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TO THE EDITOR:
In acute myeloid leukemia (AML), the anti-leukemic potential of
allogeneic hematopoietic stem cell transplantation (allo-HSCT) and
post-transplant donor lymphocyte infusion (DLI) hinges on the
activity of T cells [1]. Bispecific antibodies, including bispecific T-cell-
engager (BiTE®) molecules, redirect endogenous T cells against
neoplastic cells for eradication by CD3-dependent T-cell activation.
In B-lymphoid malignancies, high clinical efficacy has led to the
approval of several T-cell-recruiting constructs [2, 3]. In AML, several
bispecific antibodies have been developed and have shown strong
preclinical efficacy [4, 5]. However, albeit early-phase I/II clinical trials
in heavily pre-treated patients with R/R AML have yielded
promising, dose-dependent results, sustained responses were not
observed [6–8].
We hypothesize that T-cell dysfunction contributes to BiTE

resistance and a lack of long-term responses in AML. Evidence for
the relevance of T-cell fitness to BiTE-mediated activity is derived
from patients with B-cell precursor acute lymphoblastic leukemia
in whom a predominance of T cells with an exhausted phenotype
was associated with failure of blinatumomab treatment [9].
Additionally, transcriptional profiles associated with T-cell dys-
function were found in nonresponding patients [10]. Further
evidence of an association between T-cell fitness and BiTE activity
was found in a preclinical model of T-cell exhaustion after
continuous BiTE exposure [11].
So far, attempts to characterize T-cell phenotype and function

in AML patients have yielded variable and sometimes contra-
dictory results. Studies suggest that BM T cells in contrast to
peripheral blood T cells better reflect the immune state and are
the main mediators of BiTE-mediated cytotoxicity [12, 13]. Hence,
characterizing BM T cells at different time points during the course
of the disease might help to guide the optimal clinical application
of T-cell-based immunotherapies in AML.

We assessed BM T cells of AML patients at initial diagnosis (ID),
complete remission (CR), and first relapse (RL). All AML samples
were allo-HSCT naive, and age-matched HD samples served as a
control cohort (Supplementary Table 1). The percentage of BM
CD3+ T cells was lower at ID and RL compared to time of CR and in
HD samples (Supplementary Fig. S1A–C). Of the CD3+ T-cell sub-
populations, the most significant changes in the T-cell differentia-
tion states were observed in CD8+ T cells (Fig. 1A, Supplementary
Fig. S1D, E). Terminally differentiated effector cells (TEMRA) were
the most abundant population at ID compared to other time
points. A higher proportion of central memory (TCM) cells was
apparent at RL compared to ID and CR. By contrast, a higher
percentage of naive T cells (TNaive) was found at CR than at ID and
RL (Fig. 1A).
We next measured the expression of inhibitory receptors within

the CD4+ and CD8+ T cell compartments during AML progression
and compared them to HD T cells. A significantly higher
proportion of CD244 and TIM-3 expressing cells were detected
for both CD4+ and CD8+ patient T cells. Next, we observed a
higher percentage of PD-1+ and LAG-3+ cells on CD8+ patient
T cells relative to HDs. In addition, CD8+ T cells at ID showed a
higher frequency of CD160+ cells compared to cells from HDs.
Within the CD4+ T-cell compartment, we observed a lower
proportion of LAG-3+ cells at ID compared to RL. In summary, AML
patients showed significantly higher expression of exhaustion-
associated inhibitory receptors compared to HDs (Fig. 1B,
Supplementary Fig. S1F).
To characterize the transcriptional program of AML T cells, we

performed longitudinal RNA-seq analysis of sorted BM CD3+

T cells from paired ID–RL samples (n= 7) and HDs (n= 2). We
first compared the transcriptional profiles of T cells at both ID
and RL to those of HDs and identified 1482 and 1029
differentially expressed genes (DEGs; log2FC > 1 or < −1,
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P < 0.05; Supplementary Table 3; Fig. 1C, D, Supplementary
Fig. S2A–D), respectively. We observed upregulation of both
stimulation as well as dysfunction-associated genes in ID and RL
compared to HDs (ID: CD63, GZMH, IL18RAP, GZMB, CTLA4; RL:

BLIMP-1, CCL5, CD48, KLRB1; both ID and RL: GNLY, TLR1). This
finding was confirmed by gene set enrichment analysis (GSEA)
using published gene sets (Supplementary Methods). Moreover,
BM T cells at ID vs. HDs significantly expressed senescence-
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associated genes like KLRF1, and the inhibitory KIRs (KIR2DL3 and
KIR2DL1). Notably, the immune effector dysfunction score
(IED68) [14] demonstrated significant positive enrichment in ID
vs. HD T cells in line with higher expression of senescence-
associated markers at this time point (Fig. 1E, Supplementary
Fig. S2E–G, Supplementary Table 4).
To elucidate the longitudinal transcriptional changes occur-

ring in patients’ T cells between ID and RL, we compared T cells
from AML patients at RL (n= 7) to their matched ID counter-
parts. Differential gene expression analysis (log2FC > 1 or < −1,
P < 0.05; Supplementary Table 5) revealed high expression of
senescence markers (KLRF1, LILRB1) at ID vs. RL and genes
related to memory T cells (DUSP4, DNAJB1) and exhaustion
(NR4A1, TOX2, JUND) at RL vs. ID (Fig. 1F, Supplementary
Fig. S3A). GSEA indicated that pathways associated with
senescence (oxidative phosphorylation and protein secretion)
were enriched in ID T cells, whereas RL T cells showed
enrichment for TCM and tissue-resident memory T-cell (TRM)
signatures, as well as pathways implicated in T-cell exhaustion
(Fig. 1G, Supplementary Fig. S3B; Supplementary Table 6).
Accordingly, expression of core TFs associated with progenitor
exhausted (TPEX) and terminally exhausted T cells (TEX) was
significantly enhanced in RL but not ID T cells (Fig. 1H and I,
Supplementary Fig. S3C, Supplementary Table 7).
We next looked at active regulatory regions in ID vs. RL T cells.

ATAC-seq performed in paired ID and RL T cells identified 1294
differential ATAC peaks (log2FC > 1, P < 0.01). The principal
component analysis separated ID and RL T cells (Supplementary
Fig. S3D–F). Notably, accessible regions in RL (RL-specific ATAC
peaks) corresponded to changes in TF activity. TF motif analysis
on these regions revealed enrichment for AP1 family TF-binding
motifs (Fig. 1J, Supplementary Table 8). These findings were in
line with higher expression of AP-1 and IRF family members in
RL vs. ID T cells (Supplementary Fig. S3G). Furthermore, RL-
specific ATAC peaks included the exhaustion-associated gene
NR4A1 and the memory-associated gene DNAJB1, which were
both transcriptionally upregulated in RL compared to ID T cells
(Fig. 1F, K). For regions with decreased accessibility in RL T cells,
we did not observe a clear pattern connected to gene
expression. Together, these data demonstrate that T cells in
AML bear different states of T-cell dysfunction, with senescence
appearing to be more prominent at ID, whereas RL T cells exhibit
a profile of exhaustion.
Next, we investigated the function of BM T cells during AML

progression in vitro. At ID, T cells showed lower CD3xCD33 BiTE
(AMG330)-mediated cytotoxicity and T-cell proliferation against
the AML cell line (OCI-AML3) relative to RL T cells (Fig. 2A–C;
Supplementary Fig. S4A–C). These findings were further
validated in cocultures with primary AML cells and autologous

T cells; again, ID T cells showed inferior AMG330-mediated
cytotoxicity and proliferation compared to RL (Fig. 2D, E,
Supplementary Fig. S4D). To study the long-term function of ID
and RL T cells, we used our previously established in vitro
exhaustion model system, which provides continuous exposure
to the CD3xCD19 BiTE (AMG 562) in the presence of the B-cell
lymphoma cell line OCI-Ly1 [11]. Indeed, we observed a higher
frequency of CD4+ and CD8+ T cells co-expressing PD-1, TIM-3,
and LAG-3 at time of ID and RL compared to CR (Fig. 2F). Similar
to the short-term stimulation, ID T cells showed lower cytotoxic
function and proliferation relative to RL against OCI-Ly1 cells
(Fig. 2G, Supplementary Fig. S4E). However, ID and RL T cells
both showed less IFN-γ and GZMB production compared to
T cells from CR (Fig. 2H). By assessing the metabolic activity, we
observed that T cells at ID and RL showed lower mitochondrial
respiration and glycolysis relative to CR. Interestingly, meta-
bolic impairment was more prominent in T cells at RL, as
evidenced by a significantly lower spare respiratory capacity
(SRC) and glycolytic reserve (Fig. 2I, J). Together, these data
show that after continuous BiTE stimulation cells at ID and RL
exhibited decreased effector molecule production and
impaired metabolic fitness in comparison to CR. Further
examination of T-cell function using CD3 and CD28 beads
revealed that the addition of CD28 co-stimulation, compared to
BiTE-mediated T-cell activation, improved but did not fully
rescue T-cell proliferation at ID and RL relative to CR
(Supplementary Fig. S5A, B).
Taken together, our study provides insights into the

dysfunctional state of BM T cells and the molecular determi-
nants of their function during AML progression. Although ELN
risk group attribution was well-balanced in our analyses
(Supplementary Table 9), we acknowledge that genetic hetero-
geneity might still impose a bias. The impaired function of
T cells during active disease, either at time of ID or RL, and their
functional reinvigoration at first CR support the use of BiTE
molecules in patients in CR. Although limited, the lessons from
clinical trials so far in R/R AML patients have indicated a better
clinical response to AMG 330 and CAR T cells preferentially in
patients with low disease burden [15]. Thus, promoting BiTE
molecules to consolidation, for example, after first-line therapy
in patients at CR with MRD positivity, with restored T-cell
function and favorable E:T ratio appears to be a better-suited
scenario.
It is of high importance that clinical trials evaluating these

therapies incorporate thorough biomarker studies, including BM
biopsies to obtain a T-cell signature associated with response to
treatment. These findings then need to be integrated into clinical
trials, as it is likely that the one-size-fits-all approach does
not apply.

Fig. 1 Bone marrow T cells at the time of ID and RL display a phenotypic and transcriptional profile of dysfunction. A Proportions of naive
(TNaive, CD45RA

+CCR7+), central memory (TCM, CD45RA
−CCR7+), effector memory (TEM, CD45RA

−CCR7−), and terminal effector (TEMRA,
CD45RA+CCR7−) T cells within the CD4+, and CD8+ compartments. B Frequency of BM CD4+ (top row) and CD8+ (bottom row) T cells positive
for inhibitory receptors at ID (n= 19), RL (n= 14), CR (n= 7), and in HDs (n= 10). C Volcano plot of DEGs at ID (n= 7) vs. HDs (n= 2).
Significantly upregulated (red) and downregulated (blue) genes at ID are highlighted (log2FC > 1 or < −1; P < 0.05). Selected genes are labeled.
D Volcano plot of DEGs at RL (n= 7) vs. HDs (n= 2). E GSEA for gene sets associated with immune function using published gene sets derived
from MSigDB or custom gene sets. GSEA statistics are provided in Supplementary Table 3. F Heatmap demonstrating selected DEGs at RL
compared to ID. G GSEA in RL vs. ID T cells for gene sets associated with T-cell populations and immune function from MSigDB and published
data sets (details on the gene sets are provided in the Supplementary Methods). GSEA statistics are included in Supplementary Table 6.
H GSEA in RL vs. ID T cells for TFs related to TPEX and TEX. I Heatmap showing the expression of top hits, from the analysis in panel H, in ID and
RL patients. J TF motifs enriched in RL-specific ATAC peaks. Significant motifs are labeled and highlighted in red. K ATAC-seq tracks of selected
genes significantly upregulated in RL vs. ID T cells. BM bone marrow, CR complete remission, DEG differentially expressed gene, GSEA gene set
enrichment analysis, HD healthy donor, ID initial diagnosis, RL relapse, TF transcription factor. All plots represent the mean ± SEM. One-way
ANOVA was used to calculate P values.
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Fig. 2 ID T cells display lower BiTE-mediated cytotoxicity compared to RL, but both have impaired metabolic fitness after continuous
stimulation. A AMG 330-mediated cytotoxicity of T cells sampled at ID (n= 8), RL (n= 7), and CR (n= 6) on day 5 against OCI-AML3 cells
relative to cBiTE (concentration AMG 330 or cBiTE = 5 ng/ml, E:T= 1:3). B T-cell proliferation on day 5 calculated as fold change relative to the
number of T cells on day 0. C Percentage of T cells producing GZMB measured by flow cytometry after intracellular staining on day 5. D AMG
330-mediated cytotoxicity of T cells sampled at ID (n= 10) and RL (n= 7) against autologous primary AML blasts in ex vivo cytotoxicity assays
(concentration AMG 330 or cBiTE = 5 ng/ml) on day 6. E T-cell proliferation on day 6 calculated as fold change relative to the number of T cells
on day 0. F Percentage of CD4+ and CD8+ T cells from patients at ID (n= 6), RL (n= 6), and CR (n= 4) co-expressing PD-1, Tim-3, and LAG-3 on
day 14 of continuous stimulation. G AMG 562-mediated cytotoxicity of isolated T cells against OCI-Ly1 cells after 14 days of continuous
stimulation (concentration AMG 562 or cBiTE= 5 ng/ml, E:T= 1:5, 3 days). H Levels of secreted TNF, IFN-γ, and GZMB measured by CBA in the
supernatants of cytotoxicity assays on day 3. I Kinetic plot and corresponding bar graphs of normalized OCR acquired during mitochondrial
stress testing of T cells from patients at ID (n= 4), RL (n= 5), and CR (n= 4) after 14 days of continuous stimulation with AMG 562. J Kinetic
plot and corresponding bar graphs of normalized ECAR obtained during glycolysis stress testing of T cells from patients at ID (n= 4), RL
(n= 5), and CR (n= 4) after 14 days of continuous stimulation with AMG 562. CR complete remission; ID initial diagnosis, RL relapse. Bar plots
represent the mean ± SEM. One-way ANOVA (A–C and F–J) and Mann–Whitney tests (D, E) were used to calculate P values.
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