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Abstract: This paper describes a revolutionary design paradigm for monitoring aquatic life. This
unique methodology addresses issues such as limited memory, insufficient bandwidth, and excessive
noise levels by combining two approaches to create a comprehensive predictive filtration system, as
well as multiple-transfer route analysis. This work focuses on proposing a novel filtration learning
approach for underwater sensor nodes. This model was created by merging two adaptive filters,
the finite impulse response (FIR) and the adaptive line enhancer (ALE). The FIR integrated filter
eliminates unwanted noise from the signal by obtaining a linear response phase and passes the
signal without distortion. The goal of the ALE filter is to properly separate the noise signal from the
measured signal, resulting in the signal of interest. The cluster head level filters are the adaptive
cuckoo filter (ACF) and the Kalman filter. The ACF assesses whether an emitter node is part of a set
or not. The Kalman filter improves the estimation of state values for a dynamic underwater sensor
networking system. It uses distributed learning long short-term memory (LSTM-CNN) technology to
ensure that the anticipated value of the square of the gap between the prediction and the correct state
is the smallest possible. Compared to prior methods, our suggested deep filtering–learning model
achieved 98.5% of the sensory filtration method in the majority of the obtained data and close to 99.1%
of an adaptive prediction method, while also consuming little energy during lengthy monitoring.

Keywords: adaptive integrated filters; deep learning; noise cancellation; UWSNs; monitor aquatic life

1. Introduction

Wireless sensor networks (WSNs) are the most powerful and influential technology of
the twenty-first century. They do not require any special infrastructure or monitoring and,
therefore, open up a new avenue for use in a variety of applications [1]. Sensor networks
comprise thousands of low-power micro-sensors whose primary purpose is to detect and
report specific events to a base station. Due to limited battery power, these nodes have
minimal memory and processing capabilities. WSNs are simple to set up, but they require
that data arrive at their destination on time. The most important aspect of the wireless
sensor network’s life is its energy consumption, which is limited by the sensor node’s
small battery capacity. A sensor node’s three primary functions are sending, receiving,
and sensing. Data transmission is the most energy-intensive function. As a result, if we
wish to extend the network’s life, efficiency-raising and data-filtering procedures will be
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required. Because of the rapid growth of communication and information equipment
and technologies in recent years, data traffic movement over networks has increased.
Current simple network control systems, however, are considered to be incapable of dealing
with such a massive rise in traffic. Deep learning, which has made significant advances
in research, is a technology that enables network managers to achieve new intelligent
traffic control. Deep learning has shown effectiveness in several fields of information
science, including image recognition, speech recognition, robotics, self-driving, and natural
language processing. Additionally, extensive training in network traffic monitoring has
begun, and additional progress is predicted [2].

Underwater wireless sensor networks (UWSNs) are gaining popularity as a means
of monitoring and managing aquatic life. They are, nevertheless, among the most failure-
prone branches of Wireless Sensor Networks. UWSNs confront numerous obstacles, includ-
ing limited memory and bandwidth, high propagation, route loss at higher levels, and high
noise volume. Another component influencing acoustic channel performance is underwater
noise. As a result, deep learning technology is utilized in conjunction with computational
intelligence (CI) techniques to identify undiscovered resources in the water. The capacity of
a system to accomplish a certain task, such as data integrity or pure/free-noise and intact
experimental monitoring below the sea, is referred to as CI. Currently, data are seen as the
essence of all entities in nature, encompassing humans, robots, and devices, such as those
inside the Internet of Things (IoT). As a result, the obtained data must be correct, complete,
and meet the needs of a certain assignment [3].

2. Motivation and Contribution

The efforts of this work were devoted mainly to monitoring aquatic life and overcom-
ing communication issues, such as restricted energy, limited memory, loss of data, and
noisy readings through distributed UWSNs. Therefore, the contribution of this paper is
aimed at solving problems of communication data-induced sensors dispersed in UWSNs,
by proposing a new architecture for the distributed implementation of deep learning in
an underwater wireless sensor network. The distributed application distributes the deep
learning middle layer into each sensor to reduce traffic and noise as well as enhance the
data processing speed and lower energy usage. This is accomplished by lowering the num-
ber of connections, condensing the multi-path handover, and filtering the data delivered.
The predictive filtration learning method was performed in two steps: First, two adaptive
filters, the finite impulse response (FIR) filter and the adaptive line enhancer (ALE), were
integrated into the underwater sensor nodes. The integrated filter is proposed to remove
undesirable noise from the signal by achieving a linear response phase and passing a signal
without distortion using FIR filters. Further, the ALE filter perfectly isolates the noise signal
from the measured signal to retrieve the signal of interest. Second, the two filters were
embedded at the cluster head (CH) level. The adaptive cuckoo filter (ACF) evaluates if an
element is a member of a set through positive impulse matches; if it is conceivable, it is
“possibly in a set”; otherwise, false negative impulses are “definitely not in the set”. We also
utilized the Kalman filter to calculate the state values of the dynamic underwater sensor
networking system in such a way that the expected value of the square of the difference
between the forecast and the correct state is as little as possible. Long short-term memory
(LSTM) technology is also used in the proposed approach to developing computational
intelligence (CI) strategies for anticipating new resources and reducing noise-accompanied
data in the water.

3. Related Works

Generally, machine learning (ML) is defined by sensor network designers as a set
of tools and techniques used to build prediction models. Experts in machine learning,
however, acknowledge that it is a rich topic with a wide range of themes and patterns.
In the year 2020, Gupta et al. published a survey that used deep learning approaches to
determine the untapped resources contained in water. Gupta referred to a system’s ability
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to acquire a certain task from data or experimental surveillance beneath the water. The data
gathered should be correct, complete, and meet the criteria of the task at hand. Underwater
data gathering is difficult, due to sensor mobility caused by sequences of water drifts per
second. The authors discovered that a significant amount of packet drop occurs as a result
of underwater conditions that impede the data collection procedure. Furthermore, different
systems for collecting data below the water’s surface already exist, but they are not properly
organized [4].

In January 2021, Rani et al. introduced a chapter for readers regarding the concept of
sensor networks in underwater environments. The scientists also discussed the potential
ways for recognizing underwater activities using a sensor that evaluates real-time infor-
mation. The authors demonstrated that there are a few problems connected with sensor
networks. As a result of their feasibility and adaptability in complicated problem contexts,
machine learning (ML) approaches are perfect for successfully resolving such difficulties.
Therefore, numerous ML strategies have been described to improve the operational per-
formance of WSNs, particularly underwater WSNs (UWSNs). The goal of this work is to
comprehend the ideas of UWSNs and the role of ML in addressing UWSN performance
difficulties [5].

In the year 2022, Prajapati and Joshi developed a cluster head election method that
circulates the cluster head role among nodes with higher energy levels than the remaining
nodes in the network. The researchers used a combination of LEACH and deep learning to
extend the network life of the WSN. A convolutional neural network (CNN) was used to
select cluster heads in this proposed method. In this study, they combined the benefits of a
deep learning method with LEACH to improve network performance. In comparison to the
usual LEACH process, the simulation results clearly show that the proposed methodology
performs better. Deep learning is used to select the CH, which expands the WSN’s network
longevity [6].

In May 2023, Uyan et al. developed machine learning (ML) models to forecast network
characteristics and energy consumption of underwater nodes as supplemental methods
to optimization models. To that purpose, the authors used Scikit-learn (1.5.2) and Keras
(2.12.0) are powerful tools for building and deploying ML models, for creating several
regression models and neural network-based models and then examined their performance
using score and error measures. They attempted to run their optimization model with
various combinations to acquire data for the models. In addition, they have advocated
packet duplication and multi-path routing methods in the literature to meet communication
dependability criteria. Furthermore, underwater sensors may transmit sensitive data that
must be hidden to prevent eavesdropping. The most generally used method for improving
network security is cryptographic encryption. Nonetheless, data encryption necessitates
computations to cypher the data, which uses extra energy and reduces the network’s
lifespan. To address these issues, an optimization model has been suggested to assess the
effects of multi-path routing, packet duplication, encryption, and data fragmentation on the
lifetime of UASNs. However, the proposed optimization model’s solution time is extremely
long, and it does not always produce viable solutions. To that purpose, different regression
and neural network methods were proposed in this study as supplemental methods for
optimization models for predicting the network parameters and energy consumption of
underwater nodes [7]. In the same year, Sathish et al. investigated distance-dependent
RSSI localization techniques. The placements of the subsea nodes were determined by the
authors, and the MEEs can be approximated. A network field of one hundred meters on
each side and one hundred meters in total length was required to take distance measure-
ments. The sensor nodes were given the freedom to communicate with one another in both
directions. The living nodes in the network, known as the securing nodes, were the only
nodes in the network that did not move from their initial position at any point in time. To
acquire MEE readings, the sensor node was distributed at random, and the process took
place while the readings were being collected. Following the arbitrary positioning of the
sensor nodes, a series of experiments were carried out [8].
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In October 2023, Islam et al. attempted to monitor underwater sensors, which may
carry critical data that must be concealed to avoid eavesdropping. To address these issues,
an optimization model is developed to assess the impact of multi-path routing, packet
duplication, encryption, and data fragmentation on the lifetime of UASN. However, the
proposed optimization model has a very long solution time, and there are occasionally no
feasible solutions available. As a complement to optimization models, this paper proposes
various regression and neural network methods for predicting the network characteristics
and energy consumption of underwater nodes [9]. El-Shafeiy et al. introduced the MCN-
LSTM technique, which leverages deep learning by combining Multiple Convolutional
Networks and long short-term memory networks. This combination of techniques detects
anomalies in multivariate time series data, allowing for the identification and flagging of
unexpected patterns or values that could indicate water quality issues. Water quality data
discrepancies can have far-reaching consequences. A method for detecting anomalies in
water quality data in real time was presented, using Multiple Convolutional Networks and
long short-term memory (MCN-LSTM) technology. The quantitative results demonstrate
MCN-LSTM’s potential to improve decision-making processes while avoiding negative
consequences from undetected irregularities [10]. The same year, Ali and Jayakody intro-
duced the SIMO-Underwater Visible Light Communication (UVLC) technology. It is a
sort of underwater communication technology that transmits data through visible light,
specifically the blue-green spectrum. This system used a Single Input Multiple Output
(SIMO) design, which means it had one transmitter and several receivers to improve com-
munication reliability and performance. UVLC systems obtained higher data rates than
standard acoustic communication systems, making them appropriate for applications that
require large bandwidths. In addition, the blue-green spectrum was chosen due to its
lesser absorption in water, allowing for more effective transmission. However, the study
encountered significant problems, including absorption, scattering, and turbulence in water,
which reduced signal quality and range [11]. Following, Ali et al. reported a performance
evaluation of vertical Visible Light Communication (VLC) links in mixed water media,
which is an exciting field of research, particularly for underwater communication systems.
This study typically involved examining several performance indicators such as the bit error
rate (BER). As well as an outage probability under varying situations like high turbulence,
pointing errors, and transceiver misalignment [12].

In February 2024, Zhang et al. investigated intelligent optimization algorithms, and
robot collaboration is an intriguing and complicated topic. They classified optimization
approaches in aquatic monitoring mediums as follows: (1) Intelligent Optimization Algo-
rithms: these algorithms, such as the Chemical Reaction Optimization (CRO) algorithm,
combine elements from genetic algorithms, simulated annealing, and ant colony optimiza-
tion to determine the best node deployment strategies. (2) Robot Collaboration: Robots
are employed to deploy nodes more efficiently and precisely in the harsh underwater
environment. Their adaptability and autonomy allow them to deal with specific problems
like uneven terrain and water currents. They also pointed out that the combination of
intelligent algorithms and robot collaboration considerably enhances UWSN coverage. For
instance, the CRO algorithm has been shown to achieve an average coverage rate of 95.66%,
outperforming traditional methods. Also, optimized node deployment enhances the ac-
curacy and efficiency of environmental monitoring, which is crucial for applications like
marine resource exploration and scientific research [13]. Fernandes et al. demonstrated the
Reliable and Efficient Routing for Water Quality Monitoring (REWQ) mechanism, which
employs the Cuckoo Search (CS) method. This strategy focuses on optimizing routing
paths to provide consistent data transfer while reducing energy consumption. This tech-
nique attempts to improve data transmission reliability and energy efficiency in UWSNs
by tackling typical issues, including restricted bandwidth, high energy consumption, and
node mobility [14].
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The rest of the current paper was planned as follows: Section 2 shows the problem’s
preliminary stages, details, proposal model, and suggested algorithms. Section 3 presents
the simulation results and evaluations of the proposed model.

4. Proposed Deep Filtration Learning Model

The word “deep” in deep learning refers to the network’s utilization of many different
layers. The deep learning approach used in this work is a multi-layer neural network with
a deep hierarchy that depends on the clustering method in distribution sensors underwater.
This enables nodes to learn filtration principles based on large amounts of data. Hence, the
levels of designated sensor neural networks attempt to simulate human brain behaviour—
matching Qualitative Liquidation (QL) in implementing the capacity of inventorying and
sorting traffic data, whether anomalous or accurate. While the proposed UWSN neural
network has two hidden layers, the first layer can produce approximate predictions, and
the second layer can assist the first layer in optimizing prediction and refining for accuracy.
The cluster head (CH) node supervises the proposed deep filtering–learning approach.

4.1. Problem Definition

In the suggested deep filtering–learning model scenario, the UWSN consists of numer-
ous clusters governed by a fusion centre. The fusion centre collects all data obtained from
network devices and transmits it to the back-end system. It connected the intended under-
water wireless sensor network to positioning systems via IoT within various ponds in fish
farms. Farming sensors were designed to meet the International Resource Identifiers Sys-
tem (IRIS) criteria and were powered by a communication M64a transceiver manufactured
by Water Linked AS (Trondheim, Norway). An ESP8266-01 Wi-Fi module manufactured
by Espressif Systems (Shanghai, China). And the Underwater GPS G2 positioning system
manufactured by Topcon Positioning Systems (Livermore, CA, USA). In addition, these
sensors are distributed in nine clusters throughout one pond. Within a WSN, the cluster
consists of one head node and five sensor nodes, which are spread randomly. Furthermore,
each sensor node in the cluster has an initial power source, a processor unit, a memory,
an RF transceiver, and sensor devices. The sensor nodes’ primary transmission mode is
one-to-many broadcast. The transmission range of each sensor node is fixed. The sensor
node saves the sensed data locally in its memory before sending it to its neighbours and
the cluster head.

In the proposed method, all cluster nodes have the same sensing radius and are aware
of the distances between them and the fusion centre. The proposed method is based on the
genetic algorithm (GA) in the clustering method, which is used to establish the optimal
network structure that minimizes energy exhaustion after each transmission round. During
the optimization phase, each GA chromosome serves as a cluster head identification map.
A gene in a chromosome determines whether the relevant node serves as a cluster head.
Given a cluster head, node clusters are generated using the closest neighbour criterion, and
the fitness of a chromosomal WSN structure is calculated by evaluating all clusters. This
method greatly extends the network lifetime by balancing the energy consumption among
all sensor nodes in the WSN. In general, the UWSN experiences substantial communication
problems as a result of its short lifespan, which is caused by a variety of issues such
as insufficient communication overhead and sensor malfunctions during deployment
operations due to harsh environments. Defects in data dissemination, caused by missing
and noisy data, result in network misbehaviour and incredibility. In this paper, a predictive
learning model is developed to address the deployment issues and energy challenges in
the designated network. The suggested methodology considerably reduces the pace of
data transmission for the UWSN by forecasting future data and missing measurements and
then reducing the noise associated with the sent signals, improving energy efficiency. The
following subsection demonstrates a description of the employed network architecture.
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4.2. Network Architecture

The proposed designated network architecture was designed as follows:

• Input Layer: Data or sensory readings from dispersed sensors in the ponds are received
by this layer.

• Layers that are Hidden: These layers extract features. They are made up of neurons
that alter the incoming info. One kind of RNN, or recurrent neural network, that can
preserve long-term dependencies in sequential data is the LSTM or long short-term
memory. Typical hidden layer kinds are as follows:

1. Convolutional Layers: These provide input data to convolutional neural networks
(CNNs). Long short-term memory (LSTM) is a type of recurrent neural network
(RNN) that was created to address the issue of disappearing gradients that con-
ventional RNNs encounter. Because of this, LSTMs work especially well for jobs
involving time series and sequential data. They keep track of earlier inputs.

2. Fully Connected Layers: These are used in both CNNs and RNNs. Every neuron
in this layer is connected to every other neuron in the layer before it.

• The layer of Output: This layer generates the last forecast. It frequently generates its
products from the following one LSTM cell and five gates:

(a) Memory Cell: The memory cell in LSTMs is capable of storing data for ex-
tended periods.

(b) Three gates are used by them to regulate the information flow:

1. The input gate selects what fresh data should be stored.
2. Forget Gate: This gate selects which data to ignore.
3. Output Gate: This gate regulates what data are sent out to capture spatial

hierarchies, and they use convolution processes.

4.3. Model Description

The accuracy of deep learning algorithms has improved as more datasets are added.
However, deep learning has limitations; it may not perform well with small test data,
and altering the definition results can be difficult. The LSTM deep learning algorithm
was followed in the proposed implementation for cancelling the noise accompaniment to
the emitted signals. Long short-term memory (LSTM) adjusts and fits itself for accuracy
using gradient descent and backpropagation underwater. The proposed approach uses
LSTM to produce more precise predictions regarding turbidity and pollution in fish farm
monitoring using hidden layers. The LSTM algorithm was trained and supervised on a
series of training sequences for clustering network elements. Supervised learning uses
labelled datasets to categorize and forecast. At this phase, they will correctly diagnose
data readings. The suggested network’s output layer supported the CHs nodes. These are
based on deep predictive learning, in which a model learns to become more accurate in
completing an action in an environment involving lost data.

A. LSTM Filtration Algorithm for Proposed Network Learning

Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture
that is commonly utilized in deep learning. It excels at capturing long-term dependencies,
making it an excellent candidate for sequence prediction problems. LSTM, unlike standard
neural networks, contains feedback connections that allow it to interpret complete data
sequences rather than just individual data points. As a result, it is extremely successful in
understanding and predicting patterns in time series.

The LSTM was implemented at the cluster head level in this work. The LSTM design
was divided into three phases, each of them performing a specific purpose. In the first
phase, after the clustering sensors communicate their readings to the CH, the CH begins to
sort the significance of the produced signals to determine if the sensor sender’s previous
timestamp should be recalled or forgotten. When a sensor disconnects from the clustered
connection due to battery failure (dead node), the CH begins to clean its brain and forgets
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the prior information. In the event of a connection, the cell prepares all active sensor
readings and then saves them in its brain to be remembered later if necessary. The cell
strives to learn new information from the input in the second phase. Finally, in the third
phase, the cell changes the information from the current timestamp to the next timestamp.
This cycle is regarded as a one-time phase. The LSTM unit embedded in the CH has three
gates that control the flow of data into and out of the memory cell. There are three sorts of
gates: forget, input, and output, as well as a memory cell. A memory cell is equivalent to a
layer of neurons, and the data flow of the designated network is directed by feed-forward
neural networks. Every neuron has a hidden layer as well as a current state. The prior
timestamp’s hidden state is h (t − 1), whereas the present timestamp’s hidden state is ht.
The information, as well as all the timestamps, are carried by the cell state. Figure 1 shows
that the LSTM has cell states for prior and current timestamps, denoted by c(t − 1) and
c(t), respectively.
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The suggested paradigm allows the head node to incorporate two filters at the level of
the LSTM operation. The first one is the adaptive Cuckoo Filter (ACF), and the Kalman
filter is the second. The ACF assesses whether an emitter node belongs to a set. The Kalman
filter optimizes the estimation of state values in a dynamic underwater sensor networking
system. The LSTM feeds the head node to complete the two jobs. Once the first task is
accomplished, the transmitted readings will belong to the clustering elements; and the
head node should realize it is no longer employing the ACF filter. The forget gate allows
the head node to forget about the initial task. In an LSTM cell, the initial step is to decide
whether to keep or discard data from the previous time epoch. The forget gate keeps a
hidden state that serves as memory and is refreshed at each time step with the input data
and the previous hidden state. The following are the roles that these gates played in the
LSTM design.
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• Forget gate: The input readings (xt) are coupled with the previous outputs to form a
fraction between 0 and 1, which defines how much of the previous state must be pre-
served (or, how much of the state should be forgotten) at the forget gate. Equation (1)
is as follows:

ft = ∂
(

xt × yt−1 × u f + ht−1 × w f

)
(1)

where
If f = 1, Ct−1 × ft = Ct−1 means the cell remembers prior readings and uses the values
of scales in the prediction.
If f = 0, Ct−1 × ft = 0; the cell forgets everything and prepares itself to accept new
readings.

• Input gate: The input gate operates on the same impulses as the forget gate, but its
goal is to determine which important information should be added to the cell state and
hence gain long-term memory. A hyperbolic tangent activation layer was used to alter
the obtained input values by manipulating a hidden state at timestamp (t − 1) and
input × at timestamp (t). Then, it decides which values are updated in preparation for
accessing the later gate to obtain the appropriate output values. Using Equation (2),
the product of the new information will be between −1 and 1.

it = tanh(wi × xt + wh × ht−1 + bk) (2)

If the value of it is negative, the information is deducted from the cell state. Otherwise,
the information is added to the cell state at the current timestamp. The ACF filter was
integrated into the input gate to filter input data by reacting to false positives and deleting
them for subsequent manipulations. Following the occurrence of new information, there
will be a test result intended to arrive at inaccurate signals, indicating the presence of
a specific condition or attribute. A false positive test was performed using a diagnostic
instrument meant to determine the cluster affiliation. It was used to identify the source of a
substantial number of false positives in the sensor and its affiliation with any cluster. The
proposed method was produced to suit a considerable flow of sensing data under sensor
monitoring, which may frequently correlate with flow identifiers. As a result, a theory to
search for false positives is used, followed by repeated searches for each sensor in each
cluster. By removing false positives, the false positive rate can be significantly reduced. The
ACF filter stores the replies of failed sensors in a hash table. To optimize the efficiency of
the cluster heads, it avoided sensor readings that fluctuated responses to false positives via
varying epochs. It is worth mentioning that the coming value from the failed sensor will
not be directly incorporated into the cell state. The cell state (Nt) was computed as follows:

Nt = ft × ct−1 + it

(
1 − e−µ)k e−µ (3)

• Output gate: During this gate, processing the results of the input gate must be finished.
When the output gate receives the input, the prior state is gated again to generate
another scaling fraction, which is combined with the output of the function block
(tanh) to produce the current state. A Kalman filter is then applied to this yield
product. The output product and the state are then passed back into the Kalman
filter implanted in the LSTM block to gain the estimated state from the previous time
step. No preceding set of observations and/or estimates is required here, and just
the current measurements are required to generate a pure estimation for the current
state. In contrast to data batch estimation, it employs a series of measurements taken
over time, including statistical noise and other inaccuracy values, to produce estimates
of the unknown variables that are more accurate than those based solely on a single
measurement. As a result, the filtered output signal was expected to be free of noise.
The converged output ( ŷk) is represented by the following output gate’s equation:

yk = δ( ft × xt−1 + bk × uk) + ht−1 × wk + Qk (4)
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It added the sigmoid function, ranging between 0 and 1, and the Pk and tanh functions
in the calculations to infer the updated cell state to determine the current hidden state, as
illustrated below.

P = fk × ykuk + Qk (5)

Then,
P̂k = (ik − k xk × hk ) Pk (6)

Hence,
ŷk = P̂k − hkxk (7)

where xt is the current time epoch’s reading; yt is the coupled previous outputs to generate
the predicted signals; u(f,k) is the related weight with the sensor reading; ht−1 is the previous
time step’s hidden state; wf is the weight of the hidden state in the forgetting step; wi is the
weight of the input reading for the input state; w(h,k) is the input weight matrix connected
with the hidden state in the input step; ht−1 is a concealed state at the preceding timestamp;
bk is a control-input model bias factor that is applied to the control vector uk; Ct−1 is the cell
state at the current timestamp; e−µ is the approximation for the likelihood that there are no
false positives in a certain hash table; Nt is the updating cell state at the current timestamp;
wk represents the process noise, which is supposed to come from a zero mean multivariate
normal distribution with covariance (Qk); Qk is the coefficient of the signal noise covariance;
ŷk is the convergence value of the predicted signal; Pk is the updated convergence estimate
of the a posteriori signal; hk is the concealed state at the current timestamp.

B. Parameter Settings

The deploying processes handled the following parameter settings:

(a) Learning Rate: Establishes the amount by which the model’s weights are updated
during training. The value of 0.001 is a typical starting point.

(b) Batch Size: The number of training examples used in one iteration. Typical values
range from 32 to 256.

(c) Number of Epochs: The number of times the entire training dataset passes through
the network. This can range from 10 to 100 or more, depending on the problem.

(d) Filter Size: The dimensions of the convolutional filters, commonly 3 × 3 or 5 × 5.
(e) Stride: The step size with which the filter moves across the input. A stride of 1 means

the filter moves one pixel at a time.
(f) Padding: Adding zeros around the input to preserve spatial dimensions after convolution.

The used options are: “valid” (no padding) and “same” (padding to retain dimensions).

The next subsection describes the self-filtration phase conducted by cluster sensors for
optimizing the efficiency of the designated network. Algorithm 1 illustrates how adjusting
the weights minimizes the error function.

C. Self-Filtration for Sensors

The purpose of self-filtration for sensors is to produce several benefits. First, it im-
proves the accuracy of sensor data. Second, it reduces the amount of data that needs to be
transmitted to the CH. The performance of the filtration mode was accomplished in the
sensing session. It is adequately correlated with the generation mode of the readings.

1. The sensor (Si) aggregates the surrounding data throughout different epochs without
making predictions. This aggregation process can be completed using a median
filtering method.

2. After aggregation, the aggregated data, in every Si in the cluster, are transferred to
the integrated FIR filter and ALE filter, which are installed in the sensing slice in the
sensor circuit.

3. A proper estimation of the aggregated data is made through this mode. The estimation
process was completed using deep learning by the CH in each cluster.
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4. If the Si does not receive any data during one of the epochs, it will transmit a Break
flag to the CH, which includes the ID node and the time. This break flag indicates to
the CH that the Si is unable to deliver data for that time.

5. In this session, the CH will use the prediction method described in Equations (1)–(7),
which express the prediction process used to approximate the data for Si for the
missing period.

In this paper, the sensor’s performance improved by combining the FIR and ALE
filters. An FIR filter is a non-recursive filter that has a limited impulse response. This means
that the filter’s output is only affected by the current and previous inputs, and not by any
past outputs. As a result, FIR filters are essentially stable, and this gives them a substantial
advantage over infinite impulse response filters. Further, we attempted to incorporate
adaptive filters into the FIR filter for signal separation by employing a structure known as
an adaptive line enhancer (ALE). It uses the integrated filter to properly separate the signals
and gain the pure signal for adaptive line enhancement of the recorded underwater signals
by estimating a measured signal x(n), including two signals, an unknown signal of interest
v(n), and a nearly periodic noise signal p(n). The purpose is to remove the noise signal from
the measured signal to retrieve the signal of interest, as well as to amplify the frequencies,
filter out undesired signals, and obtain equalizing signals. The FIR filter was used to filter
and amplify the signal received by sensor Si. This was completed by multiplying each
sample of the input signal by a corresponding filter coefficient and then adding the results
to the ALE adaptive filter to produce the output signal. The filter coefficients influence the
integrated filter’s frequency response and the hesitancies’ recurrence, accompanied by the
original signal over a particular period or in a given sample. The hesitancies are the rates at
which a vibration occurs that constitutes a wave, usually measured per second. This could
be completed to increase the signal’s signal-to-noise ratio (SNR). The downstream circuitry
was processed, through:

1. Set up the ALE filter. This entails determining the signal delay D and the filter length L.
2. Set the integrated adaptive filter coefficients to their default values.
3. Repeat the measurement process.
4. Complete the following for each sample of the sensed signal:

i. Compute the adaptive filter output; the process involves separating the unadul-

terated input signal (
→
u k), multiplying the estimated input signal by the adap-

tive filter coefficient and the weighted vector, and then subtracting the values
of undesired signals from the resulting signal.

→
u k(n) = 2 µxk × wk − ⨿ v(n)p(n) (8)

ŷk(n) =
n−1

∑
i=0

wk
→
u k−i (9)

ii. Determine the error signal. This is the difference between the measured signal
and the output of the adaptive filter.

ek(n) =
→
u k(n)− ŷk(n) (10)

iii. Update the weights vector with the adaptive filter coefficients. This was
accomplished through the use of the proposed adaptive filtration learning
method. The adaptive filtering–learning algorithm adjusts the adaptive filter
coefficients so that the mean squared error between the measured signal and
the adaptive filter output is as small as possible. Table 1 lists the acronyms
and notations used to denote signals. The adaptive integrated filter learns to
cancel out the almost periodic noise signals over time, leaving only the signals
of interest.

→
wk(n) = wk−1 + 2µ ek

→
x k (11)
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Consequently,
ek(n) = ŷk(n)−

→
wk(n)

→
u k(n) (12)

iv. Assign the discrete signal. This necessitates X (N2) complex multiplications
and additions, where N is the signal length. To circumvent this computational
cost, the computational backdrop of the FIR filter is used, which minimizes the
computational complexity of X(N2) complex multiplications and additions, as
follows:

Xk =
N−1

∑
n=0

e2µk( n
N ) πxk (13)

Table 1. List of parameters and their descriptions.

Parameters Description

Si Refers to the cluster’s member node.

N
The total number of sensor nodes observes a vector of sampled signals, which
contains the current signal as well as the N − 1 previous samples. The vector of
x(n) is defined as x(n) = [x(n), x(n − 1), . . ., x(n − N + 1)]k.

Xk[n]
The real data are represented as scalar input signals deployed by N sensors at
time k, where k is characterized by the continuous-time signal sampling
time index.

k The sampling time is defined as fs, where fs is the sample frequency.
t Time index: t = 1; 2, . . .,T.
i Sensor index: n = 1, 2, . . ., N.

wt(n)
The weight signal of the combination of both filters at time t for the short-term
observation memory-based filter at instant n.

u(n) The previous scale of an input signal.
y(n) The output signal from the combined (FIR and ALE) filters.
ŷk(n) The predicted output (when training samples are provided feedback).

e(n) Prediction error between the prior signal u(n) and the predicted output of both
filters ŷ(t).

M An integer representing the filter memory (the number of samples
previously used).

ai The reverse-feed filter coefficients.
bi The feed-forward filter coefficients.
Q The reverse filtering order.
P The feed-forward filter order.
X(Z) The discrete-time signal receives the input signal vector.
Y(Z) The output signal vector is obtained by ACF filtering the discrete-time signal.

˜̂e(n) The balance of an anticipated error signal between the training and
expected samples.

L
A factor of forgetting, where 0 < λ ≤1 denotes the smaller value; the smaller L
helps to rule the earlier samples. Typically, ϕ is selected between 0.98 and 1.

f(z) An aspect of the feedback filters’ data propagation/transfer function.
CHs the leaders of each cluster in the assigned sensor network.

ε(z)
The absolute deviation for sensor readings from the actual observation values is
provided at the cluster head (CH) as a threshold cross at time k by the
Kalman filter.

X(N2) is transformed into an array with a dimensional vector of indices
n = (n1,n2, . . .nd) by a collection of d nested summations, nj = 0, . . ., Nj−1, for each j,
where the division n/N is performed element-wise. The yield (xk) is a sequence of sets of
one-dimensional discrete signals performed along one dimension at a time (in any order).

D. Training Process

The training process included in sequences of the steps are as follows:
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(a) Data Preparation: Collect and preprocess the data, and split the dataset into training,
validation, and test sets. Normalize the data if necessary.

(b) Initialization: Initialize the network’s weights, according to the above subsection.
(c) Forward Propagation: Pass the input data through the network to obtain predictions.
(d) Error Calculation: Compute the loss using a suitable error function (Algorithm 1—Step

11), for classification tasks.
(e) Backward Propagation: Calculate the creditable membership of the clustering mem-

bers concerning each weight using the propagation function. The propagation func-
tion of the feedback filters f(z) becomes the following:

f (z) =
Y(z)
x(z)

=

P
∑

i=0
biz−ix(z)

Q
∑

i=0
ajz−jy(z)

(14)

(f) Weight Update: Update the weights using an adaptive filtering–learning algorithm,
iteratively, for testing the model on the test set to evaluate its performance (Algo-
rithm 1—Step 8).

(g) Iteration: Repeat the forward and backward propagation steps for a set number of
epochs or until the model converges.

Algorithm 1: The adaptive filtering–learning algorithm.

Input: a set of sensors within the cluster (Ncluster), X(n) = [x(n − 1), x(n − 2), . . ., x(n − K + 1)],
uk(n) = desired response at time n, n = 0, 1, 2, . . ., n + 1
Output: predicted value ŷk(n) and error ek (n)
Initialization: wk(n)
Step 1: for each n = I in Ncluster
Step 2: w(n) = Ŵ(n − 1) + µ

γ+x(n) e(n)x(n)
Step 3: for i = 1 to k do

Step 4: ˜ŷk(n) =
n−1
∑

i=0
wk

→
u k−i

Step 5: ek(n) =
→
u k(n)− ŷk(n)

Step 6: end for
Step 7: for j = 1 to M do
Step 8:

→
wk(n) = wk−1 + 2µ ek

→
x k

Step 9: end for
Step 10:

→
y(n) = [1 − µ]w(n) + µe(n)x(n)

Step 11:˜ ek(n) =
→
y (n)−→

wk(n)
→
u k(n)

Step 12: end for each
Step 13: ε(z) = y(z) − L

→
wk X(Z)

Step 14: Return
→
y(n), e(n)

5. Simulation and Discussion

Monitoring aquatic environmental factors in real time is crucial. So, underwater wire-
less sensor network integration with positioning systems under IoT technology has the
potential to transform the real-time monitoring of underwater ecosystems. In the implemen-
tation of the proposed network assumptions, the International Resource Identifiers System
(IRIS) requirements supported by the communication modem M64a transceiver, ESP8266-01
Wi-Fi module, and positioning system Underwater GPS G2 (Global Position System Gener-
ation 2) were used. The M64a transceiver is designed to operate in low-power, low-bitrate,
and long-range modes. M64a provides a dependable acoustic communication link between
two subsea locations with limited space, weight, or power. Data are exchanged at 64 bps
across a robust two-way half-duplex acoustic link that is employed to assure data transfer
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reliability, and the GPS G2 gives a single locator with reliable, accurate, and robust acoustic
locating. To execute the proposed network assumptions, the constructed network involved
(N) sensor nodes distributed in clusters. Each cluster in the manufactured network uses
GA to select the head node. In the evolutionary algorithm, each node in the cluster sends
enclosed signals about its energy and geographic region to a hub. The planned network has
(N) sensor nodes that are distributed in clusters. Each cluster in the manufactured network
uses GA to select the head node.

In every deploying round, the elected node receives a hello message from the base
station, which allows it to declare itself as a cluster head (CH) to the other cluster members.
In the algorithm’s implementation, any sensor node can choose to be a cluster head if it
has not received an announcement message from the head. In this situation, this node
sends out an announcement about the head selection to the cluster nodes to promote itself
as the group leader. Cluster members are sent a join message to the node providing the
announcement, which announces their connection with the cluster. Each GA chromosome
serves as a designating map for the cluster leaders. A gene on a chromosome controls
whether the appropriate node appears as the group’s leader. Cluster members are sent a
join message to the node providing the announcement, which announces their connection
with the cluster. Each GA chromosome serves as a designating map for the cluster leaders.
A gene in a chromosome controls whether the relevant node appears as the group’s leader.
The closest neighbour rule is then used to build the cluster’s nodes, and the importance of
a chromosomal WSN structure is assessed by analyzing all groups. During the steady-state
phase, the nodes in each cluster can begin sensing information and communicating it to
their cluster head for the predetermined transmission time. Because the cluster head (CH) is
typically located a long distance from the base station (BS), communicating with it requires
a significant amount of energy; therefore, the head must be elected each cycle. Following
direct data sensing, each sensor node broadcasts the individual data to surrounding nodes
as well as the cluster head across a specified period. Implementing sleep modes for sensors
can significantly reduce energy consumption. In each cycle, every node in the cluster
determines the energy consumption using the following equation:

EOVERALL = EI–∑ EIDLE, ESLEEP, ETRANSEREC (15)

Table 2 displays the simulation results for embedded underwater sensors. As a feature,
we selected pH (the potential of hydrogen), Ammonia (NH3), temperature, turbidity, and
fish as the goal attributes. The practical results are divided into two sections, sensory
filtration and prediction learning. In our investigation, we used pH, temperature, and
turbidity as aquatic environment factors. It created an IoT platform for sensor-based real-
time aquatic environment monitoring. Through monitoring the water quality of five ponds,
the sensors recorded four attributes: pH, Ammonia (NH3), temperature, turbidity, and fish.
The studied dataset included 12 columns and 4591 rows. In this study, fish is the dependent
variable, and the others are the independent ones. There are 11 different fish categories,
86 different pH values, up to 102 different NH3 values, 46 different temperature values,
and 85 different turbidity values. The proposed system is designed as an embedded system
with sensors and an alarm coupled with a GPS application. A variety of sensors are utilized
to measure parameters such as the pH, temperature, turbidity, and fish taxonomic group.
These sensors are linked to a microcontroller board, which also includes an alarm system.
The sensors collect data from the water and transfer them to the cluster head (CH) via the
digital signal microcontroller (DSP) for processing and storage in the related memory. The
proposed filtering–learning system for sensor nodes in the designated underwater network
was created in MATLAB (https://ww2.mathworks.cn/products/matlab.html). The data
are employed during deployments for two types of scenarios during deployment rounds.
The initial test was conducted on the fish farm’s aquatic data, which were obtained from the
University of Dhaka in Bangladesh. The second scenario of inspection carried out real trials
at one of our government fish farms. To validate the proposed model, data was collected
from 270 sensors laid in five ponds of different sizes and settings. Each pond included

https://ww2.mathworks.cn/products/matlab.html
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54 sensors distributed in a decentralized manner. The designated network was constructed
using a clustering method in which a genetic algorithm (GA) was employed to determine
the ideal structure of the designed network after each transfer cycle, based on a periodic
reevaluation of its energy. During the optimization procedure, each chromosomal GA
represents a map of the cluster head identification. A gene on a chromosome identifies the
appropriate node, whether the cluster head or the ordinary node is utilized. The head node
is then built based on the closest neighbour rule, and the ability of a chromosome-driven
WSN structure is established by all cluster evaluations. The accuracy, the True Positive
Alert (TP) rate, and the amount of noise cancellation achieved for the transferred data
were measured.

Table 2. Simulation parameters of embedded sensors.

Parameter Value

Transducer frequency 31–250 kHz
Data rate 64 bits per second
Range 200 m
Latency 1.5–2.5 s
Signal Range of GPS G2 300 m
Bandwidth 125 kHz
Communication Wi-Fi (802.11ac/a/b/g/n)
Frequency 31.25–250 kHz (200 kHz typical)
Transmission of current draw It 44 mA
Reception of current draw Ir 10.8 mA
The current draw in sleep mode 0.2 µA.
Battery power 2AA batteries
Energy drain of GPS G2 0.375 Volts
Dispersed power 0.025 Volts
EI Initial energy.
EIDLE The consumed energy is in an idle state.
ESLEEP The consumed energy in the sleep state.
ETRANS The consumed energy.
EREC The consumed energy in the reception.
EOVERALL The total consumed energy.

A. Sensory Filtration for Aquatic Monitoring

The datasets were observed in real-time monitoring and control systems for fish
farming. Each fish pond is a sensory cluster in the wireless sensor network managed by
CH filters. It is an embedded microcontroller designed with integrated filters (FIR and
ALE) and a Global Positioning System (GPS), and it is linked to many sensors via a wireless
communication module. The aquatic data such as the water surface temperature, air
temperature, pH, NH3, water bottom temperature, and turbidity are measured in real-time
by having numerous sensors with homogeneous constructions. Each sensor, in the pond,
measures one of the specified characteristics, and the date and time of measurement are
also recorded. The data are collected by the sensors and then transferred to the cluster head,
as stated in Table 3. These data were recorded in the CH’s cluster memory and recovered
for the real-time analysis and forecasting of the missing data readings.
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Table 3. Gathered sample of readings observed from the deployed sensors for the designated fishing
ponds in the proposed UWSN.

Water
Surface
Temp.

Air Temp. pH NH3

Water
Bottom
Temp.

Turbidity Fish Time
Stamp

Water
Surface
Temp.

Air Temp.

25.63 22.13 5.95 7.5 31 7.2 Sing 19:11:53 25.63 22.13
25.63 22.13 5.95 7.9 25 5.6 Rui 19:01:33 25.63 22.13
25.56 22.13 5.96 8.5 32 6.0 Koi 19:02:48 25.56 22.13
25.56 22.13 5.95 8.1 29 7.2 Prawn 19:01:13 25.56 22.13
25.56 22.13 5.92 7.9 28 6.1 Sing 19:00:03 25.56 22.13
25.56 22.13 5.94 8.5 30 3.0 Tilapia 19:03:08 25.56 22.13
25.56 22.13 5.94 7.4 29 3.7 Pangas 19:06:08 25.56 22.13

In this mode, the dataset was filtered using a resampling option to observe the present
relationship between the dataset’s instances and characteristics. Also, four sensors were
employed in the filtering process to collect real-time data from each pond’s water. The
sensors are a pH sensor, a bottom temperature sensor, a turbidity sensor, and an Ammonia
sensor. Each sensor begins by determining the monitored value (xi), which is regarded as a
noisy signal. As a result, the filtering integration phase works to refine xi by measuring the
signal formed by the sum of these two signals, an unknown signal of interest v(n), and a
nearly periodic noise signal p(n). This signal is known as x(n), and it is treated using two
integrated filtering processes. The signal x(n) is first entered into an adaptive line enhancer
(ALE), which is based on the simple principle of linear prediction. A nearly periodic signal
can be completely predicted using the linear mixtures of its prior data samples. In this
phase, any delayed data of the measured signal x(n-D) are entered as the adaptable filter’s
reference input signal x(n), and the desired response signal d(n) is set equal to x(n).

Table 3 displays a sample of noisy signals processed as input data x(n) to the integrated
filter in this manner. The parameters used through applying the proposed system were
the signal delay length D and the filter length L that were employed in the adaptive linear
estimate. The duration length of the delay is proportional to the degree of correlation in
the signal of interest. So, we simply chose a value of D = 100, which was then modified in
subsequent rounds. In addition, L = 32 was used for the adaptive filter. Following that, we
used certain block adaptive algorithms that need the vector lengths for x(n) and d(n) to be
integer multiples of the block length. We set N = 49 as the block length. The output signal
y(n) comprises a considerable portion of the periodic sinusoid, whereas the error signal e(n)
contains unknown information. We might plot e(n) vs. v(n) alongside the residual signal
e(n) − v(n) in the same plot, shown in Figure 2. It is worth noting that the system converged
the signal after approximately 3 s of adaptation with this step size by subtracting a pure
sinusoid from the original signal’s sinusoid, as shown in Table 4.

Table 4. An overview of the pH-adapted results from the sensors in each utilized pond.

X(K) D(K) Y(K) E(K)

5.97334400000000 5.0980800812507553 5.00000000000000 0.0980800812507553
5.84471900000000 5.711524107253188 2.73937801658796 −2.02785390933477
5.95300000000000 5.322718586092638 4.292949022658 −0.110615667608750
6.92412500000000 6.74139579845585 5.00895230402047 0.895230402048 × 10−15

6.90509400000000 6.20854989838715 6.518660090901947 0.51866009090194 × 10−17

5.94250000000000 5.81489146868828 5.994407024078749 0.99440702407874 × 10−19

6.97990600000000 6.41286461886760 5.14120845848566 × 1022 −0.14120845848566 × 10−22

6.87490600000000 6.48997667476100 5.15674236735994 × 1024 0.15674236735994 × 10−24
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Figure 2. An illustration of eliminating the noisy value of the pH sample through filtration experiments.

Table 4 summarizes the yields of an integrated filter in the sensory mode via a treated
pH sample. It was demonstrated that the size of the noise was finally eliminated using the
two processes of FIR filtration and ALE adaptive refining. This was accomplished by first
establishing a DSP.FIR filter object that represented the filtration system to be identified.
The filter coefficients were then designed using the “fircband” function. The developed
filter is a low-pass filter with a stopband ripple of 0.2. After that, the signal x(k) was sent to
the FIR filter. The desired signal d(k) is generated by the FIR filter as d = step (DSP.FIR filter,
x). Following that, preparing the adaptive filter object necessitates the use of starting values
for estimating the filter coefficients as well as the ALE step size for estimating the filter
coefficients. Then, set the dsp.ALE filter’s “Initial Conditions” property to the desired initial
filter weight values. For the step size, 0.8 is a fair compromise between being large enough
to converge well within 250 iterations (1000 input sample points) and being tiny enough
to get an accurate estimate of the FIR filter’s outputs. As a result, we discovered that the
error ratio in the shown pH sample is hidden and close to zero in many samples, such as
e (5.97334400000000). Table 4 also recorded convergences between real-time values and
refined yields of the integrated filter, where the desired signal for the observed reading (x(k))
in the first row is 5.0980800812507553 and the adaptive signal yield (y) is 5.00000000000000,
as shown in Figure 3.

Figure 2 shows that the suggested adaptive filter technique succeeded in managing the
carry signals emitted by the studied UWNS and efficiently removed the accompaniment
noise, as indicated in Table 3. Further, the adaptive incorporated filter, the FIR filter with
the ALE filter, conducted periodically adaptive digital signal processing (DSP) of the
emitted signals, for gaining the soft and pure signal. The inherent function of the integrated
filter was developed to establish an integrated system adapted to sensor-sensed readings
under harsh aquatic circumstances. Practically, the first is based on setting the filter;
numerator = “fircband”, within the integrated filter used as the initial filtering procedure.
Second, the yields of the ALE filter are used as relevant input data, the results of the filtering
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system throughout the adaption process, known as the desired signal y(k). Third, the error
signal was calculated between the adaptive FIR.dsp filter’s output (d(k)) and the adaptation
system’s output, ALE.dsp, denoted as y(k). The coefficients of both filters are practically
identical. The error signal is minimized by multiplying µ by the sample size.

Figure 3 depicts the reactions of a variety of incoming signal values for the aforemen-
tioned parameters in the suggested pond, which were analyzed programmatically using
the integrated filter throughout numerous deployment rounds. Plotting the findings of
Figure 3 emphasizes that, once x passes through the integrated filter, the noisy input signal
(x) and the target signal (d) are identical in signalling. This was performed by launching
the adaptive filter to activate the filtering system, which works in tandem with the ALE
filter to produce an adaptive refined signal (y). The adaptive filter’s output (y) is the signal
that has converged to the intended signal (d), minimizing the error (e) between the two
signals to a small value for the product signals. As seen in graphs (3-A and 3-B), the output
signal matches the target signal, rendering the difference between the two negligible as the
error magnitude approaches zero. Figure 4 below shows the error magnitude through the
integrated FIR and ALE.

Figure 4 shows that the weights vector (w) has a significant impact on the coefficients
of the integrated filters, especially used to start the suggested system (FIR filter). To confirm
convergence, we calculated the numerator of the FIR filter and the estimated weights of the
adaptive filter in the first process’s step size. We increased the step size to 0.2 to account
for varying signal amplitudes. It was discovered that the estimated filter weights closely
match the actual filter weights. As a result, the weighting size of the noise-accompanied
signal was reduced to zero, corroborating the results reported in the previous signal plot.

B. Distributed Prediction Learning

A distributed method for deep learning in underwater wireless sensor networks was
proposed in this mode. By training the middle layer as a deep learning block, the integrated
filter (ACF) and Kalman filter were embedded into it. Then it was put on the CH for each
cluster. This was to perform distributed data processing to remove the noise accompanied
by outgoing signals and achieve prediction for lost signals. In this manner, the suggestion
is a distributed deep learning application at the cluster head level in each deploying group
in underwater wireless sensor networks; see Figure 5.
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Figure 5 depicts the operating procedure phases for the suggested method. First, the
input layer is assigned the first multiple layers as an input port for coming sensor readings.
Then, an intermediate layer is assigned to the CH that receives the data and calculates the
number of transfer paths throughout the round. Second, the remaining intermediate layers
are divided into two sub-layers and assigned to the alerting notifications and predicted
yields for relay nodes in each cluster, which is known as the fully connected layer or
the output layer. Third, during the deployment cycles, each CH in the cluster must
synchronically deliver the output result to the base station via wireless communications via
IOT. Fourth, if the clustering nodes do not transport data to the hidden layer regularly across
several hops, the cluster head does not receive any transfer data from these sensors. Finally,
in the alerting layer, CH checks the number of multiplex notifications to diagnose the node’s
status, performs prediction computational processing with the integrated adaptive filters,
and then transfers the predicted product (ŷ(n)) to the base station. Fifth, the CH performs
the computational processing of the remaining middle layer by training the cell with
samples of the filtered products coming from the learning intermediate layer if the number
of hops is sufficient; however, the data transfer was not complete upon dispatching to the
CH. Figure 6 depicts the yields concluded from the prediction paradigm for a sample of the
dataset simulated by the neural network. As illustrated, a perfect signal strength emerged
from a sector of missing temperature data via dispersed prediction coverage employed by
the network’s filtered LSTM neural nodes. This was conducted across 300 microseconds
during one of the deployment epochs during iteration 60.
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In Figure 6, inconsistencies in the data were widespread, as were missing or out-of-
range values. There were also long uninterrupted noise segments. Therefore, the data
were cleaned by replacing missing or noisy values with preceding values in time (filling
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the missing temperature value with the most recently recorded temperature value). We
used the data readings as the current input and followed these methods to calculate the
values of the three distinct gates. First, we computed the parametrized vectors for the
current input and the prior hidden state for each gate using element-wise multiplication
with the respective vector weights. Next, the system computed the current internal cell
state. It began by calculating the element-wise multiplication vectors of the input gate
and the input modulation gate. It then computed the element-wise multiplication vector
of the forget gate and the prior internal cell state and summed both vectors to obtain
the current internal cell state. Finally, the system determined the current hidden state
by obtaining the element-wise hyperbolic tangent of the current internal cell state vector
by applying it = tanh(wi × xt + wh × ht−1 + bk) (Equation (2)), followed by element-wise
multiplication with the output gate.

The proposed method performs a check test on the final anticipated output value
based on aquatic environment factors. Otherwise, the alarm system sends alert signals to
the chief sensor CH about the problem position in the pond. It conducted a test to validate
the final output value while taking aquatic environment aspects into account. If there is
a problem with the pond, the alarm system alerts the chief sensor. Missing, unique, and
distinct values of each characteristic can be examined during the noise cancellation phase.
Following this method, all seven taxon groupings of fish have no missing data for any of
their attributes, and the pH levels in almost all of the samples are close to four. In addition,
the system forecasted the missing bottom temperature, which reached up to 30 lost readings
of a variant temperature, and high-degree turbidity that did not surpass a 7.2 unique value
through most of the chosen 1000 samples. It is worth mentioning that the proposed system
achieved 98.5% of the sensory filtration method in most of the acquired samples and close to
99.1% of an adaptive prediction method. Compared to the recent methods, the researchers
in [8,10] focused on improving water quality prediction and anomaly detection in sensory
monitoring of fish farming, which is the same principle as our method. Furthermore,
the wireless transceiver boards for underwater sensors deployed in genuine underwater
environments are identical. Also, they measured the same water quality variables obtained
from similar fish farms. The comparison methods have improved decision-making for fish
farmers and reduced economic costs by minimizing labour-intensive monitoring. However,
these methods were only sufficient to detect anomalies in real-time from complex time se-
ries data collected by water sensors, unless deep learning techniques are exploited to cover
the issued anomalies and filter the observed sensory yields from the network to ensure the
safety and sustainability of the water. Also noteworthy is their lack of limited pure signals
and their reliance on sensory inputs. In addition to the misbehaviour caused by intermittent
signal transmission and noisy data. The proposed method leveraged the strengths of both
convolutional networks and LSTM networks in the selected comparative methods and
addressed adaptive filtration for aqua signals, to efficiently identify unexpected patterns
or values that could indicate water quality issues. The LSTM-CCN approach has shown
impressive accuracy, with a rate of 98.5% for the sensory filtration method in the majority
of the obtained data and close to 99.1% for an adaptive prediction method, while also
consuming little energy during lengthy monitoring, making it highly effective in aqua
environments. The suggested system achieved a detection accuracy in the monitoring
field estimated at 97.8% and an error rate of ~2.3% in alerting messages throughout testing
samples. The proposed method used a huge quantity of data, then processed by each node
individually. Additionally, the suggested approach is more energy efficient because it re-
duces the amount of time that each node has to spend processing data. And each node goes
into sleep mode until the next epoch of data is ready to be processed. Finally, the suggested
approach is highly scalable for underwater environmental monitoring applications because
it can be easily adapted to different network sizes and topologies.
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6. Conclusions

This paper proposed a novel integrated method for predicting deep learning in
UWSNs. Also, it presented a new embedded system of transceiver modules in UWSN
design, and a distributed method was the behaviour of deployment in the designated
network. Indeed, we conducted our experiments in government fish farms that encom-
passed underwater wireless sensor network integration with positioning systems under
IoT. Farming sensors have specifications gained from the International Resource Identifiers
System (IRIS) requirements. Furthermore, a communication modem M64a transceiver,
ESP8266-01 Wi-Fi module, and positioning system Underwater GPS G2 were used. The
M64a transceiver is designed to operate in low-power, low-bitrate, and long-range modes.
M64a provides a dependable acoustic communication link between two subsea locations
with limited space, weight, or power. However, sensors must be encased in materials that
can withstand high pressure, corrosion, and biofouling. Long-lasting batteries or energy
harvesting methods (e.g., from underwater currents) are essential due to the difficulty of
replacing power sources underwater.

Throughout deployments, the data were collected from each sensor node in the
UWSN clusters. Then, the gathered data were processed synchronically via a series of
the proposed deep filtering–learning models. To improve signal emissions, cancel any
interferences accompanied by the emitted signal, and gain the soft pure signal. The practical
experiments revealed that water quality is heavily influenced by pH and increased water
turbidity. So, the pH factor was used to determine the appropriateness of the water.
Further, the main control unit calculates a variety of indicators to ensure the purity of
outgoing signals that assure water quality and a favourable environment for fish growth.
The proposed method enhanced the performance of a variety of sensors in challenging
or unpredictable underwater circumstances. Multiple experiments on various datasets
pointed to the proposed deep learning-based prediction model having high accuracy in
prediction by lost events, an optimal filtering statistic for the transferred signals, and a
positive alarm rate of any anomaly. However, deploying underwater sensors is a difficult
undertaking that necessitates meticulous preparation and consideration of the particular
obstacles presented by the underwater environment. Thus, deploying several sensors and
providing redundancy can aid in data integrity and system reliability. To achieve long-term
stability in UWSNs, equipment must be robust to withstand harsh underwater conditions,
including high pressure, salinity, and potential biofouling; regular maintenance and checks
are necessary to ensure long-term functionality and reliability. Cloud-based software can
facilitate the sharing, viewing, and comparison of underwater missions, enhancing the long-
term stability of data management, and regular maintenance or self-cleaning mechanisms
can help prevent biofouling, which can degrade sensor performance over time.
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