation, we observed a reduction in liver steatosis
as measured by CAP as a categorical variable (Figure 3B, 70.97% vs. 100.00%, p < 0.004),
although this did not reach statistical significance in a continuous manner (Figure 3A).
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cutoff of more than 275 dB/m [7]. Values are mean ± SEM.

When analyzing CAP as a categorical variable based on the clinical cutoff of 275 dB/m [7],
we found a significant decrease in the prevalence of subjects in the treatment group (Figure 3,
panel B), with 70.97% of participants showing liver steatosis compared to 100% in the control
group (p < 0.004). This indicates a reduction in liver disease prevalence of approximately
30% attributable to orange supplementation. However, no statistically significant changes
in fibrosis degree (kPa) were observed in either group after the four-week period. Plasma
concentrations of AST, ALT, and alkaline phosphates remained unchanged after orange
supplementation (Table 3). However, there was a significant reduction in plasma GGT
levels (Table 3).

4. Discussion

In this randomized clinical trial, unlike others focusing on orange juice consump-
tion [11], we investigated the effects of supplementation with whole oranges, including
the albedo rich in polyphenols [18], on liver function and steatosis using transient elas-
tography. Over a four-week period, we evaluated these outcomes alongside various liver
and cardiometabolic markers in weight-stable overweight individuals with MASLD and a
CAP score exceeding 275 dB/m. Our findings indicate that daily consumption of 400 g of
whole oranges—approximately four oranges per day—for 28 days significantly reduced
the prevalence of liver steatosis, independent of any changes in body weight.

Lifestyle-induced weight loss leads to a dose-dependent improvement in liver function
and steatosis, with reductions exceeding 10% of body weight achieving a 90% resolution
rate of steatohepatitis [19]. Our findings highlight the potential of specific foods rich in
phytochemicals and antioxidant vitamins, such as whole fruits like oranges, to enhance liver
function as an adjunct treatment for MASLD. The significant reduction in liver steatosis
prevalence, independent of changes in body weight and adiposity, is consistent with
preclinical research suggesting that the flavonoids, vitamin C, and riboflavin found in
oranges may support liver function [12,13]. However, unlike preclinical studies, our data
indicate that these compounds can promote liver health independently of weight loss
or improvements in insulin sensitivity, inflammation, and glucose and lipid metabolism,
which typically require a negative energy balance [20–22].

This effect may be achieved by activating lipolytic and lipid oxidation pathways,
such as PPAR-α [23,24], while simultaneously inhibiting de novo lipogenesis through
mechanisms involving Liver X receptor (LXR-α) [25,26] and the dimethylarginine dimethy-
laminohydrolase (DDAH)/asymmetric dimethylarginine (ADMA) pathway [13].
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Numerous studies have shown that oranges are rich in flavonoids and anthocyanins,
which can positively influence lipid metabolism [27–29]. Key components such as poly-
methoxyflavones, narirutin, naringenin, tangerine, and hesperidin have lipid-lowering
and antioxidant properties, preventing liver lipid accumulation and subsequent portal
inflammation [29,30]. Other polyphenol-rich fruits like pomegranate and lychee have also
been shown to reduce hepatic steatosis and insulin resistance in rodents, likely due to
alterations in gut microbiota [31–33]. Additionally, increased intake of antioxidant vitamin
C and thiamine may further enhance liver health by reducing liver oxidative stress [34–36].
Riboflavin is also involved in mitochondrial energy production, reducing the risk of fat
accumulation in the liver [37].

Therapeutical benefits of the fruit-derived components have been demonstrated in the
onset and progression of NAFLD [38,39]. The preventive effect of orange and pomelo peel
powder on NAFLD has been demonstrated in mice through the reduction in HFD-induced
dyslipidemia with a positive effect on liver inflammation [40]. Pomegranate fruit pulp
has recently been shown to reduce hepatic steatosis and insulin resistance in mice by the
modulation of the gut microbiota [41].

In subjects with metabolic syndrome, a high content of polyunsaturated fatty acids,
tocopherols, and phenolic compounds in the diet led to reduced insulin resistance and
glucose levels, improving lipid parameters and modulating the leptin and adiponectin
levels in the serum [42].

Consequently, dietary components can largely determine the success of nutritional
interventions in patients with metabolic diseases [39]. For example, the Mediterranean
diet is a gold benchmark to treat MAFLD for its ability to reduce body weight, BMI, hip
circumference, fat mass, and hypertension [43].

In a recent study conducted on tissue-engineered fatty liver, naringenin, found in
many citrus fruits such as oranges, demonstrated a potential NAFLD-ameliorative property
by decreasing fatty acid absorption and de novo lipogenesis and enhancing fatty acid oxida-
tion [44]. Recently, naringenin has been reported to inhibit the NOD-like receptor protein 3
(NLRP3)/ nuclear factor-kappaB (NF-κB) pathway in a methionine-choline deficient (MCD)
model of mice as well as in hepatoma carcinoma (HepG2) cells, primary hepatocytes, and
Kupffer cells (KCs) [45].

The study has some limitations, including a small sample size and the absence of liver
biopsies for histopathological and mechanistic characterization. The major strengths of
this study include the intention-to-treat randomized controlled trial design minimizing
the potential for selection bias and the high retention rate of enrolled participants with
excellent adherence to the study intervention. A notable distinction of this study compared
to previous research is the selection criteria for participants. Unlike earlier studies, our
subjects were specifically chosen as overweight individuals with CAP values greater than
256 dB/m. This criterion ensures that all participants had a quantifiable degree of liver
steatosis, making the study’s results more applicable to a clearly defined population of
individuals with MASLD. This focused selection enhances the relevance and applicability
of our findings to clinical practice for managing MASLD in overweight individuals.

5. Conclusions

Our findings underscore the potential effectiveness of whole fruit consumption, par-
ticularly citrus fruits, as a dietary strategy for reducing liver steatosis in overweight in-
dividuals with MASLD, independent of weight loss. This research adds to the growing
evidence that fruits rich in vitamins, phytochemicals, and fiber can serve as adjunct therapy
for preventing liver steatosis and MASLD. Future studies should explore the long-term
effects of orange supplementation on fibrosis progression and overall metabolic health, as
well as identify the specific bioactive compounds and microbial metabolites responsible for
these benefits. Our study also suggests that daily consumption of whole oranges, including
the albedo, as part of a balanced, moderately energy-restricted diet, combined with regular
exercise, can be an effective preventive measure to reduce liver steatosis.
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