Skip to main content
. 2024 Sep 14;24(18):5975. doi: 10.3390/s24185975

Table 16.

Comparison with other works.

Dataset Reference Year Analysis No. of Classes Method Accuracy (%)
CMD Mahdavifar et al. [17] 2020 Dynamic 5 PLDNN 97.84
Mohamed et al. [45] 2021 Static 2 NB, SVM, KNN, DT 86
Ahmed et al. [54] 2022 Hybrid 5 RF, MLP 97.5
Musikawan et al. [40] 2022 Static 2 DNN 98.18
Dynamic 2 DNN 93.5
Ullah et al. [46] 2022 Dynamic 4 NB, SVM, DT, LR, RF 99.11
Padmavathi et al. [55] 2022 Dynamic 5 K-means, PCA 88
Jundi et al. [47] 2023 Hybrid 5 XGBoost, GE 98
Tang et al. [49] 2024 Hybrid 2 HBI, DNN-AM 98.67
Proposed 2024 Dynamic 5 IZOA-LightGBM 99.75
CCA Rahali et al. [37] 2020 Dynamic 12 Semi-Supervised Deep Learning 93.36
Batouche et al. [56] 2021 Static 14 RF 89
Musikawan et al. [40] 2022 Static 2 DNN 97.72
Dynamic 14 DNN 78.82
Al-Andoli et al. [50] 2022 Static 12 PDL-FEMC 97.6
Xie et al. [48] 2023 Static 15 MLD-Model 83.17
Islam et al. [57] 2023 Dynamic 12 Ensemble ML 95
Li et al. [51] 2024 Static 12 SynDroid-RF 94.31
Huang et al. [39] 2024 Hybrid 15 RF 88.2
Proposed 2024 Dynamic 12 IZOA-LightGBM 98.86
AAGM Bovenzi et al. [58] 2022 Dynamic 3 RF 97
Alani et al. [52] 2022 Dynamic 2 AdStop 97.08
Ullah et al. [53] 2024 Dynamic 3 FL 93.85
Proposed 2024 Dynamic 3 IZOA-LightGBM 97.79

Bold indicates the highest accuracy.