Skip to main content
. 2024 Sep 23;18(5):051301. doi: 10.1063/5.0215567

TABLE II.

Literature summary of nanoparticle synthesis using supercritical CO2 in microfluidics.

Microfluidic Size Pressure Temperature
design Nanoparticle (nm) (MPa) (°C) Reference
Co-flow Palladium (Pd) nanocrystal 3.6 ± 0.6 25 100 Gendrineau et al.49
Co-flow Poly(3-hexylthiophene) (P3HT) nanoparticle 36 ± 8 10 40 Couto et al.50
47 ± 12 8 50
Co-flow Tetraphenylethylene (TPE) nanoparticle 9 ± 3 10 40 Jaouhari et al.80
Co-flow Fluorescent organic nanoparticle 16 ± 4 10 40 Jaouhari et al.46
T-junction Polyvinyl alcohol (PVA) nanoparticle 10–20a 8.5–12 36.85 Murakami and Shimoyama51
T-junction Ibuprofen/PVA nanoparticleb 231 ± 31 8.5–12 36.85 Murakami and Shimoyama52
T-junction Timolol maleate (TM)-loaded liposome 80–3000c 10 40 Murakami et al.54
T-junction PEGylated liposome 270–417d 10 40 Akiyama et al.53
T-junction Stearic acid solid lipid nanopariticle 20–150e 8.5–20 40 Wijakmatee et al.81
a

Depending on the degree of PVA hydrolyzed.

b

Ibuprofen/PVA nanoparticles were functionalized by chitosan.

c

Depending on the co-solvent (ethanol) flow rate.

d

Depending on the ratio of PEG:lipid.

e

Depending on the pressure and total flow rate of water and oil phases.