

Correction: Rehman et al. Nanocomposite Membranes for PEM-FCs: Effect of LDH Introduction on the Physic-Chemical Performance of Various Polymer Matrices. *Polymers* 2023, 15, 502

Muhammad Habib Ur Rehman¹, Ernestino Lufrano^{1,*} and Cataldo Simari^{1,2,*}

- ¹ Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- ² National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
- * Correspondence: ernestino.lufrano@unical.it (E.L.); cataldo.simari@unical.it (C.S.); Tel.: +39-0984-493385 (C.S.); Fax: +39-0984-492044 (C.S.)

In the original publication [1], the authors identified a mistake in Figure 3a as published. The raw data for the XRD spectra of sPSU/LDH membrane were reported twice as sPSU/LDH and sPEEK/LDH. The corrected Figure 3a appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Figure 3. (a) XRD patterns and (b) DMA thermograms for the Nafion-based, sPEEK-based, and sPSU-based membranes.

Reference

 Rehman, M.H.U.; Lufrano, E.; Simari, C. Nanocomposite Membranes for PEM-FCs: Effect of LDH Introduction on the Physic-Chemical Performance of Various Polymer Matrices. *Polymers* 2023, 15, 502. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Citation: Rehman, M.H.U.; Lufrano, E.; Simari, C. Correction: Rehman et al. Nanocomposite Membranes for PEM-FCs: Effect of LDH Introduction on the Physic-Chemical Performance of Various Polymer Matrices. *Polymers* 2023, *15*, 502. *Polymers* **2024**, *16*, 2673. https://doi.org/10.3390/ polym16182673

Received: 23 July 2024 Accepted: 7 August 2024 Published: 23 September 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).