Algorithm 1: Pseudo-Code of IZOA-LightGBM |
Start the IZOA-LightGBM model.
Input: Dataset.
Perform data preprocessing.
Initialize the LightGBM model.
Define the IZOA fitness function using Equation (1).
Set the number of iterations (), the number of zebras’ population (), and the dimension of the problem to be optimized for the IZOA.
Use EOBL, i.e., Equations (6) and (7), to create the initial zebra population.
Evaluate the fitness values of the zebras.
for
Update the Pioneer Zebra
for
#Phase 1
Calculate the new position of the th zebra using Equation (2).
Update the position of the th zebra using Equation (3).
#Phase 2
if :
Calculate the new position of the th zebra using of Equation (4).
else:
Calculate the new position of the th zebra using of Equation (4).
end if
Update the position of the th zebra using Equation (5).
Use the FDS, i.e., Equations (8) and (9), to update the position of the th zebra again.
Save the .
end for
end for
Input the obtained by the IZOA into the LightGBM model.
Obtain the LightGBM model with optimal hyperparameters.
Evaluate the IZOA-LightGBM model.
Use the optimal IZOA-LightGBM model for detection.
End the IZOA-LightGBM model.
|