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Abstract: In the evolving field of human–computer interaction (HCI), gesture recognition has
emerged as a critical focus, with smart gloves equipped with sensors playing one of the most
important roles. Despite the significance of dynamic gesture recognition, most research on data
gloves has concentrated on static gestures, with only a small percentage addressing dynamic gestures
or both. This study explores the development of a low-cost smart glove prototype designed to
capture and classify dynamic hand gestures for game control and presents a prototype of data
gloves equipped with five flex sensors, five force sensors, and one inertial measurement unit (IMU)
sensor. To classify dynamic gestures, we developed a neural network-based classifier, utilizing a
convolutional neural network (CNN) with three two-dimensional convolutional layers and rectified
linear unit (ReLU) activation where its accuracy was 90%. The developed glove effectively captures
dynamic gestures for game control, achieving high classification accuracy, precision, and recall, as
evidenced by the confusion matrix and training metrics. Despite limitations in the number of gestures
and participants, the solution offers a cost-effective and accurate approach to gesture recognition,
with potential applications in VR/AR environments.

Keywords: gesture recognition; smart glove; wearable devices; dynamic gesture

1. Introduction

In the current dynamic technological landscape, the advancement of contemporary
user interfaces is becoming a crucial focus of research and design. Some prominent exam-
ples of such research projects involve the development of interactive systems that improve
interpersonal communication and human–computer interaction (HCI) [1] through gestures.
In the realm of human–machine interaction, gesture recognition is seen as the most intuitive
and natural approach. Consequently, its development is continually advancing, driven
by enhancements in the sensors that capture gestures. The technology using gloves for
non-verbal communication has been continuously developed since the 1980s [2].
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Gestures are identified using deflection sensors, gyroscopes, and video camera images.
There are also electromagnetic systems that can locate an object’s position by measuring the
electromagnetic fields generated by a transmitter; for example, radio frequency [3]. In the
literature, there are mainly two approaches to gesture recognition based on instrumented
sensor technology and computer vision [4].

The vision-based approach involves processing digital images and videos using ma-
chine learning and deep learning techniques for gesture recognition [5,6]. Although cam-
eras are inexpensive, the main disadvantage of this approach is the complex and time-
consuming data processing required to recognize hand gestures, which is hindered by
background noise, distance range, multi-gesture problems, varying lighting conditions,
the effect of occlusions, processing time traded against resolution and frame rate [7–9].
The foreground or background objects that present the same skin color tone or otherwise
appear as hands are also problematic.

The second approach gesture recognition relies on sensors most often worn on or
embedded in gloves. Sensor-based gesture recognition uses them to detect and measure
bending angles, movements, orientations, and alignments of the fingers, as well as the
positioning of the palm. These measurements are then used to identify and interpret
gestures. Changes in hand gestures are the result of muscle contractions and tendon shifts
in the arm and wrist, along with deformations in blood vessels and bone movements.
When the hand and fingers move, various biological and physical characteristics are altered.
These alterations can be detected using electrical, mechanical, acoustic/vibrational, or
optical sensing techniques [10]. The following sensors can be used in gesture recognition
systems [10,11]:

• Electrical Sensing: surface electromyography (sEMG) [12], EIT [13];
• Mechanical Sensing: forcemyography (FMG), IMU, strain sensing, flex sensor sensing;
• Acoustical/Vibratory Sensing: sonomyography (SMG), mechanomyography (MMG),

bone-conducted sound sensing;
• Optical Sensing: photoplethysmography (PPG).

Relying on a single sensor or multiple same sensors is less desirable as it suffers from
several issues limited spatial coverage, limited precision, and uncertainty [11] although we
can find many works on data gloves based on the same type of sensor [6,14–17]. Wearable
resistive sensors can only measure the bending angle during joint movement and are unable
to determine the spatial orientation of joints due to insufficient information about their
spatial distribution [18].

IMU sensors face a well-known problem in which rotation angles are determined
by integrating inertial signals, causing errors to accumulate over time [19,20]. Another
disadvantage of IMU sensors is the complexity of the calculation process to locate an
object [21,22]. One way to overcome these limitations is by employing multisensory fusion
to create robust sensing systems using multiple sensors. Sensor fusion combines various
sensing modalities with data-fusion techniques to compensate for the shortcomings of
individual modalities, providing the hand gesture recognition (HGR) algorithm with
comprehensive information to accurately associate gesture or movement patterns [11].
Research indicates that multisensory modalities can interpret hand movements with greater
accuracy than unimodal signals. The combination of multiple sensing modalities is an
effective solution, allowing them to compensate for the limitations of each other [11,23–26].
Gesture recognition can be classified according to temporal relationships into two types of
static and dynamic forms [27].

• Static Gesture Recognition: Involves gestures where the hand position remains con-
stant during the gesture period and focuses on the shape and flexion angles of the
hand. A static gesture is one where the movement of the hand is not the focus; in-
stead, the emphasis is on a specific hand configuration and pose, captured in a single
image [28,29]. A signal value is obtained from each sensor, independently of time.

• Dynamic Gesture Recognition: Pertains to gestures where the hand position changes
continuously during the gesture period. It involves tracking hand trajectories and
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orientations over time. Considering not only the shape and flexion angles of the
hand, but also the movement patterns [27,30,31]. Dynamic gestures contain addi-
tional temporal information, such as ulnar rotation or changes in finger poses (e.g.,
spreading previously closed fingers) [32,33]. They generally have three motion phases:
preparation, stroke, and retraction [34]. The dynamic gesture uses movement and
shape as the key point of the gesture [29]. The data collected by the sensors undergo
temporal changes and are systematically recorded and analyzed.

Most publications on data gloves describe static gesture recognition [31,33]. As Pan et
al. noted in [20], 51.11% of the studies from 2015 to 2022 focused on static gestures, while
only 31.11% addressed dynamic gestures. The remaining 17.78% of the significant studies
included both static and dynamic gestures.

On the global stage, there are nearly two hundred different sign languages. Some of
them enjoy popularity among a wide range of users, reaching hundreds of thousands of
people, as is the case with American Sign Language (ASL), commonly used in the United
States and Canada. Other sign languages are limited to small rural communities, as is
often the case with many local sign languages in Africa and Asia. It should be noted that
deaf people from one country usually use the same sign language. Nevertheless, there are
significant differences between the sign language and the spoken language used in a given
area, suggesting that sign languages do not necessarily derive directly from the spoken
languages used in the region [35].

Communication in sign language plays a crucial role in interactions between deaf
people and within deaf communities. The central element of this system is the ideographic
signs, which often correspond to single words or short phrases, such as idioms. They are
accompanied by dactylographic signs, including letters of the alphabet, numbers, punctua-
tion, and mathematical symbols. These signs allow for the transmission of more detailed
information, such as proper names, specialized terms, or foreign words. Performing a sign
requires knowledge of its sublexical elements, which are described through the following:

• The arrangement of fingers on the hand (one or both, depending on whether the sign
is one handed or two handed);

• The placement of the hand relative to the body;
• The position of the hand in space;
• The direction of movement;
• Facial expression [36].

1.1. Statistics Related to Sign Language Use

According to statistics, about 0.1% of people are deaf-mute, with approximately 0.17%
using sign language. As the literature states, American Sign Language is the third most com-
monly taught language in American higher education [37], with just over 107,000 people
learning ASL in post-secondary institutions in 2016. Currently, there are no reliable contem-
porary statistics on the total number of ASL users [38].

1.2. Smart Glove Signal Processing in Selected Expressions of ASL

Smart gloves, equipped with various sensors, have emerged as cutting-edge technol-
ogy for the recognition and processing of sign language expressions. These gloves capture
the sublexical elements of signs, translating physical movements and positions into digital
data. This technology holds great promise for improving accessibility to communication for
deaf individuals by providing real-time translation of ASL into spoken or written language.
Smart gloves can accurately detect the following:

• The arrangement of fingers on the hand through flex sensors;
• The placement of the hand relative to the body using position sensors;
• The position of the hand in space with the help of accelerometers and gyroscopes;
• The direction of movement through motion sensors;
• Facial expressions by integrating additional facial recognition technologies.
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These features enable the precise capture and interpretation of both ideographic and
dactylographic signs in ASL. Advanced signal processing algorithms then analyze these
data to identify and translate the signs, facilitating effective communication in different
languages and contexts.

By integrating smart glove technology with robust signal-processing techniques, it is
possible to bridge the communication gap between the deaf community and the public,
making ASL more accessible to those who do not know the sign language and supporting
the inclusion of deaf individuals in various social, educational, and professional settings.

The dynamic gesture-based control environment is taking interaction to the next level
with reverse brain training that can restore lost behavioral, cognitive, and communication
skills. This evolution highlights the importance of developing sophisticated data collection
systems, such as smart gloves, tailored to these purposes. Therefore, it is necessary to have
the latest reviews of related work that analyze and organize knowledge about research in
the following areas that mimic human-hand substitutes.

• Human–machine interfaces (HMI) that meet the growing demands for intuitive and
effective manipulation.

• Real-time hand gesture recognition using surface electromyography and machine
learning that can help improve human–computer interaction.

• Sign language gesture recognition, which serves as a key input method in human–
computer interaction (HCI).

• Sensor substitution using artificial receptors connected to the brain via an HMI that
could compensate for sensor loss and potentially expand human capabilities beyond
current limitations.

1.3. Objective and Paper Structure

This study focuses on developing a smart glove equipped with various sensors to
accurately capture hand gestures and the HCI and, in this paper, we explore the possibilities
of generating precise control signals based on specific sign language or more precisely
game control gestures. The work aimed to create a prototype of a glove using cheap and
generally commercially available sensors and used neural networks for the classification of
dynamic gestures used to control the game.

This paper is organized as follows: The Introduction highlights the background of this
study: technical progress in human–computer interaction, gesture recognition, and pro-
cessing of sign languages. Section 2 discusses the review of the literature on technological
advancements in human–computer interaction, focusing on gesture recognition through
smart gloves equipped with various sensors. In addition, it covers the use of advanced
sensors and machine learning in real-time hand gesture recognition, as well as applications
in sensory substitution technologies for the visually impaired and in motor rehabilitation.

Section 3 presents the construction and assembly of the smart glove, including its
sensor configuration and data-acquisition process. It also discusses the creation of a gesture
data database and the design of a neural network to classify hand gestures based on the
collected data. Section 4 evaluates the performance of the gesture recognition classifier
using metrics such as accuracy, precision, F1-score, and recall and examines the model’s
loss throughout training. It shows the assessment of the classifier performance in predicting
hand gestures and the effectiveness of the learning process. Finally, Section 5 summarizes
the findings, presents the limitations, and introduces recommendations for future studies.

2. Related Work
2.1. Human–Machine Interfaces (HMI)

In the field of gesture recognition, sensing touch and force, the delicate human skin
and its advanced nervous system, especially the hand, perfectly sense pressure, tension,
and bending stimuli. To mimic this ability, flexible touch and force sensors have been
developed in various forms, including electronic skin, electronic fabric, and smart contact
lenses. These flexible sensors, unlike conventional rigid devices, adapt to curved and soft
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surfaces, making them ideal for wearable electronics. They offer higher sensitivity and
faster response times, often exceeding the performance of human skin. The applications of
these sensors are wide ranging, from health monitoring and object recognition to intelligent
robots and human–machine interaction (HMI).

This section reviews significant developments and research in the field of flexible
touch and force sensors, focusing on their application in HMI. It highlights a variety of
sensor types, such as resistive, capacitive, piezoelectric, and triboelectric sensors, each of
which has unique properties and suitability for different HMI applications. The review also
explores innovative strategies to improve sensor performance, such as improving sensing
range, sensitivity, and multidimensional touch sensing. Furthermore, it investigates the
integration of these sensors with HMIs for advanced applications such as robot control and
VR/AR technology, demonstrating the transformative potential of these novel HMIs [39].

Zhu et al. developed a touch-sensitive glove equipped with triboelectric sensors
and piezoelectric stimulators, designed specifically for virtual-space interaction. Their
research addresses the increasing demands for intuitive and effective manipulation within
human–machine interfaces (HMIs). The smart glove they propose features triboelectric
finger-bending sensors, a hand displacement sensor, and piezoelectric mechanical stim-
ulators, enabling the detection of omnidirectional bending and sliding events in virtual
environments. Furthermore, the glove uses machine learning to achieve an object recogni-
tion accuracy of up to 96%, showcasing its potential for low-cost advanced HMI applica-
tions in various fields such as entertainment, healthcare, sports training, and the medical
industry [40].

He et al. developed a glove-based human–machine interface (HMI) utilizing tribo-
electric nanogenerators (TENGs) for diverse applications. The minimalist design features
PEDOT-coated textile strips and silicone rubber thin film to balance full functionality with
simplified signal processing. This glove-based interface has been successfully used for
wireless car and drone control, VR game control, and cursor control for online shopping.
Their innovative approach offers a flexible and user-friendly HMI solution, different from
traditional rigid and bulky interfaces [14,41].

Luo et al. developed a glove-based multidimensional human machine interface (HMI)
utilizing a bending-angle triboelectric nanogenerator (BA-TENG) for high-resolution finger
motion sensing. The system, enhanced by a custom PCB, shows high sensitivity and low
crosstalk, improving the signal-to-noise ratio by 19.36 dB. Their HMI effectively supports
applications in smart home control, advanced robotics, and a virtual keyboard with user
recognition, achieving a classification accuracy of 93.1%. This BA-TENG-based smart
glove offers a minimalist and intuitive solution for diverse fields, including IoT, assistive
technology, and intelligent recognition systems [42].

2.2. Real-Time Hand Gesture Recognition

In the realm of improving human–computer interaction (HCI) through real-time hand
gesture recognition (HGR), recent studies have made significant strides. Jaramillo-Yánez
conducted a systematic review of the literature focused on state-of-the-art HGR models
that use surface electromyography (EMG) data and machine learning techniques [43]. This
comprehensive review assessed 65 primary studies, applying Kitchenham’s methodology
to analyze data acquisition, segmentation, preprocessing, feature extraction, classification,
postprocessing, real-time processing, gesture types, and evaluation metrics. The findings
underscored advances in HGR methodologies, emphasizing their role in fostering intuitive
and efficient communication within HCI systems.

Fang’s research introduces an innovative data glove that incorporates inertial and mag-
netic measurement units (IMMUs) to facilitate comprehensive gesture capture and recog-
nition in human–robot interaction (HRI) scenarios [44]. This glove integrates 18 compact
and cost-effective IMMU modules, including gyroscopes, accelerometers, and magne-
tometers, allowing precise tracking of three-dimensional movements of arms, hands, and
fingers. Experimental validation highlighted the efficacy of extreme learning machine
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(ELM) algorithms for static and dynamic gesture recognition, underscoring the potential of
IMMU-based systems to enhance gesture-based interaction paradigms.

Dong’s study presents a novel approach to gesture recognition in HMI using a low-
cost data glove with a simplified hardware design [45]. Their research focuses on cap-
turing simultaneous finger movement and bending with high accuracy. The proposed
dynamic hand gesture recognition algorithm (DGDL-GR) integrates a fusion model of
convolutional neural networks (fCNNs) and temporal convolutional networks (TCNs).
This model extracts time-domain and spatial-domain features using causal and dilation
convolutions to effectively handle sequence-modeling tasks. Experimental results validate
the superior performance of the DGDL-GR algorithm in accuracy, F1 score, precision score,
and recall score with real-world datasets, highlighting its potential for advanced gesture
recognition applications.

Mummadi’s investigation centers on augmenting HCI through data gloves, addressing
challenges where external sensors may inadequately capture hand movements [46]. Their
proposed data glove integrates an embedded gesture classifier using inertial measurement
units (IMUs) on the fingertips, achieving a mean precision of 92% and an F1 score of 91% on
22 gestures from French Sign Language (LSF) in extensive participant trials. Comparative
analysis with local fusion algorithms demonstrated improved settle times and reduced de-
lays after gesture changes, facilitating real-time gesture recognition within 63 milliseconds
for seamless interaction via Bluetooth-connected systems.

Naser et al., in study [47], present a multi-layer neural network with an autoencoder
that recognizes five hand gestures (fist, open hand, wave in, wave out, and double tap)
from sEMG signals recorded with a Myo armband with an accuracy of 99.68%, 100%, and
99.26% during training, validation, and testing, respectively. Their proposed multi-layer
neural network outperformed the K-nearest neighbor classifier that served as a reference
(accuracy of 97%).

2.3. Sign Language Gesture Recognition

A specific area of language gesture recognition involves the development of sensory
gloves for state-of-the-art sign language recognition between 2007 and 2017 [48]. Gałka’s
research contributes to advancing automatic sign language recognition beyond vision-based
systems, which are sensitive to environmental changes. Gałka introduces an accelerometer
glove designed for robust gesture recognition in sign language [49]. The glove integrates
inertial motion sensors and a specialized gesture-acquisition system. Evaluation using
Hidden Markov Models (HMMs) and parallel HMM approaches demonstrates a significant
reduction in the equal error rate, while maintaining a high recognition accuracy of 99.75%.
This approach offers a promising solution to improve the reliability and usability of sign
language recognition systems in various recording conditions.

Bhaskaran et al. propose a smart glove capable of converting sign language gestures
into speech output, addressing communication challenges faced by people with speech
impairments [50]. The glove utilizes flex sensors and an Inertial Measurement Unit (IMU)
for gesture recognition, along with a novel State Estimation method to track hand motion in
a three-dimensional space. Tested with Indian Sign Language, the prototype demonstrates
feasibility in real-time sign language to voice conversion, with potential applications in
gaming, robotics, and healthcare.

Similarly, Sa et al. explored the domain of Sign Language Recognition and highlighted
the diversity of solutions available for translating hand gestures into text and/or audio
output [51]. Their work focuses on improving the accessibility of MEMS accelerometers
and the cost-effectiveness of gesture recognition gloves, reducing overall costs compared
to traditional flexible sensor-based solutions. This approach aims to make the recognition
technology of sign languages more affordable and accessible to almost all human languages,
or even more, such as “third hand” [52,53].

Hands play a crucial role in basic daily tasks, and impairments due to neurological
conditions can significantly affect one’s quality of life. Wearable hand gesture interfaces
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promise to restore and aid hand function, while also enhancing communication between
individuals and with computers. This review of related works summarizes recent advance-
ments in sensing interfaces and algorithms for hand gesture recognition, applicable across
diverse fields such as rehabilitation, prosthesis control, exoskeleton development, sign
language interpretation, human–computer interaction, and user authentication. Current
findings underscore electrical, mechanical, acoustical, vibrational, and optical sensing as
primary input modalities for gesture recognition, with algorithms ranging from classifi-
cation of fixed hand poses to regression of continuous finger and wrist joint angles. Both
conventional machine learning techniques and more recent deep learning approaches have
been pivotal in improving the accuracy and versatility of gesture recognition systems,
paving the way for future research to focus on improving dataset sizes, ensuring robustness
for everyday use, and refining user interface designs to be less obtrusive [10].

2.4. Sensory Substitution beyond Current Limitations

Kilian et al. implemented and evaluated the Unfolding Space Glove, an open-source
sensory substitution device that transmits the relative position and distance of nearby ob-
jects as vibratory stimuli to the back of the hand. This technology enables blind individuals
to explore their surroundings in a natural way, aiding in tasks such as object recognition
and navigation [54].

Mendes et al. investigated cortical audiotactile integration mechanisms using a sensor
glove, aiming to preserve the cortical map of the hand after peripheral nerve injuries.
Their findings suggest that sensory substitution through auditory-tactile interfaces can
establish connections between auditory and somatosensory cortical areas, influencing
neural plasticity and enhancing sensory perception [55].

Paterson et al. discussed the historical context and development of sensory substitution
systems, highlighting early experiments such as Project Felix and tactile-visual substitution
systems pioneered by Paul Bach-y-Rita. Their work underscores the foundational role of
neuroplasticity in the evolution of sensory substitution technologies [56].

Chen et al. presented a wearable hand rehabilitation system that integrates a sensory
glove with flex sensors for motion detection and motor assistance, facilitating mirror ther-
apy and task-oriented training for stroke patients. This system demonstrates high accuracy
in gesture recognition and supports functional grasp rehabilitation through sensorimotor
feedback [57].

Kim et al. developed an e-glove system for prosthetic hands, combining stretchable
sensors and soft actuators to replicate human hand-like sensory perceptions. This sys-
tem improves user comfort and interaction capabilities, addressing challenges in sensory
integration for amputees [58].

Hafidh et al. introduced the F-Glove, a sensory substitution system aimed at enhancing
grip force modulation in diabetic patients using pressure sensors. This system provides
auditory feedback proportional to the pressure of the fingertip, which helps manipulate
objects and restore sensory function [59].

Demolder et al. reviewed recent advances in wearable sensing gloves and sensory
feedback devices, emphasizing their applications in healthcare, prosthetics, and virtual
reality. They discussed the integration of soft actuators and bioelectronics in developing
lightweight and ergonomic devices that enhance sensory perception and rehabilitation of
motor function [60].

Liu et al. investigated the use of an instrumented glove to enhance motor learning
through sensory feedback and agency perception. Their findings suggest that real-time feed-
back improves grasp performance and cognitive engagement during rehabilitation, show-
casing the potential for sensory substitution for functional recovery in clinical settings [61].

Table 1 summarizes data from 10 sample articles focused on the development and
research of data gloves, published within the last five years, with most of them appearing
in the past two years. As shown by the data in Table 1, the majority of data gloves were
used to analyze static gestures, and the quality of the classifier was determined based
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on the accuracy metric. The use of flex sensors in these types of solutions remains very
popular. IMU sensors are increasingly being used in data gloves, replacing the separately
used gyroscopes and accelerometers. Utilizing more than one IMU sensor can improve the
efficiency of the classifier. Scientists are continually searching for new tools to recognize
and classify different types of gestures.

Table 1. Summary of studies on model-based classification and sensors for gesture recognition.

Model/Classifier Performance Metrics 1 Gestures/Purpose Sensors Reference Year

Parallel Hidden Markov
Model (HMM)

Data from 8 volunteers,
recognition accuracy
was 85.21%

Korean SLA; data have
been collected with
20 DSL words and
14 static gestures to
compliment them

WonderBox, Wonder-
Sense, 9-axis inertial sen-
sor module, MPU9250,
Bend sensor

[62] 2023

Functional test, per-
formed by deaf and
mute people

100%
Performance based on
subjective users opinions

Two-way Sign Language
live translation 10 flex sensors [6] 2023

The voting meta-
classifier (VL2)

Independent user test-
ing (DHS):

• 87.50% for 56,
• 91.91% for 27
• 93.28% for 56,
• 95.55% for 27

Static geastures: 2 differ-
ent datasets:
• 27 gestures from

ASL, finger alphabet,
• Sign Lan-

guage Lexicon
(56 hand shapes)

Magnus Prime X
data gloves

• 9 degrees of free-
dom (DoF) IMUs

• 2D flex sensor
• DoF IMU

[33] 2023

STFGes with LE-
ConvLSTM and MSFF

Accuracy: 0.970 ± 0.017
Precision: 0.971 ± 0.014
Recall 0.970 ± 0.020
F1 score: 0.970 ± 0.018

10 Chinese Sign Language
(CSL) expressions: hello,
bye, eat, finish, like, who,
not, drink, amazed, very

5 strain sensors, 3–axial
accelerometer [26] 2023

Spatio-temporal feature
extraction
Hidden Markov Models

Average recognition rate
of words: 94%

Static: Arabic Sign Lan-
guage

Flex sensors, contact pad,
MPU5060 accelerometer
and gyroscope

[63] 2020

Compared to reference
WT9011DCL industrial
sensor

Static and dynamic error:
0.32°; 1.11°; 2.61°;
±3° thumb; ±2° index

Open hand, half closed
Rehabiliatation and
game control

15 LSM6DS3 IMUs [33] 2023

Forward dynamic
model (FDM)

87% of the natural ob-
ject width

Dynamic: rhythmic piano
playing and car racing;
parallel gripper cont.

Piezoresistive tactile
sensor; vibrotactile
haptics feedback using
embroided copper coil

[64] 2024

Attention-based CNN-
BiLSTM network

Acc. 95.05%
Prec. 95.43%
Recall 95.25%
F1 score 95.22%

Spatio-temporal features
of dynamic gestures

VRTRIXTM Data
Glove using 11 sen-
sors (9 DOF IMU)

[65] 2023

A table with specified
values for a given char-
acter lying within the
defined range

94% sign recognition ac-
curacy

Static gestures (26 ALS
signs, 15 simple words)

Flex sensor, 1 for thumb
and pinky, 2 for rest finger;
MPU-6050 accelerometer
and gyroscope

[66] 2019

Gated recurrent unit
(GRU algorithm) 92%

DG involving movements
of different fingers
Recognition of a sequence
of a finger gesture

Flex sensors [67] 2024

1 Accuracy if no metric was specified.
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3. Materials and Methods

To maintain the integrity of the process, an electrical diagram of the device was drawn
before assembly, including all signals and power connections. The glove schematic, shown
in Figure 1, was prepared in KiCad version 8 software publicly available under the GNU
General Public License version 3 from [68]. The entire device is based on the SparkFun
ESP32-S2 microcontroller. This microcontroller offered the peripherals required for the
project as well as plenty of computing power to allow further development of the project
and implementation of simple machine learning algorithms for real-time classification of
read-out movements.

A power supply was provided by a battery connected to the microcontroller or an
external source connected to the USB-C port. All of the sensors used can operate at 3.3 V, so
no additional inverter was required to convert the power to 5 V, and the microcontroller’s
available power supply was used. In the diagram, to the right of the microcontroller, there
are two sets of sensors—deflection and pressure—in a group of five, one for each finger of
the hand. As the flexion and pressure sensors work by changing resistance when they are
bent or pressed, and the microcontroller is only able to measure the voltage connected to
the analog pin, using an internal 13-bit ADC, it was necessary to convert this to voltage
changes before connecting the signal to the analog pins.
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Figure 1. Electrical schematic of constructed glove.

For this purpose, a simple voltage divider was assembled around each sensor. A
supply voltage was connected to one sensor lead. The other lead was connected to the
subsequent analog pins assigned to each sensor. In parallel, this signal through a sensor-
appropriate resistor (for the deflection sensors it was a 47 kΩ resistor, and for the pressure
sensors a 10 kΩ resistor) was connected to the ground, with the result that voltage changes
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corresponding to changes in sensor resistance were observed on the analog pin. The value
of the resistors was chosen to correspond to the resistance obtained at half the measured
range. Thus, half of the supply voltage determined this point. As each sensor had a
different resistance at rest and during assembly there were no sufficiently precise resistors
with resistances corresponding to the sensors’ resistances at rest, the same resistor was
used for each sensor, with low accuracy (1%).

This resulted in a different measurement range for each sensor. To overcome these
problems, the change in value during finger movement was analyzed, rather than the value
itself in a specific state; in addition, appropriate thresholds were adopted for unambiguous
gestures, which determine whether the read-out value corresponds to a bent or upright
sensor. Another important module, located on the schematic below the microcontroller,
is the 9-axis IMU sensor, communicating via the I2C bus. Thanks to the on-chip software,
linear velocity and angular position information, determined from the position of the ac-
celerometer and gyroscope, can be read directly from the module. These data are important
in the glove’s role as a precision controller, as it allows hand movements to be mapped in a
3D computer environment such as Unity.

A standard construction glove was used as the base for assembling the components. In
the first stage of assembly, the method of mounting the deflection sensors was tested. It was
decided to mount the sensor on the end with the base hanging freely while working when
the finger is bent. The sensor on the glove was glued with silicone adhesive. It was placed
slightly above the line of inflection marking the upper phalanx of the finger. In the space
left, at the tip of the finger, the pressure sensor was glued using the same adhesive. Before
gluing itself, the surface of the sensor was scratched with a sharp tool to increase adhesion.
The assembly was repeated for all five fingers. In the next step, a voltage divider circuit
was assembled around the leads of each of the ten sensors. Signal wires of appropriate
length were soldered to the signal outputs.

The power supplies and grounds were wired together and gathered into a single point,
from which individual wires were routed to the corresponding pins on the microcontroller
board. The power supplies and ground necessary to create the voltage dividers were
grouped in the palm of the hand, in front of the IMU sensor, to minimize the number
and length of the signal wires. In the central part of the outside of the palm, the circuit
with the BNO055 IMU sensor was attached to the glove using thread. Whenever possible,
longer pieces of bare wires were protected with shrink sleeves. The signal connections
to the microcontroller were made using AWG28 ribbon strands properly split and cut
to the required size. As all wires change position during hand movement, to prevent
mechanical damage, each connection has been suitably elongated, and excess wires have
been attached to the glove, so that they can work and do not interfere with the use of the
glove or become entangled.

To increase the freedom of movement, the large microcontroller board with the battery
was placed on the user’s forearm. To this end, a sports tie was used, to which the microcon-
troller board was attached by thread through the mounting holes. The battery pack was left
in a plug-in form so that it could be quickly replaced, measurements carried out with the
glove could continue, and in the event of battery degradation to be simply replaced with a
new one, terminated with an identical two-pin JST female plug. A zip pocket, located on
the wristband, was used to store the battery pack.

3.1. Data Acquisition

The data collection process starts with the configuration of the sensors and microcon-
troller. Various types of sensors were used, such as a deflection sensor, a force sensor, and
an inertial sensor. The SparkFun Thing Plus - ESP32-S2 WROOM microcontroller was used
to collect and transmit data from these sensors. The elements are presented in Figure 2.
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Figure 2. Gesture recognition glove with sensor placement.

The procedure involves calibrating the system, in which the reading parameters are
adjusted to match the ranges of motion and pressure force characteristic of different gestures.
The system was configured by mounting the sensors onto a test glove and connecting them
to the microcontroller. The connections were then tested, and the microcontroller was
programmed using MicroPython to collect data.

The analog signals from the deflection and pressure sensors were converted to digital
form in the microcontroller using an ADC. The signals from the inertial measurement units
(IMUs) were read out in digital form from the sensor measurement queue via the I2C bus
interface. To eliminate microvariations, a threshold was introduced for the IMU data, the
crossing of which was recorded as a change in value. This eliminated the noise read by
the sensors at rest (sensor on the table). Signals are recorded by sending the appropriate
command through the USB port. The data are written as CSV files with the given name in
the command to start writing to the microcontroller’s flash memory. Gesture recording lasts
for a duration of 1210 µs and the data are recorded at a frequency of 100 Hz. Each recording
session produced one CSV file. A data flow diagram in Figure 3 has been prepared to better
illustrate the signal acquisition, data processing, and classification process.
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Figure 3. Flowchart of the data acquisition and processing.

3.2. Virtual Reality Interface

Accurate recognition of hand movements should be integrated into applications for
game control. These applications may be developed, for instance, with the Unity 3D engine.
The operation of such an application would proceed as follows:

1. Initiation of registration (establishing starting position);
2. Execution of gesture by the user;
3. Termination of signal registration (return to starting position);
4. Signal recognition;
5. Visualization of gesture within the user interface;
6. Execution of the related command.

3.3. Experiment Setup

The tests were conducted according to a prepared test procedure. Participants were
instructed to perform selected gestures, which were then measured. The procedure in-
volved performing each gesture in 1210 microseconds, during which sensor data were
recorded. After each measurement was completed, the data were transferred to a computer
for further analysis.

3.4. Experimental Group

Ten people aged 22 to 59 years participated in the experiment. Eight of them were
around 25 years old. There were six men and four women among the participants in
the experiment. None of the participants had been diagnosed with neurological diseases.
Before performing a series of gestures, the person supervising the experiment trained them
on how to perform the gestures. Each phase of the experiment, comprising successive
gestures, was carried out under equivalent conditions that guaranteed the subject’s full
concentration. Each participant performed two repetitions of each gesture. The gestures
performed were used in the MYO game controller and are described in detail by Rawat et
al. and Naser and Hashim [47,69]. The following gestures were performed:

1. Fist (Figure 4a);
2. Double tap (Figure 4b);
3. Finger spread (Figure 4c);
4. Wave left (Figure 4d);
5. Wave right (Figure 4e).

Figure 4 shows the gestures performed during the experiment.
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(a) (b)

(c) (d)

(e)

Figure 4. Game control gestures: (a) fist; (b) double tap; (c) finger spread; (d) wave left; (e)—wave right.

3.5. The Cost of Producing a Data Glove Prototype

The prototype of the glove was created using five flex sensors (Adufruit Short flex
Sensor), five force sensors (SparkFun Force Sensitive Resi sensor), IMU sensors (Adafruit
Adafruit 9-DOF), a microcontroller (SparkFun Thing Plus—ESP32-S2 WROOM), a battery,
wires, gloves, and a description with a battery pocket. The total cost of materials for
glove prototype was estimated at PLN 545 (USD 137). The cost of materials to create
the glove was estimated based on the prices offered by retail distributors of electronic
components operating on the Polish market. Sensors and other components necessary
for the implementation of the project were bought from various distributors in individual
quantities, ranging from one to approximately a dozen units.

3.6. Expressions of Gestures

We adopted different types of sensors for gesture detection, flex sensors, force sensors,
and inertial sensors (IMUs). Flex and force sensors provide the highest precision in detecting
finger position, while IMU sensors are useful for monitoring movement and changing hand
position in specific axes. The use of various types of sensor prevents the issues described
in the Introduction, such as measuring only the finger-bending angle (flexion sensors) or
the accumulation of errors over time due to the integration of inertial signals (IMU sensor).
The inclusion of force sensors allowed for the determination of whether the fingertips were
touching and with what force. The use of the glove itself, along with a relatively large
number of different sensors, also has its disadvantages, such as limiting finger mobility and
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touch sensitivity. The wearing of a glove alone increases the risk of the hands sweating and
allergic reactions to the materials used. Another drawback of the presented glove prototype
is the possibility of detachment of the flexion or force sensors, as they were attached in only
two places to avoid restricting hand mobility or adding extra weight to the hand.

3.7. Database

The created data storage of 100 files was not particularly comfortable in analysis and
usage. Therefore, it has been merged into one large CSV file, while adding information
about patients, which adds up to 27 columns, where six of them are basically metadata and
the rest are data stored in lists. Columns in the final CSV file are listed and described below
(column names are in bold):

• ID_person
A unique number assigned alphabetically to a person’s name.

• age
An integer in the range of uint8 (between 0 and 255) that represents the age of a person
at the time of data collection.

• gender

– F—Female
– M—Male

• gesture
A categorical variable denoting a given gesture (5 unique gestures) —those names have
been presented in Section 3.4.

• repetition
Number of repetitions of gesture per recording (always 1).

• recording
Number of recording gestures (1 or 2).

• time
Number of milliseconds from the beginning of the recording.

• index.bend, thumb.bend, little.bend, middle.bend, ring.bend
Values from bend resistive sensors placed on index, thumb, little, middle, and ring fingers,
respectively.

• index.pressure, thumb.pressure, little.pressure, middle.pressure, ring.pressure
Values from pressure resistive sensors placed on index, thumb, little, middle, and ring
fingers, respectively.

• imu.orientEulX, imu.orientEulY, imu.orientEulZ
Values from Euler angles from the IMU sensor placed on the glove.

• imu.orientQuatX, imu.orientQuatY, imu.orientQuatZ, imu.orientQuatW
Values from Quaternion angles from the IMU sensor placed on the glove.

• imu.linacceleX, imu.linacceleY, imu.linacceleZ
Values from linear acceleration from the IMU sensor placed on the glove.

3.8. Deep Neural Network Design

Various neural network configurations were experimented with during the project
work. On pair with custom-made layers stack, with VGG16 and ResNet50 (customized
input and output layers to match desired usage). The final neural network had the
following configuration:

• Number of fully connected layers: 2;
• First layer size: 32 filters (Conv2D), 3 × 3 kernel size;
• Second layer size: 64 filters (Conv2D), 3 × 3 kernel size;
• Third layer size: 64 filters (Conv2D), 3 × 3 kernel size;
• Activation function: ReLU (Rectified Linear Unit);
• Iteration limit: 50 epochs;
• Validation frequency: every epoch.
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These hyperparameters were determined by iterative testing to achieve the best classi-
fication performance and to minimize computational complexity. The detailed model
architecture is presented in Figure 5. That CNN (Convolutional Neural Network) has
been used in pair with 5-fold cross-validation. The target outcome for classification was to
minimize the value of the loss function in the validation sets. The learning process has been
performed on various available personal machines for people who created a dedicated
CNN solution for this project, it did not use GPU acceleration, due to inconsistency in
used machines, the process was not very demanding, and it took a long time to consider a
unified, centralized platform.

Figure 5. Structure of the deep neural network.
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The classifier was implemented in Python 3.10 using the Tensorflow 2.16.1 library, as
Sequential model, which is a stack of layers, where every layer has exactly one input and
output tensor [70]. Each layer behaves differently, according to [71]:

• Normalization—preprocessing layer that performs normalization of continuous fea-
tures, which means that it will shift and scale inputs into a distribution centered
around 0 with standard deviation of 1. This is accomplished by pre-computing the
mean and variance of the data and calling input−mean√

var at runtime [71].

• Conv2D—creates a convolution kernel that is convolved with the input over a dedi-
cated axis to produce a tensor of outputs [71].

• MaxPooling2D—downsamples input matrix along height and width (x and y) by
taking a maximum value from a window of declared size. This is conducted it for
each input channel (3rd dimension) [71].

• Flatten—flattens the input, which means squashing one of the dimensions [71].
• Dense—implements the operation: output = activation(dot(input, kernel) + bias)

where activation is the element-wise activation function passed as the activation argu-
ment, kernel is a weight matrix created by the layer, and bias is a bias vector created
by the layer (only applicable if use_bias is True) [71].

All Conv2D layers and the first appears Dense layer are using ReLU (Rectified Linear
Unit) activation function. It selects larger numbers between the current input and 0 (used
without modifications). The last Dense layer uses the softmax activation function, which is
mathematically described in Equation (1), where z is the input vector.

σ(zi) =
ezi

∑n
j=1 ezj

; f or i = 1, 2, ..., n (1)

Classifier has been fed with an untouched dataset, nothing has been cut, and it has not been
filtered in any way. The normalization layer allowed only for the rescaling of data from the
original range (the way has been described in the normalization layer description) to 0–1.

4. Results

In this section, we present the results of our classifier, which has been trained on a
dataset of hand gesture data collected using sensors embedded in a glove.

4.1. Performance Metrics

Table 2 shows the performance metrics (accuracy, F1 score, loss, precision, recall) of
the proposed classifier.

Table 2. Model performance metrics.

Metric Value

Accuracy 90.00%
F1-score 0.9132
Loss 0.5337
Precision 0.9
Recall 0.9

The results based on the test data show the high efficiency of the model in recognizing
hand gestures; the accuracy of 90.00% and F1-score of 0.9132 demonstrate the effectiveness
of the classifier in the test set and a good balance between precision and completeness of
classification. Although the loss value of 0.5337 is not directly interpretable in terms of
classification accuracy, the high values of precision (0.9) and completeness (0.9) confirm the
high accuracy in recognizing positive observations and true classes.
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4.2. Confusion Matrix

The confusion matrix shown in Figure 6 summarizes the classifier’s predictions on the
training data.

Figure 6. Confusion matrix.

The confusion matrix for the training data confirms the high accuracy of the classifier,
where most of the predictions were made correctly. Only three cases of confusion were
identified, highlighting the stability and effectiveness of the model in identifying different
hand gestures at the training level.

4.3. Model Loss and Accuracy

In Figure 7, the loss of the model and the accuracy of the model are presented.

Figure 7. Loss and accuracy of the deep neural network.
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In the analysis of experimental results, it was observed that the loss function (loss)
decreases for both training and test data as the epochs progress, indicating the effectiveness
of the learning process. The decrease in loss values reflects the model’s improved fit to the
available data and its ability to reduce predictive errors.

Simultaneously, classification accuracy (accuracy) increases for both the training and
test datasets, demonstrating the model’s capability to accurately identify target classes in
new data. The observed increase in accuracy results from the model effectively adapting to
various testing conditions and positively evaluating its generalization ability.

5. Discussion and Conclusions

We successfully designed and built a glove capable of capturing dynamic gestures
designed for game control. The recorded gestures are differentiable enough that it is
possible to classify performed gesture accurately with accuracy, precision, and recall of 0.9.
The confusion matrix shown in Figure 6 confirms the model’s ability to correctly recognize
gestures, with almost non-false positive or negative indications or misclassifications.

The loss and precision of the model during the training epochs shown in Figure 7
present an increasing accuracy and a decreasing loss value, which shows improvements
of classification over the training period. Considering a relatively small amount of data, it
is possible to conclude that this model is enough for non-crucial, real-world applications
within used gestures. These results confirm that the developed model is well suited to the
data analyzed and can be used effectively for classification in real-world applications.

The reported recall, precision, and accuracy are similar to those reported in [33], worse
than reported in [47,63,65–67], and better than reported in [62] (see results in Table 1). The
most significant limitation are the number of examined gestures (only five game gestures)
and the number of subjects (10) consisting of people without neurological diseases. We
did not include testing glove control in real life scenarios due to the lack of access to the
application programming interface (API) that could provide integration between gloves
and applications. Another limitation is the construction of the smart glove that consists of
a microcontroller and sensors attached to a glove with sports ties, knits, and loose wires
between them.

The developed solution is an advancement in human–computer interface devices by
providing a cost-effective, accurate, and practically applicable form that can be used in
various limited applications where approximately five gestures would be enough. Prac-
tically, it can be considered as a navigation method in VR/AR environments that could
move the main weight from the face of a user to the hands, or limit the currently used
motion-tracking cameras on the goggles themselves. This work contributes to the broader
field of gesture recognition and wearable technology.

The smart glove designed in this study is not limited to game control. Potential
applications may include the control of drones, robots, and other devices. In the future,
the system could be improved by extending the number of recognized gestures and could
be improved by adding sign language expressions, carrying out tests in a larger and
more diverse study group, covering the wires, and optimizing its length, sensors, and
microcontroller. We also plan to test the glove in real-life scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24186157/s1, README 1. game_gestures.db.
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Gesture Recognition Based on Deep Learning YOLOv3 Model. Appl. Sci. 2021, 11, 4164. [CrossRef]
10. Jiang, S.; Kang, P.; Song, X.; Lo, B.P.; Shull, P.B. Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A

Survey. IEEE Rev. Biomed. Eng. 2022, 15, 85–102. [CrossRef]
11. Tchantchane, R.; Zhou, H.; Zhang, S.; Alici, G. A Review of Hand Gesture Recognition Systems Based on Noninvasive Wearable

Sensors. Adv. Intell. Syst. 2023, 5, 2300207. [CrossRef]
12. Zhang, X.; Chen, X.; Li, Y.; Lantz, V.; Wang, K.; Yang, J. A Framework for Hand Gesture Recognition Based on Accelerometer and

EMG Sensors. IEEE Trans. Syst. Man Cybern. Part Syst. Humans 2011, 41, 1064–1076. [CrossRef]
13. Zhang, Y.; Harrison, C. Tomo: Wearable, low-cost electrical impedance tomography for hand gesture recognition. In Proceedings

of the Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA, 11–15
November 2015; pp. 167–173.

14. Schade, A.; Schulz, J.; Nguyen, V.; Scheunert, C.; Bodenstedt, S.; Nguyen, G.T.; Speidel, S.; Fitzek, F.H.P. On the Advantages of
Hand Gesture Recognition with Data Gloves for Gaming Applications. In Proceedings of the 2023 IEEE International Conference
on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Atlanta, GA, USA,
13–17 March 2023; pp. 313–315. [CrossRef]

15. Wu, C.; Wang, K.; Cao, Q.; Fei, F.; Yang, D.; Lu, X.; Xu, B.; Zeng, H.; Song, A. Development of a Low-Cost Wearable Data Glove
for Capturing Finger Joint Angles. Micromachines 2021, 12, 771. [CrossRef] [PubMed]

16. Lin, B.S.; Hsiao, P.C.; Yang, S.Y.; Su, C.S.; Lee, I.J. Data glove system embedded with inertial measurement units for hand function
evaluation in stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2204–2213. [CrossRef]

17. Connolly, J.; Condell, J.; O’Flynn, B.; Sanchez, J.T.; Gardiner, P. IMU sensor-based electronic goniometric glove for clinical finger
movement analysis. IEEE Sens. J. 2017, 18, 1273–1281. [CrossRef]

18. Duan, S.; Zhao, F.; Yang, H.; Hong, J.; Shi, Q.; Lei, W.; Wu, J. A Pathway into Metaverse: Gesture Recognition Enabled by Wearable
Resistive Sensors. Adv. Sens. Res. 2023, 2, 2200054. [CrossRef]

19. Jha, C.K.; Gajapure, K.; Chakraborty, A.L. Design and evaluation of an FBG sensor-based glove to simultaneously monitor flexure
of ten finger joints. IEEE Sens. J. 2020, 21, 7620–7630. [CrossRef]

http://doi.org/10.1007/978-1-4471-7513-1_2
http://dx.doi.org/10.3390/s20123571
http://www.ncbi.nlm.nih.gov/pubmed/32599793
http://dx.doi.org/10.3390/jimaging6080073
http://dx.doi.org/10.1109/ACCESS.2021.3129650
http://dx.doi.org/10.1515/jisys-2022-0076
http://dx.doi.org/10.3390/app11094164
http://dx.doi.org/10.1109/RBME.2021.3078190
http://dx.doi.org/10.1002/aisy.202300207
http://dx.doi.org/10.1109/TSMCA.2011.2116004
http://dx.doi.org/10.1109/PerComWorkshops56833.2023.10150283
http://dx.doi.org/10.3390/mi12070771
http://www.ncbi.nlm.nih.gov/pubmed/34208871
http://dx.doi.org/10.1109/TNSRE.2017.2720727
http://dx.doi.org/10.1109/JSEN.2017.2776262
http://dx.doi.org/10.1002/adsr.202200054
http://dx.doi.org/10.1109/JSEN.2020.3046521


Sensors 2024, 24, 6157 20 of 22

20. Pan, M.; Tang, Y.; Li, H. State-of-the-Art in Data Gloves: A Review of Hardware, Algorithms, and Applications. IEEE Trans.
Instrum. Meas. 2023, 72, 4002515. [CrossRef]

21. Kim, J.S.; Kim, B.K.; Jang, M.; Kang, K.; Kim, D.E.; Ju, B.K.; Kim, J. Wearable Hand Module and Real-Time Tracking Algorithms
for Measuring Finger Joint Angles of Different Hand Sizes with High Accuracy Using FBG Strain Sensor. Sensors 2020, 20, 1921.
[CrossRef]

22. Bravo-Illanes, G.; Halvorson, R.T.; Matthew, R.P.; Lansdown, D.; Ma, C.B.; Bajcsy, R. IMU Sensor Fusion Algorithm for Monitoring
Knee Kinematics in ACL Reconstructed Patients. In Proceedings of the 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 5877–5881.

23. Yuan, G.; Liu, X.; Yan, Q.; Qiao, S.; Wang, Z.; Yuan, L. Hand Gesture Recognition Using Deep Feature Fusion Network Based on
Wearable Sensors. IEEE Sens. J. 2021, 21, 539–547. [CrossRef]

24. Wu, J.; Sun, L.; Jafari, R. A wearable system for recognizing American sign language in real-time using IMU and surface EMG
sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [CrossRef]

25. Wang, M.; Wang, K.; Ma, C.; Uzabakiriho, P.C.; Chen, X.; Zhao, G. Mechanical gradients enable highly stretchable electronics
based on nanofiber substrates. Acs Appl. Mater. Interfaces 2022, 14, 35997–36006. [CrossRef]

26. Wang, K.; Zhao, G. Gesture Recognition Based on Flexible Data Glove Using Deep Learning Algorithms. In Proceedings of
the 2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Nanjing, China,
16–18 June 2023; pp. 113–117. [CrossRef]

27. Pisharady, P.K.; Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: A review. Comput. Vis.
Image Underst. 2015, 141, 152–165. [CrossRef]

28. Angel; Neethu, P.S. Real-Time Static and Dynamic Hand Gesture Recognition. Int. J. Sci. Eng. Res. 2013, 4, 1–6. Available online:
https://shop.tarjomeplus.com/UploadFileEn/TPLUS_EN_2846.pdf (accessed on 18 September 2024).

29. Arachchi, S.P.K.; Hakim, N.L.; Hsu, H.H.; Klimenko, S.V.; Shih, T.K. Real-Time Static and Dynamic Gesture Recognition Using
Mixed Space Features for 3D Virtual World’s Interactions. In Proceedings of the 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA), Krakow, Poland, 16–18 May 2018; pp. 627–632. [CrossRef]

30. Kaur, H.; Rani, J. A review: Study of various techniques of Hand gesture recognition. In Proceedings of the 2016 IEEE 1st
International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016;
pp. 1–5. [CrossRef]

31. Pezzuoli, F.; Corona, D.; Corradini, M.L. Recognition and classification of dynamic hand gestures by a wearable data-glove. SN
Comput. Sci. 2021, 2, 5. [CrossRef]

32. Sehyr, Z.S.; Caselli, N.; Cohen-Goldberg, A.M.; Emmorey, K. The ASL-LEX 2.0 Project: A database of lexical and phonological
properties for 2723 signs in American Sign Language. J. Deaf. Stud. Deaf. Educ. 2021, 26, 263–277. [CrossRef]

33. Achenbach, P.; Laux, S.; Purdack, D.; Müller, P.N.; Göbel, S. Give Me a Sign: Using Data Gloves for Static Hand-Shape Recognition.
Sensors 2023, 23, 9847. [CrossRef]

34. Kendon, A. Current Issues in the Study of Gesture. In The Biological Foundations of Gestures: Motor and Semiotic Aspects; Nespoulous,
J.L.; Perron, P.; Lecours, A.R., Eds.; Neuropsychology and Neurolinguistics, Psychology Press: New York, NY, USA; Hove,
UK, 2014.
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