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Abstract: With the increasing popularity of Android smartphones, malware targeting the Android
platform is showing explosive growth. Currently, mainstream detection methods use static analysis
methods to extract features of the software and apply machine learning algorithms for detection.
However, static analysis methods can be less effective when faced with Android malware that em-
ploys sophisticated obfuscation techniques such as altering code structure. In order to effectively
detect Android malware and improve the detection accuracy, this paper proposes a dynamic de-
tection model for Android malware based on the combination of an Improved Zebra Optimization
Algorithm (IZOA) and Light Gradient Boosting Machine (LightGBM) model, called IZOA-LightGBM.
By introducing elite opposition-based learning and firefly perturbation strategies, IZOA enhances the
convergence speed and search capability of the traditional zebra optimization algorithm. Then, the
IZOA is employed to optimize the LightGBM model hyperparameters for the dynamic detection of
Android malware multi-classification. The results from experiments indicate that the overall accuracy
of the proposed IZOA-LightGBM model on the CICMalDroid-2020, CCCS-CIC-AndMal-2020, and
CIC-AAGM-2017 datasets is 99.75%, 98.86%, and 97.95%, respectively, which are higher than the
other comparative models.

Keywords: Android malware detection; improved zebra optimization algorithm; LightGBM;
hyperparameter optimization

1. Introduction

In the intelligent era, the rapid development and diversification of Android applica-
tions have led to an increase in Android malware attacks, which have become increasingly
severe [1]. Traditional Android malware detection methods based on static analysis, es-
pecially signature-based techniques, can effectively identify known Android malware.
However, when the code structure and behavioral patterns of Android malware change,
static analysis-based detection methods find it difficult to effectively identify their true
intent [2]. This leads to a decrease in detection accuracy.

For this reason, researchers have proposed a dynamic analysis method that focuses
on the behavior of Android malware [3]. Android malware is detected through the results
of its execution in a sandbox environment. To improve the accuracy of Android malware
detection, machine learning (ML) algorithms have been widely adopted. Aslan et al. [2]
demonstrated that ML methods lead to improved detection of both known and unknown
Android malware. Recently, Gradient Boosting Decision Trees (GBDTs) [4] have shown
excellent performance in many studies [5]. Among these methods is the Light Gradient
Boosting Machine (LightGBM) [6], an improved GBDT with the advantages of faster
training and higher efficiency [7]. In a study by Kirubavathi et al. [7], LightGBM achieved
an accuracy of 98.05% in Android malware detection.
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However, the LightGBM model contains a large number of hyperparameters, and the
values of these hyperparameters significantly affect the model’s detection performance.
Manual parameter tuning is extremely challenging due to the sheer number of hyperparam-
eters, the model’s inherent complexity, and the interdependencies among these non-linear
hyperparameters. In order to construct an efficient LightGBM-based Android malware
detection model, this paper proposes using an optimization method to set the values of the
LightGBM hyperparameters.

Since hyperparameter optimization problems are usually nonconvex or nondifferen-
tiable optimization problems, traditional optimization methods may obtain local rather than
global optimal solutions. In contrast, metaheuristic algorithms can be effective techniques
for solving complex, large-search-space, and nonconvex optimization problems belonging
to hyperparametric optimization problems [8]. The Zebra Optimization Algorithm (ZOA)
is a novel metaheuristic algorithm that has demonstrated better performance compared
to traditional metaheuristics [9]. Despite this, the ZOA still suffers from issues of slow
convergence and the tendency to fall into local optimal solutions, limiting its performance.

This paper introduces a dynamic analysis detection model for Android malware,
utilizing the Improved Zebra Optimization Algorithm (IZOA) and LightGBM, named the
IZOA-LightGBM model, aimed at effectively enhancing the accuracy of malware detection.
The model improves the initialization process of the ZOA by introducing elite opposition-
based learning (EOBL), which expands the search space and accelerates the convergence
speed of the algorithm. The population updating process of the ZOA is improved by
introducing the firefly disturbance strategy (FDS), which enhances the local search ability
and helps the algorithm avoid falling into local optimal solutions. The optimization process
of the hyperparameters of the LightGBM model is completed using the IZOA, which
ultimately enables the dynamic detection of Android malware. The primary contributions
of this study are outlined in the following points:

1. A novel dynamic analysis-based Android malware detection model using the im-
proved ZOA and LightGBM is proposed, called the IZOA-LightGBM model. It
effectively improves the accuracy of Android malware detection.

2. The EOBL and FDS are introduced to improve the traditional ZOA and enhance its
search capabilities. The improved algorithms are used to optimize the hyperparame-
ters of the LightGBM model.

3. A suite of experiments was designed to explain and validate the proposed model.

The rest part of this paper is organized as follows. Section 2 presents related work
in the field of Android malware detection. Section 3 presents the IZOA-LightGBM model
proposed in this paper. Section 4 evaluates and analyzes the detection model proposed
in this paper. Section 5 summarizes this paper and provides potential directions for
future research.

2. Related Work

Android malware detection methods can generally be divided into three categories:
static analysis methods, dynamic analysis methods, and hybrid analysis methods. The
results of a study by Gorment et al. [10] in 2023 showed that most of the studies used static
analyses with 53.3%, followed by dynamic analyses with 28.9%, and hybrid analyses with
only 17.8%.

Static analysis methods, also known as code analysis methods, involve examining
software code while it is in a non-executing state. This approach gathers static data from the
code to determine if the software in question is classified as Android malware. Researchers
have proposed various static analysis-based methods for Android malware detection. For
instance, Khariwal et al. [11] used information gain to rank permissions and intents with
the aim of finding the optimal set of permissions and intents that would enable better
detection of Android malware and proposed a new algorithm by applying several ML
algorithms such as Support Vector Machine (SVM), Random Forests (RF), Naive Bayes
(NB), and K-Nearest Neighbors (KNN) to find the optimal set. The experiments displayed
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that RF achieved the highest accuracy rate of 94.73%. Dhalaria et al. [12] extracted API call
attributes from the classes.dex file, as well as permission and intent attributes from the
AndroidManifest.xml file, and then used these attributes for training and testing to classify
the application. The results of the study showed that combined features perform better
compared to individual features and it was found that the RF and KNN classifiers provided
the highest accuracy of 95.9% for classifying Android apps. Shatnawi et al. [13] proposed
an Android malware detection method based on Android permissions and API calls. The
experimental results showed that the SVM classifier achieved the highest recognition
rate among other comparative classifiers. An average accuracy of 94% was achieved
with permission features, while 83% was achieved with API call features. However, when
complex obfuscation techniques (e.g., code obfuscation, shelling) are used on an application,
static analysis might fail to uncover the genuine behavior of the malware.

Dynamic analysis methods, also known as behavioral analysis methods, record be-
havioral information such as behavioral logs, context parameters, API call sequences, and
other behavioral information of Android malware by executing Android malware samples
in a virtual controlled environment. Li et al. [14] proposed a novel framework for Android
malware detection based on deep learning (DL) and dynamic analysis. The framework first
applies embedding and convolutional layers to perform a joint representation of multiple
APIs to represent software behavior. Second, the semantic information of each API call is
represented using the API’s category, activity, and operation objects. Finally, a bi-directional
long and short-term memory network module is used to mine the relational information
between APIs. The study’s findings demonstrated that the method achieves an accuracy
rate of 97.31%. Chai et al. [15] proposed a dynamic prototype network for small-sample
Android malware detection. This network first uses a dynamic convolutional network
to extract dynamic features based on sample adaptation. Subsequently, a dual-sample
dynamic activation function is introduced to leverage the inter-sample correlation, thereby
mitigating the influence of features that lack correlation between samples on the metric
learning process. Experiments showed that the accuracy of the method reaches 94.32%.
Hwang et al. [16] proposed a two-stage ransomware detection method based on dynamic
analysis. The method first uses a Markov model to capture the features of the software,
and later uses an RF model for detection. Experiments showed that the accuracy of the
method is 97.3%. Mahdavifar et al. [17] proposed a dynamic Android malware detection
method using semi-supervised DL. This method is trained using a set of labeled and a set
of unlabeled samples and uses dynamic analysis to extract dynamic behavioral profiles
as feature vectors. Experimental results showed that the method achieves up to 96.7%
accuracy. However, dynamic analysis methods require more computational resources and
time because they require malware execution in an isolated environment.

Hybrid analysis methods integrate static analysis and dynamic analysis methods to
capitalize on the strengths of each approach. Static analysis methods are first used to
examine the Android malware. Then, the Android malware is launched in a simulated
environment to observe its actual behavior. Hadiprakoso et al. [18] trained various ML
algorithms including SVM, Decision Tree (DT), RF, NB, and KNN to observe their perfor-
mance on datasets based on both static and dynamic analysis. Experimental results showed
that hybrid analysis can improve Android malware detection accuracy by 5% compared to
static analysis alone. Ding et al. [19] proposed a model based on hybrid analysis, which
first uses a chi-square test for feature selection, followed by RF for classification, and then
uses a residual network combined with a long short-term memory network on top of RF
classification results for further classification. Experiments showed that the model has an
accuracy of 99%. Amer et al. [20] introduced a universal behavioral graph framework to
characterize both malicious and benign processes. The behavioral graph model is based
on a combination of statistical, contextual, and graph mining attributes that detect both
explicit and implicit connections among API functions within a sequence of invocations.
Experiments showed that the model achieves 97.7% accuracy. However, the hybrid analysis
method might demand additional computational resources and time because it merges
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static and dynamic analysis and needs to harmonize and integrate the results of the two
analysis methods.

In addition, some scholars have suggested Android malware detection methods that
utilize improved meta-heuristic algorithms. For instance, Al-Ogaili et al. [21] suggested
to improve the population update process of the whale optimization algorithm using
weighted arithmetic mean and applied the improved algorithm for feature selection to
detect Android malware attacks. Dong et al. [22] proposed a method to improve the initial-
ization process of the firework optimization algorithm using Lévy flights and improved the
updating process of the algorithm using an elitist bootstrapping strategy. The improved
fireworks optimization algorithm was then applied to optimize the hyperparameters of
the SVM model, subsequently, the optimized SVM model was used to detect Android
malware. Aldehim et al. [23] proposed an initialization process to improve the black widow
optimization algorithm using Gaussian chaotic mapping for feature selection. Liu et al. [24]
introduced a probability density function to improve the particle update process of the
particle swarm optimization (PSO) [25] algorithm and applied the improved algorithm
to prevent malicious attacks. Given that the ZOA is a relatively new optimization algo-
rithm, fewer researchers have contributed improvements. For example, Qi et al. [26] used
chaotic mapping to improve the ZOA population initialization process and improved the
population updating process of the algorithm using a positive cosine strategy and dynamic
adaptive weighting coefficients. DAMA et al. [27] used chaotic sinusoidal mapping to
improve the population updating process of the ZOA. Nevertheless, these approaches
continue to face issues with slow convergence rates and a propensity for becoming stuck in
local optima.

3. Methods

LightGBM, proposed by Ke and colleagues in 2017, is an improvement of the GBDT
algorithm [6]. It diminishes computational demands by employing gradient-based one-side
sampling, which filters out samples with smaller gradients during training. In addition,
the use of the exclusive feature bundling algorithm reduces the number of features used
in the model training process and effectively reduces the complexity of the model. The
model has received a lot of attention and has been successfully used for many different
types of tasks such as classification, regression and ranking [28]. The LightGBM model
has the advantages of faster training and higher efficiency [7]; these advantages make it
ideal for Android malware detection. However, the performance of LightGBM is heavily
influenced by its many hyperparameters. In order to better utilize LightGBM for Android
malware detection, this study used the IZOA to optimize the hyperparameters of the
LightGBM model. Figure 1 illustrates the structural framework of the method proposed in
this paper. Table 1 lists 11 key hyperparameters that require optimization in the LightGBM
model [28,29].

Table 1. Hyperparameters for LightGBM model optimization.

Hyperparameters Meaning

learning_rate Learning rate
min_child_samples Minimum number of samples required for leaf nodes

max_depth Maximum depth
num_leaves Number of leaf nodes in each tree

max_bin Maximum possible number of eigenvalue bins
min_data_in_leaf Minimum number of samples for leaf nodes
feature_fraction Proportion of feature subsets used to train the model
bagging_fraction Control the sampling ratio of the training data

bagging_freq Frequency of bagging
reg_alpha L1 regular term coefficient

reg_lambda L2 regular term coefficient
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Figure 1. Structural framework of IZOA-LightGBM model.

The content of this chapter is arranged as follows: Section 3.1 introduces the hyper-
parameter optimization method for the LightGBM model based on the ZOA; Section 3.2
introduces the process of optimizing hyperparameters with the improved ZOA, namely
IZOA; and Section 3.3 offers an in-depth explanation of the IZOA-LightGBM model for the
dynamic analysis and detection of Android malware.

3.1. Zebra Optimization Algorithm

The ZOA, introduced by Trojovska et al. [9] in 2022, is a meta-heuristic optimization
algorithm. The algorithm solves the optimization problem by simulating the foraging
and defensive behaviors of zebras. The ZOA outperforms nine well-known optimization
algorithms, such as the Grey Wolf Optimizer (GWO) [30], Genetic Algorithm (GA) [31],
PSO [9], etc. The hyperparameter steps for optimizing LightGBM based on the conventional
ZOA are as follows:

1. Initialize zebra population: Randomly generate an initial population containing z
zebras. Each zebra i is defined as a position vector Ai =

(
ai,1, · · · , ai,j, · · · , ai,11

)
that

corresponds to the 11 hyperparameter values to be optimized in the LightGBM model
as described above. ai,j is the jth hyperparameter value, which takes the value interval[
lj, uj

]
, 1 ≤ i ≤ z, 1 ≤ j ≤ 11. The fitness function F(Ai) is specified as depicted in

Equation (1):
F(Ai) = min

(
1 − AccuracyLightGBM

)
(1)
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where AccuracyLightGBM denotes the accuracy of the LightGBM model.

The zebra with the lowest fitness function value in the population is defined as the Pioneer
Zebra (PZ). The PZ guides the other zebras toward its position during the optimization process.

2. Foraging phase: In this phase, the jth hyperparameter value of zebra Ai is calculated
using Equation (2). Subsequently, the position is updated using Equation (3):

anew
i,j = ai,j + r

(
PZj − φ·ai,j

)
(2)

Ai =

{
Anew

i , F
(

Anew
i

)
< F(Ai)

Ai , else
(3)

where Anew
i is the new position of zebra Ai, anew

i,j is the updated value of its jth hyperpa-
rameter value, and F

(
Anew

i
)

is the updated value of the corresponding fitness function.
r represents a random value within the range [0, 1], PZj is the jth hyperparameter
value of the pioneer zebra, and φ = round(1 + r).

3. Defense phase: In this phase, the zebra either flees upon being attacked by a lion
(M1) or it counterattacks (M2). Let the selection probability, p ∈ [0, 1], be a random
number that determines the strategy. The zebra’s position is then updated based on
the chosen strategy, as described by Equation (4). Subsequently, update the zebra
position using Equation (3).

anew
i,j =

{
M1 : ai,j + β·(2r − 1)·

(
1 − t

T
)
·ai,j, p ≤ 0.5

M2 : ai,j + r·
(

AZj − φ·ai,j
)

, else
(4)

where t is the current iteration number, T is the maximum iteration number, and β is
a constant value equal to 0.01 [9]. AZ denotes the position of any zebra in the zebra
population except the ith one, and AZj is the value of its jth hyperparameter.

4. Iteration: In each iteration, the zebra with the lowest fitness value is chosen as the
pioneer zebra PZ. Steps 2 and 3 are reiterated until the iteration limit is attained. The
PZ selected after the last iteration is considered the optimal solution.

3.2. Improved Zebra Optimization Algorithm

In the ZOA, the initialization population is generated randomly, which can lead to
slow convergence [26]. This study improves the initialization process of the ZOA by
introducing EOBL, which accelerates the convergence speed and boosts the algorithm’s
global search capability. In addition, the ZOA may also fall into local optimal solutions
during the population updating process [27]. In this paper, the FDS is introduced to
improve the population updating process of the ZOA, further avoiding falling into local
optimal solutions and enhancing the local search capability.

3.2.1. Introducing Elite Opposition-Based Learning to Improve Population Initialization

Opposition-based learning (OBL) [32] is a strategy for enhancing ML proposed by
Tizhoosh et al. in 2005. Wang et al. introduced the idea of elite learning and proposed
EOBL based on OBL [33]. Experimental results demonstrated that the EOBL has better
performance than OBL [33].

In this study, elite opposition-based zebras were generated through EOBL. The fitness
function values of both the current and elite opposition-based zebras were calculated and
compared, and the zebra with the lower value was selected for the subsequent generation.
The detailed steps are outlined below:

1. For any zebra Ai, its opposition-based zebra is denoted by A′
i =

(
a′i,1, · · · , a′i,j, · · · , a′i,11

)
,

where a′i,j = r·(l j + uj

)
− ai,j. If F

(
A′

i
)
< F(Ai), then Ai is defined as an elite zebra,

denoted as Ei. Otherwise, Ai is directly used as a next-generation zebra.
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2. All elite zebras in the zebra population are selected to form the elite zebra population.
Let ei,j be the jth hyperparameter value of the elite zebra Ei; then, the jth hyperparam-
eter value e∗i,j of the elite opposition-based zebra E∗

i is calculated as shown in Equation
(5). Use Equation (6) to select the next generation of zebras.

e*
i,j = r·

(
aj + bj

)
− ei,j (5)

Ai =

{
E*

i , F
(
E*

i
)
< F(Ai)

Ai , else
(6)

where aj and bj are the lower and upper bounds of the elite zebra population, respec-
tively. aj = min

[
e1,j, · · · , ei,j, · · · , ep,j

]
, bj = max

[
e1,j, · · · , ei,j, · · · , ep,j

]
, and p denotes

the number of elite zebras, which is less than or equal to the total zebra count within
the population. F

(
E∗

i
)

is the value of the fitness function corresponding to the elite
opposition-based zebra E∗

i .

Figure 2 shows the population initialization process based on the EOBL improvement
of the ZOA for optimization of the LightGBM hyperparameters.

Figure 2. Flowchart of the introduction of EOBL for improved population initialization.
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3.2.2. Introducing Firefly Disturbance Strategy to Update Zebra Positions

The firefly algorithm, introduced by Yang et al. [34] in 2010, is a meta-heuristic algo-
rithm. The idea originates from the attraction and movement between individual fireflies
in nature. This paper introduces the FDS, a key strategy in the firefly algorithm, to improve
the population update process of the ZOA. Through the FDS, new zebras are generated,
the fitness function values of the current zebra and the new zebra are compared, and the
lower one is selected as the next-generation zebra.

Following the position adjustment in the defense phase, the position of zebra Ai is
updated again using the FDS. The jth hyperparameter value of zebra Ai is calculated using
Equation (7), and the position is updated using Equation (3):

anew
i,j = ai,j + β·

(
PZj − ai,j

)
+ δ·

(
r − 1

2

)
(7)

where β = β0·e−θSAi ,PZ
2
, β0, and θ are constants; SAi ,PZ is the spatial distance between the

current zebra Ai and the pioneer zebra PZ; and δ is the step factor belonging to the interval
[0, 1].

Figure 3 illustrates the process of population updating based on the FDS to improve
the ZOA.

Figure 3. Flowchart of the introduction of FDS to improve zebra position updating.

3.2.3. Detailed Steps to Improve the Zebra Optimization Algorithm

This section describes in detail the complete steps of the IZOA for optimizing the
hyperparameters of LightGBM. The flowchart of the IZOA is shown in Figure 4.
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Figure 4. Flowchart of the IZOA.

The following section describes the specific steps of the IZOA:

1. Setting IZOA parameters: Set the parameters of the IZOA, including the number
of zebra population, the minimum and maximum values of hyperparameters to be
optimized in the LightGBM model, the maximum number of iterations, and so on.
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2. Introducing EOBL to initialize the population: First, randomly generate the zebra
population. Then, compare the fitness function values of current zebras and elite
opposition-based zebras, selecting the one with the lower value as the next-generation
zebras.

3. Update the pioneer zebra: Select the zebra with the lowest fitness function value in
the population as the pioneer zebra.

4. Position update during foraging phase: Calculate the new position of the zebra using
Equation (2) and update the position using Equation (3). If the new position has
a lower fitness function value, update the position; otherwise, retain the original
position.

5. Defense phase position update: Calculate the new position of the zebra using Equation
(4) based on the value of the random number p. Update the position using Equation (3).
If the new position has a lower fitness function value, update the position; otherwise,
retain the original position.

6. Introduces the FDS to update the zebra position again: Calculate the new position of
the zebra using Equation (7) and update the position using Equation (3). If the new
position has a lower fitness function value, update the position; otherwise, retain the
original position.

7. Check whether all zebras are traversed: If the current iteration has not traversed all
zebras, return to step 4 to update the next zebra’s position. If all zebras have been
updated, proceed to the next step.

8. Verify if the iteration limit has been met: If the maximum number of iterations has
not been reached, return to step 3 to continue iterating. If reached, output the pioneer
zebra of the IZOA, i.e., the optimal hyperparameters of the LightGBM model, and
end the optimization process.

3.3. Android Malware Detection Model IZOA-LightGBM

The IZOA-LightGBM model utilizes the IZOA to tune the hyperparameters of Light-
GBM with the aim of identifying the optimal hyperparameter settings to improve the
detection accuracy. Figure 5 illustrates the flowchart of the IZOA-LightGBM model.

The specific steps for constructing the IZOA-LightGBM model are as follows:

1. Begin: Initiate the optimization process and initialize the environment and parameters.
2. Input dataset: Input Android malware dataset based on dynamic analysis.
3. Data preprocessing: Convert the dataset into a format acceptable to the model and

perform data preprocessing to enhance model performance.
4. Split the dataset: Divide the dataset into training, validation, and test sets for respec-

tive uses in model training, parameter tuning, and performance evaluation.
5. Initialize LightGBM model: Initialize the LightGBM model with default hyperparameters.
6. Optimize the LightGBM model hyperparameters with the IZOA: Use the IZOA to

optimize the LightGBM model hyperparameters, evaluate different combinations
using the validation set, and pass the selected optimal hyperparameters to the Light-
GBM model.

7. Obtain the IZOA-LightGBM model: Obtain the IZOA-LightGBM model with optimal
hyperparameters.

8. Evaluate the IZOA-LightGBM model: Assess the IZOA-LightGBM model perfor-
mance with the test set. Calculate the various metrics of the model (e.g., accuracy,
recall, F1-score, etc.). If the model meets expectations, proceed to the next step;
otherwise, return to step 6 and re-optimize.

9. Output software test results: Output the final model test results and indicators.
10. End: End the testing process, save all necessary results and models.
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Figure 5. Flowchart of the IZOA-LightGBM model.

The pseudo-code of the IZOA-LightGBM model is shown in Algorithm 1.
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Algorithm 1: Pseudo-Code of IZOA-LightGBM

1. Start the IZOA-LightGBM model.
2. Input: Dataset.
3. Perform data preprocessing.
4. Initialize the LightGBM model.
5. Define the IZOA fitness function using Equation (1).
6. Set the number of iterations (T), the number of zebras’ population (z), and the dimension of

the problem to be optimized for the IZOA.
7. Use EOBL, i.e., Equations (6) and (7), to create the initial zebra population.
8. Evaluate the fitness values of the zebras.
9. for k = 1 : T
10. Update the Pioneer Zebra (PZ)
11. for i = 1 : z
12. #Phase 1
13. Calculate the new position of the ith zebra using Equation (2).
14. Update the position of the ith zebra using Equation (3).
15. #Phase 2
16. p = rand()
17. if p ≤ 0.5:
18. Calculate the new position of the ith zebra using M1 of Equation (4).
19. else:
20. Calculate the new position of the ith zebra using M2 of Equation (4).
21. end if
22. Update the position of the ith zebra using Equation (5).
23. Use the FDS, i.e., Equations (8) and (9), to update the position of the ith zebra again.
24. Save the PZ.
25. end for i = 1 : z
26. end for k = 1 : T
27. Input the PZ obtained by the IZOA into the LightGBM model.
28. Obtain the LightGBM model with optimal hyperparameters.
29. Evaluate the IZOA-LightGBM model.
30. Use the optimal IZOA-LightGBM model for detection.
31. End the IZOA-LightGBM model.

4. Experiment and Analysis

Through extensive experiments, this study evaluated the performance of the proposed
IZOA-LightGBM model. The system’s hardware was equipped with an Intel (R) Core (TM)
i7-6700 CPU at 3.40 GHz, with 16.0 GB of RAM. The software setup incorporated Windows
10, Visual Studio Code, and Python 3.11.2. In this section, Section 4.1 describes the dataset
used for the evaluation. Section 4.2 details the evaluation metrics. Section 4.3 outlines the
preprocessing steps for the dataset. Section 4.4 presents and analyzes the evaluation results
of the IZOA-LightGBM model in detail. Section 4.5 summarizes these results.

4.1. Datasets

Three widely recognized public datasets based on dynamic analysis are used to
validate the performance of the IZOA-LightGBM model proposed in this paper on different
datasets. The first is the Canadian Institute for Cybersecurity Android Malware 2020
(CICMalDroid-2020) dataset [17,35], abbreviated as the CMD dataset for ease of writing.
The second is the Canadian Institute for Cybersecurity project in collaboration with the
Canadian Centre for Cyber Security Android Malware 2020 (CCCS-CIC-AndMal-2020)
dataset [36,37], referred to as the CCA dataset for ease of writing. The third is the Canadian
Institute for Cybersecurity Android Adware and General Malware (CIC-AAGM-2017)
dataset [38], referred to as the AAGM dataset for ease of writing. These two datasets are
ideal for Android malware detection evaluation due to their high quality and diversity [39].
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4.1.1. CMD Dataset

The CMD dataset comprises over 17,341 Android samples from various sources, such
as AMD, MalDozer, VirusTotal, and the Contagio security blog. For dynamic analysis, the
dataset covers five different categories: adware, banking malware, SMS malware, riskware,
and benign software. This dataset contains 471 features. Table 2 displays the sample counts
for each category.

Table 2. CMD dataset.

Name Count

Adware 1253
Banking malware 2100

SMS malware 3904
Riskware 2546

Benign software 1795
Total 11,598

4.1.2. CCA Dataset

The CCA dataset, which is a publicly available dataset jointly produced by the Cana-
dian Center for Cybersecurity and the Canadian Cybersecurity Institute in 2020. For
dynamic analysis, the dataset contains 142 features. There are 14 different types of Android
malware categories in this dataset, including adware, backdoor, file infector, no category,
Potentially Unwanted Application (PUA), ransomware, riskware, scareware, Trojan, Trojan
banker, Trojan dropper, Trojan SMS, Trojan spy, and zero-day vulnerability. However, the
authors of the dataset recommend excluding the no category and zero-day vulnerability
categories because the data for these categories are incomplete. After removing the no
category and zero-day vulnerability categories from the dataset, 12 categories remained.
Table 3 displays the sample counts for each category.

Table 3. CCA dataset.

Name Count

Adware 5142
Backdoor 546

FileInfector 119
PUA 625

Ransomwore 1550
Riskware 6792
Scareware 424

Trojan 4025
Trojan_Banker 123

Trojan_Dropper 733
Trojan_SMS 911
Trojan_Spy 1039

Total 22,029

4.1.3. AAGM Dataset

The AAGM dataset was compiled by the Canadian Institute for Cyber Security Re-
search. To generate traffic that is representative of the real world, the institute used an
Android smartphone (Nexus 5) rather than an emulator or Android virtual device for traffic
collection, ensuring both the quality and quantity of the dataset. For dynamic analysis, the
dataset contains 80 features. There are three different types of Android malware categories
in this dataset: 1500 benign, 250 adware, and 150 general malware. The number of traffic
bars for each category is shown in Table 4.
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Table 4. AAGM dataset.

Name Count

Benign 471,597
Adware 155,613

GenMalware 4745
Total 631,955

4.2. Evaluation Metrics

The following metrics were utilized to assess the model performance:

1. Training time [17]: The training time is the time taken by the model from the beginning
to the end of the training process.

2. Detection time [17]: The detection time is the time taken by the model from receiving
the sample to be detected to making a judgment on whether it is malware or not.

3. Model size [17]: The model size is the amount of space occupied by model on the
storage medium.

4. Accuracy [40]: Accuracy is the ratio of the correctly identified samples to the total
number of samples in the model. The formula is presented in Equation (8):

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

where TP (True Positive) represents the number of samples that the model correctly
predicted as a category; TN (True Negative) represents the number of samples that
the model correctly predicted as other categories; FP (False Positive) represents
the number of samples that the model incorrectly predicted as samples from other
categories; and FN (False Negative) represents the number of samples that the model
incorrectly predicts as other categories for that category.

5. Precision [40]: Precision is the proportion of samples that the model classified as posi-
tive that are actually of the positive category. The formula is presented in Equation (9):

Precision =
TP

TP + FP
(9)

6. Recall rate [40]: The recall rate is the ratio of the number of samples correctly identified
as positive by the model to the total number of samples that are actually positive. The
formula is presented in Equation (10):

Recallrate =
TP

TP + FN
(10)

7. F1-Score [40]: The F1-score is a reconciled average of the precision and recall and is
used to measure the comprehensive performance of the model in the classification
task. The formula is presented in Equation (11):

F1 − Score = 2 × Precision × Recall
Precision + Recall

(11)

4.3. Data Preprocessing

This study conducted a series of data preprocessing steps on the CMD and CCA
datasets, including dataset balancing, feature selection, and dimensionality reduction. Bal-
ancing the dataset made the model predictions fair for all categories, while making the
model generalize better for all categories [41]. The feature selection and feature dimen-
sionality reduction were designed to remove irrelevant or redundant features. In doing so,
the model complexity is diminished. In most cases, this approach improves the detection
accuracy of the model while also reducing the risk of model overfitting [42].
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4.3.1. Balancing Datasets

This study employed three oversampling techniques to balance the datasets: the
Adaptive Synthetic Sampling Approach (ADASYN) [43], Random Oversampling Approach
(ROA) [41], and Synthetic Minority Over-sampling Technique (SMOTE) [44]. For the CMD
dataset, the SMS malware category has the largest number of samples (3904), so this study
oversampled each category to 4000 samples. For the CCA dataset, the Trojan category has a
larger number of samples, totaling 4025. This study oversampled the categories with fewer
than 4025 samples to 4025 samples, and undersampled the categories with more than 4025
samples using random undersampling to 4025 samples. The AAGM dataset was balanced
to 10,000 entries per category due to the large number of samples and the limited computing
power of the experimental equipment. Table 5 shows the accuracy of the datasets generated
using different oversampling techniques on the default LightGBM model.

Table 5. Comparison of different oversampling techniques.

Datasets Techniques Accuracy (%)

CMD

ROA 98.4
ADASYN 97.8
SMOTE 97.3

Unbalanced 93.8

CCA

ROA 96.33
ADASYN 95.63
SMOTE 95.21

Unbalanced 85.51

AAGM

ROA 90.36
ADASYN 91.45
SMOTE 90.09

Unbalanced 88.53
Bold indicates the highest accuracy.

As can be seen from Table 5, for both the CMD, CCA, and AAGM datasets, the
oversampling technique generally improves the accuracy of the models, compared to
the unbalanced dataset. Both CMD and CCA datasets achieved the highest accuracy
using the ROA. The AAGM dataset achieved the highest accuracy using the Adasyn
oversampling technique.

4.3.2. Feature Selection

In this study, the balanced CMD, CCA, and AAGM datasets were fed into the Light-
GBM model with default hyperparameters. The purpose was to determine the importance
of features for predicting labels through feature selection. In this study, split gain [6] was
used as a measure of feature importance. Using this method, feature columns that have
low split gain are identified and retained, and they are combined with label columns to
construct a new dataset. The results before and after feature selection are shown in Table 6.

Table 6. Feature selection results.

Datasets Original Feature
Count

Remaining
Feature Count

Accuracy before
Feature

Selection (%)

Accuracy after
Feature

Selection (%)

CMD 471 230 98.4 98.5
CCA 142 115 96.33 96.46

AAGM 80 71 91.45 91.77
Bold indicates the highest accuracy.

As shown in Table 6, the split gain-based feature selection strategy decreases the
feature count of the datasets and marginally improves the model accuracy. This may be due
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to the fact that the strategy effectively removes redundant features that do not contribute
much to the detection results, as well as reduces the noise interference in the data, thus
allowing the model to focus more on the information that contributes substantially to the
detection results.

4.3.3. Feature Dimensionality Reduction

This study further applied Principal Component Analysis (PCA) [42] to the after
feature selection dataset for feature dimensionality reduction. PCA is a method of dimen-
sionality reduction that transforms the high-dimensional space into a low-dimensional
one, aiming to preserve the original data structure and important information. Reducing
the data dimensions can enable ML models to analyze data more quickly and efficiently.
Figures 6–8 show the cumulative explained variance for the CMD, CCA, and AAGM
datasets, respectively. The cumulative explained variance refers to the proportion of the
total variance explained by all principal components that is accounted for by the first n
principal components. The results before and after dimensionality reduction are shown
in Table 7.

Figure 6. Variance distribution of the number of principal components of the CMD dataset.

Figure 7. Variance distribution of the number of principal components of the CCA dataset.
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Figure 8. Variance distribution of the number of principal components of the AAGM dataset.

Table 7. Comparison of dataset before and after dimensionality reduction.

Datasets Feature Count Accuracy (%) Training Time (s)

CMD
Before Dimensionality Reduction 230 98.5 4.3
After Dimensionality Reduction 29 97.8 1.0

CCA
Before Dimensionality Reduction 115 96.46 11.7
After Dimensionality Reduction 108 95.94 10.5

AAGM
Before Dimensionality Reduction 80 91.77 5.6
After Dimensionality Reduction 46 90.57 4.1

Figure 6 and Table 7 indicate that 99.9% of the cumulative explained variance was
achieved with 29 principal components after conducting dimensionality reduction on the
CMD dataset. Although the accuracy was reduced by 0.7%, the training time was reduced
by 1.5 s. In addition, Figure 7 and Table 7 indicate that 99.9% of the cumulative explained
variance was achieved with 108 principal components after dimensionality reduction
processing on the CCA dataset. Although the accuracy was reduced by 0.52%, the training
time was reduced by 1.2 s. Figure 8 and Table 7 indicate that 99.9% of the cumulative
explained variance was achieved with 108 principal components after dimensionality
reduction processing on the AAGM dataset. Although the accuracy was reduced by 1.2%,
the training time was reduced by 1.5 s.

4.4. Experimental Results and Analysis

To ensure the reliability of the experimental results and to exclude the influence of
chance factors, all experiments in this section were repeated 20 times independently in study
paper, and the final results were taken as the average of these independent experiments.

When learning dependencies from data, it is crucial to categorize the data into training,
validation, and test sets to prevent overfitting [20]. In this study, 80% of the dataset was
utilized for model training, 10% was used for validation to adjust the model, and the
remaining 10% was allocated for testing and evaluating the model. To further prevent
model overfitting, an early stop strategy was used throughout the evaluation process,
establishing 500 as the training epoch count, and ending the training when the model
accuracy did not improve for 10 consecutive rounds.

During the experiments, some classical optimization algorithms and classifiers were
selected as comparison models, including the LightGBM model optimized using the ZOA
(ZOA-LightGBM), the LightGBM model optimized using the Simulated Annealing (SA)
algorithm (SA-LightGBM), the LightGBM model optimized using the PSO algorithm
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(PSO-LightGBM), the XGBoost model optimized using the IZOA proposed in this paper
(IZOA-XGBoost), the default LightGBM model, Logistic Regression (LR), and a Multi-
Layer Perceptron (MLP) with default hyperparameters. The optimal parameters of each
optimization algorithm determined after several experiments are shown in Table 8. Both
the LightGBM and XGBoost models used the multi-category log loss as their performance
metric, suitable for evaluating models in multi-categorization tasks.

Table 8. Parameters of optimization algorithms.

Algorithms Parameters Value Meaning

IZOA

pop 30 Population number
maxiter 100 Maximum number of iterations

dim 11 Problem dimension

θ 2 Controls the amplitude of
disturbance

β0 2 Initial attraction coefficient
δ 1 Rate of attraction decay adjustment

ZOA
pop 30 Population number

maxiter 100 Maximum number of iterations
dim 11 Problem dimension

SA
maxiter 100 Maximum number of iterations

dim 11 Problem dimension
tolfun 1 × 10−9 Tolerance for change

PSO

ps 30 Number of particles
maxiter 100 Maximum number of iterations

dim 11 Problem dimension
w 9 Inertia factor
c1 2 Acceleration constant
c2 2 Acceleration constant

v_min −5 Lower bound of velocity
v_max 5 Lower bound of velocity

4.4.1. Comparison and Analysis of Confusion Matrices

The confusion matrix, as a commonly used performance evaluation method, can
intuitively display model detection effects. It is shown for the IZOA-LightGBM model in
Figures 9–11.

As can be seen in Figures 9–11, the majority of the IZOA-LightGBM model samples in
this study were focused along the principal diagonal of the confusion matrix. Points on
the primary diagonal of the matrix indicate correct classifications, whereas off-diagonal
points signify misclassifications. Thus, the high percentage of main diagonal samples is
intuitive evidence of the model’s superior detection performance. On the CMD dataset, the
IZOA-LightGBM model incorrectly recognized only 5 out of 2000 samples in the test set.
This outcome indicates that the model has a strong ability to distinguish between software
samples when they are tested.

4.4.2. Accuracy Comparison

Table 9 presents a comparative analysis of the overall accuracy of the eight models on
the CMD, CCA, and AAGM datasets, while Table 10 provides a comparison of the accuracy
for each individual class.



Sensors 2024, 24, 5975 19 of 30

Figure 9. Confusion matrix of IZOA-LightGBM on CMD.

Figure 10. Confusion matrix of IZOA-LightGBM on CCA.
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Figure 11. Confusion matrix of IZOA-LightGBM on AAGM.

Table 9. Comparison of overall accuracy.

Model
Accuracy (%)

CMD CCA AAGM

IZOA-LightGBM 99.75 98.86 97.95
ZOA-LightGBM 98.76 97.76 96.44
SA-LightGBM 98.85 97.93 96.41

PSO-LightGBM 98.94 97.54 97.04
IZOA-XGBoost 98.40 97.47 96.97

LightGBM 97.8 95.94 90.57
LR 46.57 73.33 60.97

MLP 55.55 91.84 79.33
Bold indicates the highest accuracy.

Table 10. Comparison of each category’s accuracy.

Datasets Category
Model

IZOA-
LightGBM

ZOA-
LightGBM

SA-
LightGBM

PSO-
LightGBM

IZOA-
XGBoost LightGBM LR MLP

CMD

Benign 100 99.27 99.51 99.27 99.51 96.35 59.37 69.59
Adware 99.76 98.32 98.56 99 98.32 98.08 20.62 67.63

Bank Malware 99.73 98.94 99.2 99.2 98.93 97.34 18.04 23.87
SMS Malware 99.75 99.24 98.98 99.24 97.47 97.72 91.67 34.6

Riskware 99.5 97.99 97.99 97.99 97.74 93.98 42.36 79.2

CCA

Adware 97.65 95.04 96.6 96.6 93.47 88..25 53.2 73.15
Backdoor 100 99.75 99.75 100 99.75 99.75 70.8 99.74

FileInfector 100 100 99.76 100 99.76 99.76 96.21 100
PUA 99.74 99.74 99.48 99.48 99.73 99.73 80.61 99.05

Ransomware 96.65 94.26 95.7 96.53 94.26 94.26 76.34 80.67
Riskware 98.12 94.6 94.6 93.3 93.9 86.85 61.37 79.46
Scareware 99.26 100 99.5 99 100 99.5 84.24 99.26

Trojan 98.13 92.29 92.28 92.29 91.12 85 58.05 82.06
Trojan_Banker 99.2 99.73 99.73 99.19 99.73 99.19 88.68 98.54

Trojan_Dropper 99.75 99.74 99.74 99.74 99.72 99.19 58.37 98.14
Trojan_SMS 98.49 99.24 98.74 98.48 99.23 99.24 72.66 94.27
Trojan_Spy 99.5 99.49 99.49 98.5 99 98.5 80.09 95.65

AAGM
GenMalware 98.31 97.68 97.29 98.06 98.26 91.96 66.37 82.12

Adware 98.11 96.62 96.51 97.21 97.01 93.03 63.98 82.19
Benign 97.41 94.98 95.38 95.78 95.98 86.65 50.1 70.68

Bold indicates the highest accuracy.
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Table 9 shows that the IZOA-LightGBM model achieves higher overall accuracy on the
CMD, CCA, and AAGM datasets, with 99.75%, 98.86%, and 97.95%, respectively. Table 10
indicates that the model also achieves higher accuracy for most categories. This suggests
that the IZOA effectively enhances the classification capabilities of the LightGBM model.
The accuracy of the LightGBM model combined with other optimization algorithms (ZOA,
SA, PSO) is also higher than that of the unoptimized model. This indicates that these
algorithms positively influence the model’s performance. However, the LR and MLP
models do not perform as well as the decision tree-based detection models on any of the
datasets, with particularly lower accuracies on the CMD dataset.

4.4.3. Precision Comparison

Table 11 compares the precision of the aforementioned eight models on the CMD,
CCA, and AAGM datasets.

Table 11. Precision comparison.

Datasets Category
Model

IZOA-
LightGBM

ZOA-
LightGBM

SA-
LightGBM

PSO-
LightGBM

IZOA-
XGBoost LightGBM LR MLP

CMD

Benign 99.76 98.79 99.03 98.79 99.03 96.19 77.46 74.67
Adware 99.76 98.8 98.8 98.8 98.09 97.56 53.75 65.89

Bank Malware 99.73 98.42 98.68 98.94 97.39 98.33 72.34 79.65
SMS Malware 100 98.5 98.49 98.99 98.47 99.74 31.62 82.53

Riskware 99.5 99.24 99.24 99.24 98.98 96.9 59.72 34.73

CCA

Adware 99.73 97.59 97.63 97.63 97.55 92.1 64.86 86.59
Backdoor 98.05 96.87 96.88 96.18 96.87 97.11 71.92 91.25

FileInfector 97.87 99.28 99.04 97.87 99.28 99.04 81.41 99.75
PUA 99.74 98.71 98.96 97.94 97.2 95.26 73.18 95.01

Ransomware 98.06 97.04 96.62 96.53 97.04 97.04 65.93 94.35
Riskware 100 99.02 99.02 99.02 98.52 92.04 74.04 86.9
Scareware 99.01 98.78 98.53 98.52 98.78 98.78 86.15 97.58

Trojan 99.29 97.29 97.29 97.29 96.53 91.46 71.66 83.83
Trojan_Banker 99.2 99.73 99.73 98.93 99.47 99.47 74.07 99.22

Trojan_Dropper 98.03 97.55 97.31 96.84 97.55 97.55 72.75 87.01
Trojan_SMS 98.49 94.03 95.38 94.9 94.03 94.03 61.86 88.29
Trojan_Spy 99.01 97.56 99.01 99 97.09 97.09 80.83 92.07

AAGM
GenMalware 98.03 96.01 96 96.48 96.4 91.07 70.75 82.12

Adware 97.53 96.33 96.33 97.12 97.31 89.3 53.18 73.94
Benign 98.29 97.03 96.94 97.55 97.25 91.42 60.85 83.01

Bold indicates the highest precision.

As shown in Table 11, the IZOA-LightGBM model demonstrates superior precision
across the CMD, CCA, and AAGM datasets compared to the other models. The ZOA-
LightGBM, SA-LightGBM, and PSO-LightGBM models also performed similarly, but lower
than the IZOA-LightGBM model in some categories. The IZOA-XGBoost model also
performs better overall, but still slightly below the previously mentioned models. The
LR and MLP models are less precise than the other models in most categories, probably
because of the lack of hyperparameter optimization.

4.4.4. Recall Rate Comparison

Table 12 compares the recall rate of the aforementioned eight models on the CMD,
CCA, and AAGM datasets.

As shown in Table 12, the recall rate exhibits a similar trend to that of the precision
metric. On the CMD dataset, the IZOA-LightGBM model performs better, with a recall
rate at or near 100% for the Benign and Adware classes. Similarly, on the CCA dataset,
the FileInfector and Backdoor categories have 100% recall rate. In contrast, unoptimized
models like the default LightGBM, LR, and MLP models display inconsistent performance,
performing well in some categories but not in others. In addition, for the FileInfector
category, most of the models are correctly recognized. On the AAGM dataset, for the
Benign category, the recall of the eight models was generally lower than the other two
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categories. This phenomenon may indicate that the models have some challenges in
recognizing the Benign category.

Table 12. Recall rate comparison.

Datasets Category
Model

IZOA-
LightGBM

ZOA-
LightGBM

SA-
LightGBM

PSO-
LightGBM

IZOA-
XGBoost LightGBM LR MLP

CMD

Benign 100 99.27 99.51 99.27 99.51 96.75 59.37 69.59
Adware 99.76 98.32 98.56 99.04 98.32 98.08 20.62 67.63

Bank Malware 99.73 98.94 99.2 99.2 98.94 97.65 18.04 23.87
SMS Malware 99.75 99.24 98.99 99.24 97.47 97.73 91.67 34.6

Riskware 99.5 97.99 97.99 97.99 97.74 95.98 42.36 79.2

CCA

Adware 97.65 95.04 96.61 96.61 93.47 88.25 53.2 73.15
Backdoor 100 99.75 100 100 99.75 100 70.8 99.74

FileInfector 100 100 100 100 100 100 96.21 100
PUA 99.75 99.74 99.48 99.48 99.74 99.74 80.61 99.05

Ransomware 96.65 94.26 95.69 93.3 94.26 94.26 76.34 80.66
Riskware 98.12 94.6 94.6 94.6 93.9 86.85 61.37 79.46
Scareware 99.26 100 99.5 99.01 100 100 84.24 99.26

Trojan 98.13 92.29 92.29 92.29 91.12 85.05 58.05 82.06
Trojan_Banker 99.2 99.73 99.73 99.2 99.73 100 88.68 100

Trojan_Dropper 99.77 99.75 99.75 99.75 99.75 99.75 58.37 98.14
Trojan_SMS 98.49 99.24 98.74 98.49 99.25 99.24 72.66 94.27
Trojan_Spy 99.6 99.5 99.5 98.51 99.5 99.5 80.09 95.65

AAGM
GenMalware 98.32 97.68 97.29 98.07 97.88 91.96 66.38 82.13

Adware 98.11 96.62 96.52 97.21 97.01 93.03 64.95 83.43
Benign 97.41 94.98 95.38 95.78 95.98 86.65 51.18 72.2

Bold indicates the highest recall rate.

4.4.5. F1-Score Comparison

Table 13 shows the F1-score comparison of the aforementioned eight models on the
CMD, CCA, and AAGM datasets.

Table 13. F1-score comparison.

Datasets Category
Model

IZOA-
LightGBM

ZOA-
LightGBM

SA-
LightGBM

PSO-
LightGBM

IZOA-
XGBoost LightGBM LR MLP

CMD

Benign 99.88 99.03 99.27 99.03 99.27 96.77 67.22 72.04
Adware 99.76 98.56 98.68 98.92 98.2 97.8 29.81 66.75

Bank Malware 99.73 98.68 98.94 99.07 98.16 97.83 28.87 36.73
SMS Malware 99.87 98.87 98.74 99.12 97.97 99.72 47.02 48.75

Riskware 99.5 98.61 98.61 98.61 98.36 95.62 49.56 48.28

CCA

Adware 98.68 96.3 97.11 97.11 95.47 90.13 58.46 73.15
Backdoor 99.72 98.29 98.41 98.05 98.29 98.53 71.35 99.02

FileInfector 98.92 99.64 99.52 98.92 99.64 99.52 88.19 100
PUA 99.74 99.22 99.22 98.7 98.45 97.45 76.72 99.05

Ransomware 97.35 95.63 96.15 94.89 95.63 95.63 70.75 80.66
Riskware 99.05 96.76 96.76 96.76 96.15 89.37 67.11 79.46
Scareware 99.13 99.38 99.01 98.77 99.38 99.38 85.18 99.26

Trojan 98.71 94.72 94.72 94.72 93.75 88.14 64.14 82.06
Trojan_Banker 99.2 99.73 99.73 99.06 99.6 99.73 80.72 100

Trojan_Dropper 98.88 98.64 98.51 98.27 98.64 98.64 64.77 98.14
Trojan_SMS 98.49 96.57 97.03 96.66 96.57 96.57 66.83 94.27
Trojan_Spy 99.29 98.52 99.26 98.75 98.28 98.28 80.46 95.65

AAGM
GenMalware 98.17 96.84 96.64 97.27 97.13 91.51 68.49 82.12

Adware 97.82 96.47 96.42 97.17 97.16 91.13 58.48 78.4
Benign 97.85 95.99 96.15 96.66 96.61 88.97 55.6 77.23

Bold indicates the highest F1-score.

In contrast to the previous precision and recall rate analyses, the F1-score, as a recon-
ciled average of the two, provides a more comprehensive assessment of model performance.
A high F1-score means that the model has a better balance between precision and recall
rate. As shown in Table 13, the IZOA-LightGBM model performs better on the CMD and
AAGM datasets and in most categories of the CCA dataset. Differences in the F1-scores
across datasets can be observed, with the IZOA-LightGBM model showing superior overall
performance on the CMD dataset compared to the CCA dataset. This disparity may be
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attributed to differences in sample distribution, feature representation, etc., which affect
the model’s generalization ability. Moreover, experimental results indicate that an increase
in the complexity of the sample categories may lead to increased detection difficulty.

4.4.6. Loss Function Convergence Analysis

As shown in Figures 12–14, the IZOA-LightGBM model’s loss function variation with
the number of iterations for the training, validation, and testing processes on the CMD,
CCA, and AAGM datasets is illustrated. The blue line indicates training loss, the orange
line indicates validation loss, and the red dots indicate testing loss.

Figure 12. Loss function curve for CMD dataset.

Figure 13. Loss function curve for CCA dataset.
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Figure 14. Loss function curve for AAGM dataset.

Figures 12–14 show that both training and validation losses decrease as the iteration
count increases, and then stabilize. The training loss is consistently lower than the valida-
tion loss, indicating that the model performs better on the training set than on the validation
set. This phenomenon is expected because the model tries to fit the training data as much
as possible during the training process. In addition, the gap between the validation loss
and the training loss stays within a small range throughout the training process, indicating
that the model does not undergo significant overfitting during the training process. The
figure indicates that the test loss is approximately the final value of the validation loss,
indicating that the model performs similarly on both sets.

4.4.7. Comparison of Different Improvement Strategies

This study verified the necessity of improving the IZOA-LightGBM model. The Light-
GBM model was optimized using the EOBL-improved ZOA (EZOA), the FDS-improved
ZOA (FZOA), and the unimproved ZOA, respectively. The evaluation results are shown in
Table 14.

Table 14. Comparison of different improvement strategies.

Model
Accuracy (%)

CMD CCA AAGM

IZOA-LightGBM 99.75 98.86 97.95
EZOA-LightGBM 99.02 97.98 97.66
FZOA-LightGBM 98.97 98.15 97.52
ZOA-LightGBM 98.76 97.76 96.44

Bold indicates the highest accuracy.

Table 14 indicates that all the different improvement strategies improve the model
detection capabilities. Compared with other improvement strategies, the IZOA-LightGBM
model incorporates the improvements of both strategies and has better performance.

4.4.8. Time Complexity and Model Size Comparison

The efficiency and deployment feasibility of the model were assessed by comparing the
time complexity and model size, respectively. Table 15 presents the evaluation outcomes.
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Table 15. Time complexity and model size comparison.

Datasets Model Training Time
(s)

Detection Time
(ms)

Model Size
(MB)

CMD

IZOA-LightGBM 26,426.7 8.53 16.37
ZOA-LightGBM 18,503.83 7.25 12.69
SA-LightGBM 43,180.52 7.13 15.21

PSO-LightGBM 31,810.4 6.55 18.99
IZOA-XGBoost 33,885.88 13.56 28.43

LightGBM 3.2 6.89 1.71
LR 2.67 7.25 0.26

MLP 6.42 15.77 9.03

CCA

IZOA-LightGBM 30,132.51 5.98 22.23
ZOA-LightGBM 25,536.28 7.41 21.58
SA-LightGBM 49,850.6 6.22 23.66

PSO-LightGBM 40,734.69 7.48 25.87
IZOA-XGBoost 30,854.32 10.56 37.69

LightGBM 10.5 5.45 4.16
LR 3.62 3 0.37

MLP 52.52 6.99 11.53

AAGM

IZOA-LightGBM 28,265.45 4.56 20.56
ZOA-LightGBM 26,894.79 3.55 21.05
SA-LightGBM 50,897.62 6.59 22.14

PSO-LightGBM 42,569.17 4.88 21.89
IZOA-XGBoost 33,458.53 16.59 38.68

LightGBM 4.53 3.05 4.27
LR 1.56 2 0.42

MLP 22.66 4.54 12.88
Bold indicates the shortest time or smallest model size.

As shown in Table 15, the IZOA-LightGBM model has a higher time complexity,
evident in its longer training duration. However, since the training was conducted offline
and the resulting model can be reused, the training time is less critical. In addition, the
shorter detection time and smaller model size of the IZOA-LightGBM model means that
it may be suitable for deployment in devices with limited computing resources for the
real-time detection of Android malware.

The LightGBM model optimized with a meta-heuristic algorithm shows improved
detection performance on three datasets compared to the default hyperparameter configura-
tion, but with significant increases in training time and model size. The increase in training
time may be due to the introduction of the metaheuristic algorithm, and the increase in
model size may be due to the larger and deeper trees generated by the LightGBM model.
The SA-LightGBM model exhibited the longest training time on both datasets, probably due
to the longer optimization time required for the SA. The IZOA-XGBoost model performs
consistently on both datasets, but takes longer to train and detect, and it exhibits larger
model sizes of 28.43 MB (CMD) and 37.69 MB (CCA), respectively. In addition, the models
on the CCA dataset generally exhibit longer training times, which may be due to the fact
that the CCA dataset has more sample categories and numbers than the CMD dataset.

4.4.9. Comparison of This Work with Others

This paper reviews some additional relevant studies from the literature review. Most
of the studies used ML or DL methods. Mahdavifar et al. [17], the proposers of the CMD
dataset, proposed a Pseudo-Labeled Deep Neural Network (PLDNN) detection method and
conducted experiments on the CMD dataset. Mohamed et al. [45] analyzed the CMD dataset
using four different ML models. Musikawan et al. [40] proposed an effective improved
DNN. Ullah et al. [46] proposed an integrated model. Rahali et al. [37] proposed an image-
based DNN approach. Jundi et al. [47] proposed a detection model using a combination
of XGBoost and Grammar Evaluation (GE). Xie et al. [48] proposed a DL-based model
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for multiple-label detection. Tang et al. [49] proposed an Android malware classification
method based on Hybrid Bytecode Images (HBIs) and a DNN combined with an Attention
Mechanism (DNN-AM). Al-Andoli et al. [50] proposed a parallel DL framework called
PDL-FEMC. Li et al. [51] proposed SynDroid, a model for detecting Android malware.
Alani et al. [52] proposed a malware detection framework called AdStop. Ullah et al. [53]
proposed a semantics-driven Federated Learning (FL) approach for Android malware
detection. The papers were categorized by dataset and sorted by time of proposal. Table 16
displays the results.

Table 16. Comparison with other works.

Dataset Reference Year Analysis No. of
Classes Method Accuracy (%)

CMD

Mahdavifar et al. [17] 2020 Dynamic 5 PLDNN 97.84
Mohamed et al. [45] 2021 Static 2 NB, SVM, KNN, DT 86

Ahmed et al. [54] 2022 Hybrid 5 RF, MLP 97.5

Musikawan et al. [40] 2022
Static 2 DNN 98.18

Dynamic 2 DNN 93.5
Ullah et al. [46] 2022 Dynamic 4 NB, SVM, DT, LR, RF 99.11

Padmavathi et al. [55] 2022 Dynamic 5 K-means, PCA 88
Jundi et al. [47] 2023 Hybrid 5 XGBoost, GE 98
Tang et al. [49] 2024 Hybrid 2 HBI, DNN-AM 98.67

Proposed 2024 Dynamic 5 IZOA-LightGBM 99.75

CCA

Rahali et al. [37] 2020 Dynamic 12 Semi-Supervised Deep
Learning 93.36

Batouche et al. [56] 2021 Static 14 RF 89

Musikawan et al. [40] 2022
Static 2 DNN 97.72

Dynamic 14 DNN 78.82
Al-Andoli et al. [50] 2022 Static 12 PDL-FEMC 97.6

Xie et al. [48] 2023 Static 15 MLD-Model 83.17
Islam et al. [57] 2023 Dynamic 12 Ensemble ML 95

Li et al. [51] 2024 Static 12 SynDroid-RF 94.31
Huang et al. [39] 2024 Hybrid 15 RF 88.2

Proposed 2024 Dynamic 12 IZOA-LightGBM 98.86

AAGM

Bovenzi et al. [58] 2022 Dynamic 3 RF 97
Alani et al. [52] 2022 Dynamic 2 AdStop 97.08
Ullah et al. [53] 2024 Dynamic 3 FL 93.85

Proposed 2024 Dynamic 3 IZOA-LightGBM 97.79

Bold indicates the highest accuracy.

In Table 16, the studies by Musikawan et al. [40], Batouche et al. [56], and Xie et al [48].
are shown to be less accurate due to the inclusion of the two categories that the authors
of the CCA dataset recommended for removal. Table 16 illustrates that the IZOA-Light
model achieves higher accuracy than the models of Mahdavifar et al. [40] and Padmavathi
et al. [55] on the CMD dataset, and of Rahali et al. [37] on the CCA dataset, under conditions
where dynamic analysis was utilized and identical categories are detected. A similar trend
was maintained on the AAGM dataset.

4.5. Summary

This chapter aimed to evaluate the availability of the IZOA-LightGBM model pro-
posed in this paper in Android malware detection. The CMD, CCA, and AAGM datasets,
which are three public datasets, were used to evaluate the detection performance of the
IZOA-LightGBM model. First, the CMD and CCA datasets were preprocessed separately,
including dataset balancing, feature selection, and feature dimensionality reduction, to im-
prove the accuracy and efficiency during model training and detection. After that, both the
IZOA-LightGBM model and the comparative models were evaluated in terms of accuracy,
precision, recall rate, F1-score, training time, detection time, and model size. The evaluation
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results on the CMD, CCA, and AAGM datasets show that the IZOA-LightGBM model
exhibits better detection performance compared to LightGBM models combined with other
optimization algorithms such as the ZOA, SA, and PSO. In addition, the short detection time
and moderate model size of the IZOA-LightGBM model may be suitable for deployment
on real-time Android malware detection devices with limited computational resources.

5. Conclusions

Aiming to enhance the accuracy of Android malware detection via dynamic analysis,
this paper proposes a novel model named IZOA-LightGBM. This model further improves
the convergence speed and search capability of the ZOA by introducing EOBL and the FDS.
Through optimizing the hyperparameters of the LightGBM model using the IZOA, the
accuracy of the LightGBM model in detecting Android malware was further improved.

The validity of the proposed model was validated by extensive evaluation on three
datasets. The evaluation results show that the IZOA-LightGBM model achieved an overall
accuracy of 99.75% on the CMD dataset, 98.86% on the CCA dataset, and 97.95% on the
AAGM dataset. It outperforms other comparative models, demonstrating the potential of
the model for application in Android malware detection.

However, the model complexity needs to be further reduced, and enhancements can
still be made to improve detection accuracy. Therefore, upcoming research will investigate
additional efficient and compact detection models to enhance accuracy further. This
research is preliminary, based on public datasets, and has not been tested in a live setting.
Future work can deeply analyze the application of the model in real Android malware
detection scenarios, as well as its performance with other types of malware and in different
environments, such as malware in a Windows environment. Furthermore, future research
will explore additional data sources and a broader range of features to enhance the model’s
robustness. The influence of dataset bias on the model performance will also be assessed
in future work. In addition, the overfitting of the model needs to be further considered in
future work.
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