Table 16.
Dataset | Reference | Year | Analysis | No. of Classes | Method | Accuracy (%) |
---|---|---|---|---|---|---|
CMD | Mahdavifar et al. [17] | 2020 | Dynamic | 5 | PLDNN | 97.84 |
Mohamed et al. [45] | 2021 | Static | 2 | NB, SVM, KNN, DT | 86 | |
Ahmed et al. [54] | 2022 | Hybrid | 5 | RF, MLP | 97.5 | |
Musikawan et al. [40] | 2022 | Static | 2 | DNN | 98.18 | |
Dynamic | 2 | DNN | 93.5 | |||
Ullah et al. [46] | 2022 | Dynamic | 4 | NB, SVM, DT, LR, RF | 99.11 | |
Padmavathi et al. [55] | 2022 | Dynamic | 5 | K-means, PCA | 88 | |
Jundi et al. [47] | 2023 | Hybrid | 5 | XGBoost, GE | 98 | |
Tang et al. [49] | 2024 | Hybrid | 2 | HBI, DNN-AM | 98.67 | |
Proposed | 2024 | Dynamic | 5 | IZOA-LightGBM | 99.75 | |
CCA | Rahali et al. [37] | 2020 | Dynamic | 12 | Semi-Supervised Deep Learning | 93.36 |
Batouche et al. [56] | 2021 | Static | 14 | RF | 89 | |
Musikawan et al. [40] | 2022 | Static | 2 | DNN | 97.72 | |
Dynamic | 14 | DNN | 78.82 | |||
Al-Andoli et al. [50] | 2022 | Static | 12 | PDL-FEMC | 97.6 | |
Xie et al. [48] | 2023 | Static | 15 | MLD-Model | 83.17 | |
Islam et al. [57] | 2023 | Dynamic | 12 | Ensemble ML | 95 | |
Li et al. [51] | 2024 | Static | 12 | SynDroid-RF | 94.31 | |
Huang et al. [39] | 2024 | Hybrid | 15 | RF | 88.2 | |
Proposed | 2024 | Dynamic | 12 | IZOA-LightGBM | 98.86 | |
AAGM | Bovenzi et al. [58] | 2022 | Dynamic | 3 | RF | 97 |
Alani et al. [52] | 2022 | Dynamic | 2 | AdStop | 97.08 | |
Ullah et al. [53] | 2024 | Dynamic | 3 | FL | 93.85 | |
Proposed | 2024 | Dynamic | 3 | IZOA-LightGBM | 97.79 |
Bold indicates the highest accuracy.