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Mapping spatial organization and genetic 
cell-state regulators to target immune 
evasion in ovarian cancer
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Subin Kim    1, Aihui Wang    6, Brooke Liang    6, Xiaoming Zhang6, Lucy M. Han7, 
Raeline Valbuena    1, Michael C. Bassik    1, Young-Min Kim1, 
Sylvia K. Plevritis    2,8, Michael P. Snyder    1, Brooke E. Howitt    6  & 
Livnat Jerby    1,5,9 

The drivers of immune evasion are not entirely clear, limiting the success 
of cancer immunotherapies. Here we applied single-cell spatial and 
perturbational transcriptomics to delineate immune evasion in high-grade 
serous tubo-ovarian cancer. To this end, we first mapped the spatial 
organization of high-grade serous tubo-ovarian cancer by profiling more 
than 2.5 million cells in situ in 130 tumors from 94 patients. This revealed a 
malignant cell state that reflects tumor genetics and is predictive of T cell 
and natural killer cell infiltration levels and response to immune checkpoint 
blockade. We then performed Perturb-seq screens and identified genetic 
perturbations—including knockout of PTPN1 and ACTR8—that trigger this 
malignant cell state. Finally, we show that these perturbations, as well as a 
PTPN1/PTPN2 inhibitor, sensitize ovarian cancer cells to T cell and natural 
killer cell cytotoxicity, as predicted. This study thus identifies ways to study 
and target immune evasion by linking genetic variation, cell-state regulators 
and spatial biology.

Multicellular dysregulation has an important function in the initiation 
and progression of a wide range of diseases, including cancer, where 
tumor development and accompanying immune responses depend 
on (and shape) the location of different cell-type populations, tissue 
properties and organization1–3. Cellular and animal models have been 
instrumental in identifying central immune suppressors4–6 and have 
resulted in major breakthroughs in cancer treatment. However, many 
patients with cancer do not respond to current immunotherapies7–9, 
resulting, at least in part, from two central gaps. First, in contrast to 
the study of cancer genetics, in which genome sequencing of tumors 

across large and diverse patient populations has provided a foundation 
to study the genetic basis of cancer and develop targeted therapies, we 
still lack equivalent maps for tumor tissue organization to study the 
inherently spatial processes of multicellular dynamics and immune 
exclusion in patients. Second, identifying the regulators of cell states 
and reciprocal intercellular interactions poses additional challenges 
and requires functional interrogation across a larger search space of 
combinatorial gene–environment perturbations.

In tubo-ovarian high-grade serous carcinoma (HGSC)—the most 
common and aggressive form of ovarian cancer10—these gaps are 
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Discovery dataset that spans 960 genes measured across 491,792 cells 
from 94 tumors. The discovery phase of the study was performed exclu-
sively based on analyses of the Discovery dataset; all the spatiomolecular  
transcriptional programs identified in this study were derived from 
this dataset. In the second round, we applied SMI to another TMA from 
34 additional (unseen) patients as well 4 whole-tissue sections (from 
patients included in the Discovery set), spanning 6,175 and 1,000 genes 
(Supplementary Table 1b and Supplementary Fig. 1a), respectively, and 
a total number of 1,233,033 cells. The Test datasets were used only in 
the testing phase of the study to test if the key spatiomolecular findings 
generalize to unseen patients and larger fields of view (FOVs) within a 
tumor. For technical comparison and validation, in situ sequencing 
(ISS; via Xenium22) was applied to profile 280 genes in an FFPE TMA of 
32 tissue cores, and MERFISH23 (multiplexed error-robust fluorescence 
in situ hybridization (ISH)) was applied to profile 140 genes in four 
fresh-frozen tissue sections (Methods and Supplementary Table 1b).

For robust data processing, we developed an analytical procedure 
that mitigates segmentation inaccuracies (Extended Data Fig. 1a–f 
and Methods) and results in robust cell-type annotation through 
recursive clustering of the spatial single-cell gene expression profiles 
(Extended Data Fig. 2a,b and Methods). Applying our pipeline to the 
Discovery dataset identified malignant cells (n = 314,191), T cells and 
natural killer (NK) cells (n = 28,676), B cells (n = 16,373), monocytes 
(n = 45,549), mast cells (n = 606), fibroblasts/stromal cells (n = 72,861) 
and endothelial cells (n = 13,536; Fig. 1c,d and Extended Data Fig. 2a,b). 
The same procedure resulted in similar annotations of the Validation 
and Test datasets (Fig. 1c,d). T/NK cells were then further stratified to NK 
(n = 6,897), CD4+ T (n = 6,040), CD8+ T (n = 8,439) and regulatory T cells 
(Treg cells; n = 1,905) in the Discovery dataset (Extended Data Fig. 2c–g 
and Methods), with similar T/NK stratification results obtained in the 
Test and Validation 1 datasets (Extended Data Fig. 2h,i and Methods).

Cell-type annotations were validated in five ways. First, de novo 
cell-type signatures identified based on the annotated cells recapitulate 
well known cell-type markers (Methods, Supplementary Table 3a,b 
and Extended Data Fig. 2a). Second, cell-type annotations are aligned 
with matching hematoxylin and eosin (H&E) and immunohistochemi-
cal markers (Extended Data Fig. 3a–d). Third, cell-type annotations 
were aligned both spatially (Extended Data Fig. 3e) and composition-
ally (Extended Data Fig. 3f) when examining biological and techni-
cal replicate-matched tissue samples profiled in the Discovery and 
Validation 1 datasets. Fourth, we generated a unified HGSC single-cell 
transcriptomic atlas by integrating the HGSC spatial data with six pub-
licly available single-cell RNA-sequencing (scRNA-seq) datasets17,24–29 
(Fig. 1e,f and Supplementary Fig. 2a–c). The unified co-embedding cor-
roborates the cell-type annotations obtained independently based on 
the ST data alone (Fig. 1e, Supplementary Fig. 2a,b and Methods). Fifth, 
using patient-matched CNA data, we examined for each gene in each 
cell type whether its expression is significantly associated with its copy 
number in the tumor (Benjamini–Hochberg false discovery rate (BH 
FDR) < 0.05, linear mixed-effects model (LMM); Methods). In malignant 
cells, gene expression is patient specific and the expression of 42% of 

pronounced. HGSC is often diagnosed at advanced stages, and is prone 
to chemoresistance, resulting in a 5-year survival rate below 50%10. 
HGSC genetics has been thoroughly characterized11–14, demonstrating 
nearly ubiquitous TP53 mutations and massive copy number altera-
tions (CNAs), with some tumors also presenting with BRCA1/BRCA2 
mutations and homologous recombination deficiency. Abundant 
tumor-infiltrating lymphocytes (TILs) are a robust prognostic marker 
of positive clinical outcomes in patients with HGSC15,16. Yet, while 
single-cell studies have provided important resources and insight 
into HGSC cell biology17,18, the molecular and cellular modalities that 
promote or suppress immune recruitment and infiltration in HGSC 
are unclear, and existing immunotherapies continue to have limited 
success in treating HGSC19,20.

Here, we provide a molecular map of HGSC spatial organiza-
tion, that, in conjunction with data-driven experimental design and 
high-content CRISPR screens, enabled us to systematically uncover 
molecular and cellular regulators of HGSC tumor immunity, as well as 
genetic and pharmacological perturbations that affect it.

Results
Single-cell spatial transcriptomic mapping of HGSC
To spatially map HGSC in the setting of metastatic disease, we applied 
in situ imaging with high-plex RNA detection at single-cell resolution 
to 130 HGSC tumors from a total of 94 patients to generate 202 tissue 
profiles, yielding a total of 2,598,277 high-quality single-cell spatial 
transcriptomes (Fig. 1a and Supplementary Table 1a,b). Tumor tis-
sues were obtained from the adnexa (ovaries/fallopian tube, n = 84), 
and/or omentum (n = 46), with 36 patient-matched pairs of adnexal 
and omental tumors. All tumor tissue profiles were obtained from 
debulking surgeries in either the treatment-naive or the neoadjuvant 
chemotherapy-treated setting (Fig. 1b and Supplementary Table 2a,b). 
Associated patient clinical data including treatment history (for exam-
ple, PARP inhibitor, bevacizumab and immune checkpoint blockade 
(ICB)) and survival outcomes are also available (Fig. 1a,b, Supplemen-
tary Table 2a,b and Methods). Eight patients in this cohort received ICB 
treatment, but in all cases ICB treatment was after sample collection. 
For 40 patients, we also obtained DNA sequencing data spanning a 
648-gene panel (Fig. 1b, Supplementary Table 1b and Methods), focused 
on actionable single-nucleotide variations, somatic CNAs, chromo-
somal rearrangements and tumor mutational burden (TMB), providing 
a basis to link tissue structure and somatic genetic aberrations.

The spatial data were collected using three spatial transcriptomics 
(ST) platforms, allowing rigorous cross-platform validation of these 
recently developed technologies (Fig. 1a, Supplementary Fig. 1a–c 
and Supplementary Table 1b). All three ST platforms used here provide 
detection of RNA molecules at subcellular resolution. As the spatial 
molecular imaging (SMI, also known as CosMx)21 platform had the larg-
est gene panels, we used SMI to generate most of the data in this study. 
Data were generated with the SMI platform in two rounds (Discovery 
and Test; Fig. 1a). In the first round, we applied SMI to formalin-fixed 
and paraffin-embedded (FFPE) tissue microarrays (TMAs) to generate a 

Fig. 1 | Single-cell ST mapping of HGSC. a, Cohort and data overview. Created 
with BioRender.com. b, Summary of clinical history, tumor genetics and ST 
profiles per patient. Each column represents 1 of 94 patients. NACT, neoadjuvant 
chemotherapy; Beva, bevacizumab; PARPi, PARP inhibitor. c, Uniform manifold 
approximation and projection (UMAP) embedding of high-confidence spatial 
single-cell transcriptomes from the different datasets. n denotes number of 
cells within each cell-type annotation in the Discovery dataset. d, Representative 
tumor tissue ST images (11 of 202) with cells plotted in situ and colored based 
on cell-type annotations. e, Co-embedding of spatial single-cell transcriptomes 
from this study with six publicly available HGSC scRNA-seq datasets17,24–29.  
f, Cell-type composition (y axis) per tissue profile (x axis) from this study and in 
six publicly available scRNA-seq HGSC datasets17,24–29. g, Pairwise colocalization 
analysis: the number of tissue profiles (x axis) where each pair of cell types (y axis) 

shows significantly (BH FDR < 0.05, hypergeometric test) higher (red), lower 
(blue) or expected (gray) colocalization frequencies compared to those expected 
by random. h, log2 colocalization quotient (CLQ) of T/NK cells with fibroblasts 
(CLQT/NK cell→fibroblast, blue) and T/NK cells with malignant cells (CLQT/NK cell→malignant, 
green, x axis) in ST tissue profiles from the Discovery dataset (n = 87 CLQ pairs, 
P = 4.31 × 10−10, paired Wilcoxon rank-sum test). Light gray lines connect paired 
values in each ST tissue core (black dots). In the box plots, the middle line denotes 
the median, box edges indicate the 25th and 75th percentiles, and whiskers 
extend to the most extreme points that do not exceed ±1.5 times the interquartile 
range (IQR); further outliers (minima and maxima) are marked individually as 
black points beyond the whiskers; ****P < 1 × 10−4, paired Wilcoxon rank-sum test. 
NS, not significant.
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the genes matches their CNAs (that is, ‘in cis’), compared to only 0–2% 
in the nonmalignant cell types (Supplementary Fig. 4a). The genes 
that do not show in cis RNA-to-CNA associations in malignant cells 
are significantly more copy number stable (median = 2, range = 0–7) 
compared to those showing the association (median = 3, range = 0–20, 
P = 5.04 × 10−10, one-sided Wilcoxon rank-sum test). In contrast to CNAs, 
a relatively small number of genes (0–4%) are associated with clinical 

and other genetic covariates in malignant and nonmalignant cell types 
(that is, age at diagnosis, disease stage, pathogenic BRCA1/BRCA2 
mutational status and TMB; Supplementary Fig. 4a).

Initial analyses of the data reveal heterogeneous tumor tissue com-
positions across patients (Fig. 1f), yet a generalizable spatial organiza-
tion at the macro level, where malignant cells and fibroblasts form 
spatially distinct compartments (which we refer to as the malignant and 
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stromal compartments; Fig. 1g and Supplementary Fig. 3a,b), such that 
T/NK cells preferentially localized in the stromal rather than the malig-
nant compartment (P < 1 × 10−4, paired Wilcoxon rank-sum test; Fig. 1h, 
Supplementary Fig. 3c–g and Methods). This macro-organization 
principle was first observed in the Discovery dataset (Fig. 1g,h and 
Supplementary Fig. 3c) and subsequently validated in the Validation 
and Test datasets (Supplementary Fig. 3a,b,d–g).

Patients with higher T/NK cell abundance had improved clinical 
outcomes (P = 2.03 × 10−2, univariate Cox regression, P = 2.1 × 10−4, 
log-rank test), demonstrating that even a relatively small area within 
the tumor (Supplementary Fig. 1a) is predictive of patient outcomes  
5 years and even 8 years later.

T cell states reflect T cell tumor infiltration status
Using the Discovery dataset, we set out to map the immune cell-intrinsic 
and cell-extrinsic factors that mark immune infiltration and exclusion. 
First, taking an unbiased data-driven approach, we used unsupervised 
methods to embed and cluster the transcriptomes of cells from each 
immune cell type without any spatial information. The resulting embed-
ding and clustering shows that immune cells residing in the malignant 
compartment are transcriptionally distinct from those that reside 
outside of it (Fig. 2a). Next, we took a spatially supervised approach 
and identified for each of the five immune cell subtypes robustly rep-
resented in the data a tumor infiltration program (TIP), consisting of 
genes that are significantly (BH FDR < 0.05, LMM; Methods) overex-
pressed or underexpressed in the pertaining immune cell subtype as 
a function of proximity to malignant cells (Fig. 2b,c, Extended Data 
Fig. 4a and Supplementary Table 4a).

CD8+ T cell TIP (CD8 TIP) demonstrates that effector and 
exhausted CD8+ T cells more frequently colocalize with malignant 
cells (P = 3.24 × 10−53, LMM; Fig. 2b,c), as also confirmed by annotating 
CD8+ T cells based on predefined signatures30 (Fig. 2d and Extended 
Data Fig. 4b–e). CD8 TIP upregulated genes include effector cytotoxic-
ity genes as granzymes (GZMA, GZMB and GZMH) and perforin (PRF1), 
chemokines (CCL3, CCL4, CCL4L2 and CCL5), interferon gamma (IFN-γ; 
encoded by IFNG), interferon signaling genes (for example, IFITM1, 
IFNG, JAK1 and STAT1) and immune checkpoints (CTLA4, HAVCR2, 
PDCD1, TIGIT and LAG3), as well as KLRB1 (that is, CD161) and CXCR6, 
which have been previously reported to suppress31 or sustain32–34 
the cytotoxic function of exhausted CD8+ T cells, respectively. CD8 
TIP downregulated genes include naive and memory T cell markers 
(SELL, IL7R and CD44), the co-stimulatory gene CD28, the granzyme 
encoded by GZMK and the chemokine receptor encoded by CXCR4 
(Fig. 2b). Extending CD8 TIP to the whole-transcriptome level based on 
scRNA-seq data17 (Methods and Supplementary Table 4b,c) revealed the 
upregulation of other exhaustion-associated genes30,35 (that is, ENTPD1, 
BST2, CD63, MIR155HG, MYO7A and NDFIP2), and downregulation of 
additional naive T cell markers (for example, CCR7, TCF7, SATB1 and 
KLF2), with MALAT1, KLF2, CCR7, GPR183 and TCF7 being the topmost 
downregulated genes in the extended CD8 TIP (P < 1 × 10−16, rs > 0.23, 
Spearman correlation).

Testing these findings in the Test datasets, the CD8 TIP identi-
fied in the Discovery dataset was validated as an infiltration marker 

both in unseen patients and in whole-tissue sections (P = 4.22 × 10−3 
and P < 1 × 10−17, LMM, Test datasets 1 and 2, respectively; Extended 
Data Fig. 4f,g), and exhausted and effector CD8+ T cell subsets were 
enriched in proximity to malignant cells (P = 1.09 × 10−5 and P < 1 × 10−17, 
hypergeometric tests, for Test datasets 1 and 2, respectively; Extended 
Data Fig. 4h).

CD8 TIP is not associated with age at diagnosis, disease stage 
(III or IV), pathogenic BRCA1/BRCA2 mutations, or TMB, but does 
show lower expression levels in samples after neoadjuvant treat-
ment (P < 4.42 × 10−3, LMM, also when controlling for malignant cell 
abundance).

To investigate the role of the stroma in preferentially colocalizing 
with naive and memory T cells compared to effector and exhausted 
T cells, we integrated the ST data with sample-matched H&E stains inde-
pendently annotated by a gynecologic pathologist (Supplementary 
Fig. 5a–e), revealing two fibroblast subsets, one marking normal stroma 
and the other marking desmoplasia (that is, a neoplasia-associated 
alteration in fibroblasts and extracellular matrix with distinct tissue 
morphology36–40; Fig. 2e,f, Supplementary Fig. 5a–g and Supplemen-
tary Table 5a). As expected41,42, desmoplastic fibroblasts not only over-
express collagen fibril organization and extracellular matrix genes 
(P < 1 × 10−2, permutation test; Supplementary Fig. 5b and Supple-
mentary Table 5b), but also upregulate CXCL12 (the cognate ligand of 
CXCR4; Fig. 2e) and were associated with niches enriched with T/NK 
cells (P < 1 × 10−4, LMM).

To link these findings to paracrine signaling, we compiled 2,678 
ligand–receptor pairs based on three public resources43–45 (Sup-
plementary Table 5c and Methods). Focusing on CD8+ T cells, we 
identified 24 ligand–receptor pairs that mark the interactions of 
CD8+ T cells with other cells in the malignant or stromal compart-
ment (Methods). The resulting network (Fig. 2g and Supplementary 
Table 5d) manifests suppressive ligand–receptor interactions in the 
malignant compartment (for example, CD80/CD86–CTLA4, CD8+ 
T cell–monocyte; TIM3–LAGLS9, CD8+ T cell–malignant cell) and CD8+ 
T cell-mediated chemoattraction of other immune cells via CCL2 and 
CCL5. Colocalization of CXCR6–CXCL16 (CD8+ T cell–malignant cell) 
and CXCR4–CXCL12 (CD8+ T cell–fibroblasts) mark chemoattraction of 
infiltrating and stroma-residing CD8+ T cells, respectively (Fig. 2g; BH 
FDR < 1 × 10−10, LMM; Supplementary Fig. 5j–l). Of note, TCF1 (encoded 
by TCF7 and downregulated in the extended CD8 TIP) has been shown 
to directly repress CXCR6 expression34 (upregulated in the CD8 TIP), 
suggesting that this central regulator of naive and resting T cells46 
represses CD8+ T cell chemoattraction to CXCL16 expressed by the 
malignant cells.

A malignant cell state marks and predicts T/NK cell abundance
Mapping the spatial distributions of T/NK cells within the malignant 
compartment revealed that TILs preferentially colocalize with a sub-
set of malignant cells (Methods, Fig. 3a–c, Extended Data Fig. 5a and 
Supplementary Table 6a). Although malignant cell states are highly 
patient specific (Supplementary Fig. 4b) and vary also within patients 
(Supplementary Fig. 4c–f), we found that the connection between 
TIL location and malignant cell gene expression appeared repeatedly 

Fig. 2 | Immune cell states mark immune cell tumor infiltration status. 
a, UMAP embedding of CD8+ T cells (Discovery dataset) derived from gene 
expression of all genes (top) or only T cell-specific genes (bottom). b, The 
association (P value and effect size, LMM) of each gene (row) from the CD8 TIP 
with immune cell infiltration status, when considering CD8+ T cells and other 
immune cell types in the Discovery dataset (columns). c, Representative ST 
images from the Validation 1 dataset depicting the CD8 TIP identified in the 
Discovery dataset. P values denote per tissue core if the expression of the CD8 
TIP is significantly higher in CD8+ T cells with a high (above median) versus 
low (below median) abundance of malignant cells within a radius of 30 μm 
(one-sided t-test). d, UMAP embedding of CD8+ T cells (Validation 1 dataset) 

from gene expression alone. e, Average gene expression (z score) in fibroblasts 
(Discovery dataset) of the top 50 desmoplasia-associated genes (columns) 
in each tissue profile (rows, n = 87). f, Representative tissue section (HGSC24, 
adnexa, Discovery dataset, 1 of 100), wherein the desmoplasia-associated 
genes capture stromal morphology on the per-cell level (n = 1,968 fibroblasts, 
P value = 7.23 × 10−80, one-sided Wilcoxon rank-sum test). These results were 
observed repeatedly across samples, as shown in e. g, Ligand–receptor 
interactions (lines) consisting of genes from the CD8 TIP and their respective 
ligand/receptor in the malignant compartment and stromal compartment. 
The arrows connect each gene to the cell type where it was found to mark the 
malignant or stromal compartment.
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Fig. 3 | Malignant cell transcriptional program marks and predicts T/NK cell 
infiltration. a, Heat map of genes in the MTIL (malignant transcriptional program 
that robustly marks the presence of TILs) program (Discovery dataset). Average 
expression of the top 104 MTIL genes (rows) across spatial frames (columns).  
b, Top gene sets enriched in MTIL based on Gene Ontology (GO) enrichment 
analysis. c, MTIL spatial distributions in six representative tumor tissue profiles  
(6 of 100, Discovery dataset). P values denote if MTIL expression is significantly 
(one-sided t-test) higher in frames with high-versus-low T/NK abundance, 
defined based on the median level in the respective tissue section. Matching 
cumulative analysis is provided in Extended Data Fig. 5e. d, MTIL expression in 
each malignant cell (Discovery dataset, n = 297,960 cells), stratified based on the 
relative abundance of T/NK cells in their surroundings (top) and the presence of 
T/NK cells at different distances (bottom). e, ROC curves obtained for cross-

validated SVM classifier using MTIL expression in malignant cells (Discovery 
dataset) to predict T/NK cell levels, at the sample, spatial frame and single-cell 
levels. f, MTIL spatial distributions in a representative region from one (of four) 
whole-tissue section (HGSC1, adnexa, Test 2 dataset; MTIL expression in TIL-high 
versus TIL-low niches, P = 2.87 × 10−107, one-sided Wilcoxon rank-sum test). A full 
view of the whole-tissue section is provided in Extended Data Fig. 6g. g, Mean MTIL 
expression in malignant cells in each FOV (Test 2 dataset, n = 878 FOVs), stratified 
based on the relative abundance of T/NK cells in each FOV. In d and g, in the box 
plots, the middle line denotes the median, box edges indicate the 25th and 75th 
percentiles, and whiskers extend to the most extreme points that do not exceed 
±1.5 times the IQR; further outliers are marked individually with circles (minima/
maxima). P values of group comparisons are derived from a one-sided Student’s 
t-test.
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across the heterogeneous tumors in our cohort and external cohorts 
(Fig. 3 and Extended Data Figs. 5 and 6).

Formulating these findings, we used the Discovery dataset to 
identify a malignant transcriptional program that robustly marks 
the presence of TILs, abbreviated as the malignant TIL (MTIL) program 
(Fig. 3a, Extended Data Fig. 5a,b and Supplementary Table 6a). The pro-
gram consists of 100 upregulated and 100 downregulated genes whose 
expression in malignant cells is significantly (BH FDR < 0.05, LMM) 
positively (MTIL-up) and negatively (MTIL-down) correlated with and 
predictive of T/NK cell infiltration (Fig. 3d,e). MTIL overall expression in 
malignant cells (Methods) reflects both inter-sample and intra-sample 
variation in T/NK cell levels (Fig. 3d, e), irrespective of anatomical site 
(P < 1 × 10−30, LMM; Extended Data Fig. 5c). MTIL continuously increases 
as a function of T/NK cell abundance and proximity, also when strati-
fying the T/NK population into its respective cell subtypes (Extended 
Data Fig. 5d,e). MTIL is associated and predictive of T/NK cell levels both 
in the Validation (Extended Data Fig. 6a,b,f) and Test datasets, gener-
alizing to unseen patients (Extended Data Fig. 6c,f) and whole-tissue 
sections (Fig. 3f,g, Extended Data Fig. 6d,f,g and Supplementary Fig. 6). 
Likewise, an independent scRNA-seq dataset47 demonstrates that 
MTIL expression in malignant cells is highest in tumors annotated as 
‘infiltrated’, moderate in tumors annotated as ‘excluded’ and lowest in 
tumors annotated as ‘immune desert’ (Extended Data Fig. 6e).

Gene-set enrichment analyses demonstrate the connection 
between MTIL and immune evasion48–53. MTIL-up includes chemokines 
(for example, CCL5, CXCL10, CXCL9 and CXCL16 the cognate ligand 
to CXCR6), and oxidative stress genes (for example, GPX3 and 
SOD2; Fig. 3a,b), and is enriched with multiple immune response 
genes, including antigen presentation (for example, B2M, CIITA and 
HLA-A/HLA-B/HLA-C), interferon gamma response genes (for example, 
IDO1, IFI27, IFIH1, OAS1/OAS2/OAS3, JAK1 and STAT1) and cell adhesion 
molecules (for example, ICAM1, ITGAV and ITGB2; BH FDR = 1.91 × 10−9, 
2.86 × 10−10, 4.59 × 10−2, respectively, hypergeometric test; Fig. 3b and 
Supplementary Table 6b). MTIL-up also includes immune suppres-
sion genes, most notable is LGALS9, encoding galectin 9—the ligand 
of the immune checkpoint TIM3 (that is, HAVCR2), which is upregu-
lated in the infiltrating T/NK cells (Fig. 2g). However, there is no sig-
nificant correlation between MTIL and the expression of exhaustion 
signatures in the nearby T cells (rs < 0.046, P > 0.05, Spearman correla-
tion, Discovery dataset; Supplementary Table 6c). MTIL-down reflects 
diverse processes including Wnt signaling (for example, CTNNB1, 
FZD3/FZD4/FZD6, SMO, FGFR2 and WNT7A), epigenetic regulation 
(DNMT3A and HDAC1/HDAC11/HDAC4/HDAC5), insulin signaling (for 
example, IGFR1 and IGFBP5) and cell differentiation (for example, 
BMP7, BMPR1A, ETV4, FGFR1/FGFR2, FYN, S100A4, SMAD4 and SMO; BH 
FDR < 0.05, hypergeometric test; Fig. 3b and Supplementary Table 6b). 
Comparing the MTIL program to 13 malignant signatures previously 
identified in a comprehensive HGSC scRNA-seq study17, we found that 
156 of the 200 genes in the MTIL program were not included in any of 
these signatures (Supplementary Table 6d).

In our cohort, MTIL expression is not associated with patient 
age at diagnosis, disease stage, neoadjuvant chemotherapy, TMB or 
sample anatomical site (Supplementary Fig. 7 and Supplementary 
Table 7a–c), but it is moderately positively associated with pathogenic 
BRCA1/BRCA2 mutations (P = 0.0423, LMM). MTIL expression is associ-
ated with improved overall survival, both in our cohort (n = 54, P = 0.011, 
Cox regression, based on mean expression of malignant cells in adnexal 
tumors, while controlling for age at diagnosis, disease stage and treat-
ment history; Fig. 4a,b, Supplementary Table 8a–d and Methods), and 
in an external HGSC cohort (n = 111, P = 0.024, Cox regression, control-
ling for patient age and stage; Fig. 4c).

Testifying to its generalizability, MTIL expression in malignant cells 
is predictive of T/NK cells in the vicinity of the malignant cells also in 
a previously published SMI dataset collected from five patients with 
non-small cell lung cancer (NSCLC)21 (area under the receiver operating 

characteristic (AUROC) curve > 0.71; Extended Data Fig. 6h,i). Likewise, 
MTIL expression was significantly correlated with the expression of a 
T/NK cell signature in external bulk gene expression datasets, both 
in HGSC (n = 578, rs = 0.72, P < 2.2 × 10−16, Spearman correlation) and 
other cancer types (rs > 0.66, P < 1 × 10−9, Spearman correlation; Sup-
plementary Fig. 8a). However, although MTIL is strongly supported by 
bulk gene expression data as a marker of T/NK cell levels, attempting 
to rediscover the MTIL signature based on the covariation structure 
of HGSC bulk gene expression data across patients resulted in poor 
performances (area under the precision recall curve (AUPRC) of 0.202 
and 0.306 for the prediction of MTIL-up and MTIL-down genes, respec-
tively; Supplementary Fig. 8b), underscoring the need for single-cell 
ST studies.

To expand beyond the 960-gene panel in the Discovery dataset, 
we identified 200 additional genes that were significantly coexpressed 
with the MTIL program based on the Test 1 dataset (Supplemen-
tary Table 6e and Methods), and among these are RUNX1, CCAAT/
enhancer-binding protein-encoding genes (CEBPB and CEBPD, which 
encode for subunits of the RUNX1 co-activation complex54,55), and com-
plement genes (C1S and C3) as a part of the extended MTIL-up module, 
as well as the stem cell marker encoded by LGR5, and the BAF complex 
subunit encoded by SMARCB4, as a part of the extended MTIL-down 
module.

MTIL expression predicts clinical response to ICB
We hypothesized that higher MTIL expression may represent more 
immunogenic malignant cell states and could thus be predictive of 
clinical responses to ICB in HGSC and potentially other cancer types. 
As genomic datasets from ICB trials are currently not available in HGSC 
and given the generalizability of the MTIL program to other cancer types 
(Extended Data Fig. 6h,i and Supplementary Fig. 8a), we tested this 
hypothesis in five external bulk gene expression datasets obtained 
from tumor samples of other cancer types before ICB treatment.

The MTIL program overall expression scores (Methods) were pre-
dictive of ICB response in four of the five cohorts that we tested. MTIL 
scores were predictive of ICB responses in the melanoma cohort56 
(n = 152, P = 1.35 × 10−3, progression-free survival (PFS) Cox regression, 
controlling for patient sex, treatment status, TMB and anatomical site; 
patient age was not available, Fig. 4c), NSCLC cohort57 (n = 121, P = 0.027, 
PFS Cox regression model, controlling for patient sex, age, smoking 
status and tumor histological type; Fig. 4c) and in two independent 
arms of the I-SPY2 trial in HER2-negative breast cancer58,59 (durvalumab/
olaparib, n = 71, P = 2.52 × 10−4, one-sided t-test, AUROC = 0.65, and 
pembrolizumab/paclitaxel: n = 69, P = 6.37 × 10−3, one-sided t-test; 
AUROC = 0.70; Fig. 4d). In the urothelial cancer cohort60, MTIL program 
scores and programmed death ligand 1 (PD-L1) levels were not predic-
tive of clinical responses (n = 205, P > 0.05, one-sided t-test). Collec-
tively, MTIL predictive performances were comparable and, in several 
cases, superior to those of other ICB response biomarkers, including 
PD-L1 gene expression, TMB levels and estimates of TIL levels (Fig. 4e 
and Supplementary Fig. 8c).

Lastly, we note that MTIL is not associated with TMB based on our 
data (rs = −0.077, P = 0.67, Spearman correlation), as well as the mela-
noma and urothelial ICB cohorts, where TMB information was available 
(rs < 0.09, P > 0.32, Spearman correlation). These findings suggest that 
MTIL is an orthogonal property that is not directly linked to TMB but is 
predictive of ICB response in several cancer types.

MTIL expression and T/NK cell abundance in the tumor as a 
function of CNAs
A key question is whether MTIL is merely reflecting the response of malig-
nant cells to the presence of TILs and is thus a surrogate marker of TILs, 
or whether MTIL is regulated by other cell-intrinsic processes and is 
driving TIL infiltration and potentially also malignant cell susceptibility 
to TIL-mediated cytotoxicity, making it a causal predictive biomarker 
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Fig. 4 | MTIL predicts patient survival and ICB response. a, Hazard ratios (HRs) 
estimated for each predictor from multivariate Cox proportional hazards models 
of overall survival in the HGSC cohort of this study (Discovery and Test 1 datasets, 
n = 30 and 54 patients for genomic and non-genomic features, respectively). 
Bars indicate 95% confidence intervals (Methods). Arrowheads indicate that the 
95% interval extends beyond the HR limits shown in the x axis. *P value < 0.05, 
multivariate Cox proportional hazards models. b, Kaplan–Meier curves and 
numbers-at-risk table of overall survival in patients with HGSC (Discovery and 
Test 1 datasets); patients stratified by average MTIL expression (left), and T/NK cell 
density (right) in adnexal tumors. c, Kaplan–Meier curves and numbers-at-risk 
tables of ICB PFS probability (melanoma56, left; NSCLC57, middle) and overall 
survival (external HGSC cohort, right) with patients stratified by tumor MTIL 
expression. d, MTIL expression is significantly higher in patients with HER2-negative 
breast cancer with pCR (pathogenic clinical response) versus without pCR in 

two arms of the I-SPY2 clinical trial (durvalumab + olaparib (n = 71 patients)58 
and pembrolizumab + paclitaxel (n = 67 patients)59). In the box plots, the middle 
line denotes the median, box edges indicate the 25th and 75th percentiles, and 
whiskers extend to the most extreme points that do not exceed ±1.5 times the IQR; 
further outliers are marked individually (minima/maxima). P values derived from 
one-sided Student’s t-test. e, T/NK cell levels estimated from bulk transcriptomics 
and TMB (mut/kB) as predictors of ICB responses in the datasets shown in c. 
Kaplan–Meier curves and numbers-at-risk tables of ICB PFS probability in patients 
with melanoma56 stratified by T/NK cell levels (1) and TMB (2), and in patients with 
NSCLC57 stratified by T/NK cell levels (3), and of overall survival in patients with 
HGSC stratified by T/NK cell levels (4). In b, c and e, P values were calculated from 
the Wald statistic of covariate-controlled Cox proportional hazards regression 
models. The log-rank P value was derived from comparing discretized predictors 
(high = top quartile versus low = bottom quartile).
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of ICB responses. Given the strong connection we observed between 
CNAs and malignant cell transcriptomes (Supplementary Fig. 4a), we 
turned to examine the connection between MTIL expression and CNAs 
to probe at this question.

First, we note that MTIL inter-patient variation supersedes its 
intra-tumoral variation, as observed also after regressing out the impact 
of the tumor microenvironment compositions, or when considering 
only malignant cells in TIL-deprived environments (Fig. 5a; P < 1 × 10−30, 
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analysis of variance (ANOVA) test). Moreover, when considering only 
malignant cells that are in TIL-deprived niches in the tumor, the MTIL 
score is still predictive of whether the entire tumor tissue core has high/
low TIL levels (AUROC = 0.76, 0.89 and 0.83, when predicting which sam-
ples have TIL levels above the median, and 75th and 85th percentiles).

Second, in addition to RNA–CNA associations in cis (Supplemen-
tary Fig. 4a), MTIL expression strongly correlated with the copy number 
of multiple genes in our cohort (Methods). Among the positively cor-
related ones are interferon receptors IFNGR2, IFNAR1 and IFNAR2, as 
well as interferon regulatory factor 1 (IRF1) and RUNX1, and the top 
negatively correlated ones being TCF7L2, FGFR2 and AXL (P < 5 × 10−3, 
LMM; Fig. 5b,c).

Third, CNAs of MTIL genes are predictive of TIL abundance scores in 
an independent cohort from The Cancer Genome Atlas (TCGA) of 578 

HGSC tumors12 (AUROC = 0.82, on unseen test samples, support vector 
machine (SVM) model; Methods), such that tumors with amplification 
of MTIL-down genes (for example, BMP7, DNMT3A, FZD3, MYL9, SRC 
and TGFB2) or deletion of MTIL-up genes—including both chemokines 
(CX3CL1, CXCL10, CXCL9, CXCL16 and CCL5) and other genes (for exam-
ple, ICAM1, GPX3 and NR3C1)—have significantly lower TIL abundance 
scores compared to tumors without these copy number changes (BH 
FDR < 5.0 × 10−3, one-sided t-test; Fig. 5d,e and Supplementary Table 9a).

Mechanistically, the composite effect of CNAs (or other forms of 
genetic/epigenetic aberrations) in MTIL genes and regulators can lead to 
immune evasion through diverse mechanisms. To demonstrate this, we 
show that BMP7—one of the topmost repressed genes in the MTIL program 
(Extended Data Fig. 5a) that is amplified in TIL-deprived HGSC tumors 
(Fig. 5e)—suppresses IFN-γ and tumor necrosis factor (TNF) secretion in 
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Fig. 6 | Meta-analyses of Perturb-seq datasets identify regulators of the MTIL 
program. a,b, Differential MTIL expression (two-sided t-test comparing cells 
with the respective perturbation to cells with control sgRNAs) for MTIL altering 
perturbations identified in K562 (myelogenous leukemia) (a) and RPE1 (human 
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NK-92 cells (Fig. 5f). Likewise, MTIL chemokines whose deletion was asso-
ciated with low TIL levels in the TCGA data (CXCL9, CXCL10, CXCL16, CCL5 
and CX3CL1; Fig. 5e) recruited different subsets of TILs and other immune 
cells based on ligand–receptor colocalization analyses in the HGSC spa-
tial data (Fig. 5g). To functionally demonstrate this, we activated CXCR6 
in NK-92 cells via CRISPR–dCas9 activation (Methods and Supplemen-
tary Fig. 9a,b) and showed a dose-dependent and CXCR6-dependent 
NK cell directional migration toward CXCL16 (Fig. 5h).

MTIL sensitizes cancer cells to T/NK cell cytotoxicity
Given our findings and previous studies where genes and pathways 
represented in the MTIL program have been shown to have an important 
function in antitumor immune responses61–64, we hypothesized that 
MTIL reflects not only the response of malignant cells to TILs, but also an 
intrinsically regulated malignant cell state that impacts TIL-mediated 
tumor control. Supporting this hypothesis, a collection of previously 
published CRISPR screens48–52 shows that MTIL-up is enriched with genes 
that sensitize cancer cells to immune-mediated selection pressures 
(including ICAM1, JAK1, NLRC5, SOD2 and STAT1; P = 1.82 × 10−4, hyper-
geometric test), while MTIL-down includes genes with desensitizing 
effects (BCL2, FGFR1, HDAC1, HDAC5, ITGB5 and RELA).

To functionally probe the MTIL program genes and examine their 
effect on ovarian cancer cell response to lymphocyte cytotoxicity, we 
performed high-content CRISPR knockout (KO) screens in ovarian can-
cer cells in monoculture and two types of co-cultures with cytotoxic T 
lymphocytes (CTLs), including one co-culture with T cell antigen recep-
tor (TCR)-engineered CD8+ T cells and another co-culture with NK cells.

Instead of targeting only genes in the MTIL program itself, we 
devised a meta-analysis pipeline to identify program regulators based 
on available Perturb-seq datasets (Methods). Using three previously 
published Perturb-seq datasets65–67 (Supplementary Fig. 10a), we iden-
tified 43 and 104 perturbations that result in significantly higher and 
lower expression of the program, respectively (Fig. 6a–d, Supplemen-
tary Fig. 10b,c, Supplementary Table 10a and Methods). Demonstrating 
the value of this approach, it revealed a wider and more diverse set of 
regulators, most of which are not included in the MTIL program itself or 
not included in the gene panel of the Discovery dataset (Supplementary 
Table 1b). The positive regulators are enriched (BH FDR < 0.05, hyper-
geometric test) for genes involved in telomere maintenance (for exam-
ple, CCT3/CCT4/CCT7, RTEL1), transcriptional regulators (for example, 
DDX17, IKZF3, KLF1, MTOR, SIRT7, TP73 and XRCC6), protein metabolism 
(for example, CYC1, SRP14 and SRP9) and cytokine signaling (for exam-
ple, IRF1, NUP85 and SEH1L). The positive MTIL regulators also include 
the RUNX1 complex genes (CBFA2T3, CEBPA and CEBPE), aligned with 
our findings that CNAs of RUNX1 are positively associated with the MTIL 
program (Fig. 5c) and that RUNX1 is a part of the extended MTIL program. 
Negative MTIL regulators are enriched for chromatin organization (for 
example, DNMT1, INO80, TAF10 and WDR5), Wnt pathway, Myc targets 
and immune resistance genes48–52,68 (BH FDR < 1 × 10−3, hypergeometric 
test). The top negative regulator identified here is PTPN1, which is 
supported by both gene activation and inhibition screens (Fig. 6a,c).

Based on these findings, we designed a pooled knockout screen of 
74 MTIL genes and regulators (Supplementary Table 10a,b) to test their 
function in ovarian cancer cells (TYK-nu cell line; Fig. 7a and Extended 
Data Figs. 7 and 8). Mapping fitness upon genetic perturbations under 

both adaptive and innate immune selection pressures (Fig. 7a,b; BH 
FDR < 0.05, MAGeCK; Methods) along with Perturb-seq scRNA-seq 
readouts in monoculture and co-culture with NK cells (Fig. 7a,c), we iden-
tified perturbations that activate or repress the program and tracked 
subsequent effects of these perturbations on immune escape. In total, 
we profiled 18,585 high-quality single-cell transcriptomes, each assigned 
to an ovarian cancer cell with a single guide RNA (sgRNA) confidently 
identified, and a median of 4,251 genes detected per cell (Fig. 7c and 
Extended Data Fig. 9a). Differentially expressed genes were identified 
for each gene knockout across the three conditions (Fisher’s method; 
Methods), resulting in 74 gene ‘perturbation signatures’ (Methods and 
Extended Data Fig. 9b,c) that were then used to identify gene knockouts 
that significantly repressed or activated the MTIL program, denoted as 
‘activators’ and ‘repressors’, respectively (Fig. 7d and Methods).

Validating our hypothesis and approach, the top perturbations 
activating the program—PTPN1 and ACTR8 KO—sensitize malignant 
cells to T/NK cell cytotoxicity (Fig. 7b,d,e and Extended Data Fig. 9b), 
while the top perturbations that repress the program, IFNGR1, IRF1 and 
STAT1 KOs, confer resistance to T cell-mediated killing (Fig. 7b,d,e and 
Extended Data Fig. 9b). This further supports the causal link between 
CNAs of interferon signaling genes and MTIL expression (Fig. 5c). Knock-
out of MTIL repressors ACTR8, PTPN1, FGFR1, MAPK1 and MED12 was 
found to sensitize cancer cells to immune elimination also in previous 
in vivo CRISPR screens48–52. Demonstrating that the transcriptional 
response to TILs can be genetically rewired, our data also show that 
knockout of MTIL repressors (ACTR8, DNMT1, FGFR1, PTPN1, MED12 and 
MIF) mimics and amplifies the transcriptional responses to NK cells, 
while knockout of MTIL activators, as STAT1, IFNGR1, INTS2, IRF1, PARP12 
and others, represses and counteracts the transcriptional response to 
NK cells (Fig. 7f–h and Extended Data Fig. 9c).

To examine if the inhibition of MTIL repressors substantially 
impacts immune-based cancer cell elimination, we generated synge-
neic PTPN1 and ACTR8 KO TYK-nu ovarian cancer lines (Extended Data 
Fig. 10a,b). Both knockouts significantly sensitized the cancer cells to 
both NK cell-mediated cell death (P = 6.29 × 10−14 and P = 8.79 × 10−15 
for PTPN1 KO and ACTR8 KO, respectively; time-controlled LMM in 
comparison to non-targeting control (NTC)) and T cell-mediated cell 
death (P = 6.53 × 10−34 and P = 6.58 × 10−25 for PTPN1 KO and ACTR8 KO, 
respectively; time-controlled LMM in comparison to NTC), as quanti-
fied over 16-h monitoring of caspase-3/caspase-7 activity in monocul-
ture versus co-culture with NK-92 cells (Fig. 8a) and co-culture with 
TCR-engineered CD8+ T cells (Fig. 8b). Although ACTR8 is considered 
an essential gene (Supplementary Table 10c), its knockout did not 
impact ovarian cancer cell viability (Fig. 8a and Extended Data Fig. 10b). 
Focusing on NK cell-mediated killing, we tested the PTPN1/PTPN2 
inhibitor ABBV-CLS-484 (refs. 50,69) in both the TYK-nu and OVCAR3 
cell lines. The drug had minimal effect on cell viability in monoculture 
(Fig. 8c) but led to a substantial increase in ovarian cancer cell killing by 
NK cells, as observed for both ovarian cancer cell lines across a range 
of doses (P = 5.10 × 10−17 and P = 1.61 × 10−30, for TYK-nu and OVCAR3, 
respectively; dose-controlled LMM; Fig. 8c).

Discussion
Here we provide a comprehensive spatial mapping of HGSC tumors, 
revealing generalizable principles of tissue organization and 

Fig. 7 | High-content CRISPR screens identify perturbations that de-repress 
or repress MTIL. a, Overview of experimental design. Created with BioRender.
com. b, Ovarian cancer cell (TYK-nu) differential fitness (MAGeCK82) under 
CD8+ T cell and NK cell selection pressures. c, UMAP of scRNA-seq profiles from 
Perturb-seq screen. Each dot corresponds to an ovarian cancer cell (TYK-nu) with 
1 of the 232 guides confidently detected, cultured in monoculture or co-culture 
with NK cells at a 1:1 or a 2.5:1 effector-to-target ratio. d, Differential expression 
of MTIL genes (Fisher’s combined test; Methods) when comparing ovarian cancer 
cells with the respective gene KO to those with NTC sgRNAs. e, Differential 

expression of MTIL-up genes upon different gene KOs under different conditions, 
shown for genes identified as MTIL repressors or activators. f–h, Gene KOs alter 
the cancer cell transcriptional response to NK cells. f, Differential expression 
of the gene KO signature in control ovarian cancer cells in monoculture versus 
co-culture (two-sided t-test). g, Gene KO signature expression in control ovarian 
cancer cells in monoculture versus co-culture; statistical significance per KO 
shown in f. h, UMAPs as in c with cells colored according to differential gene KO 
signature expression.
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lymphocyte infiltration within these aggressive and genetically 
unstable tumors. Our study demonstrates the connection between 
somatic genetic aberrations, malignant transcriptional dysregula-
tion and immune evasion at the cellular and tissue levels, providing 
a new perspective to the barriers preventing the antitumor immune 
response in patients with HGSC and new leads to de-repress HGSC 
cancer immunogenicity.

Our study puts forward new frameworks to delineate complex 
multicellular processes and phenotypes through the lens of spatial 
organization. These include linking cell states to genetic variation 
across individuals and using existing Perturb-seq datasets to identify 
latent regulators of spatial cell states. We show that our data-driven 
approach provides a framework to uncover cell-state regulators, even 
when the transcriptional level of the regulator is not linked to the 
cell state of interest in the unperturbed state (for example, PTPN1). 
As available Perturb-seq datasets are still limited in their scope and 
diversity (Supplementary Discussion), it is likely that we are still not 
fully scanning the search space of cell-state regulators. In the case of 
the MTIL program, additional MTIL regulators beyond those identified 
here probably exist, as further suggested by our CNA analyses. As 
more Perturb-seq datasets, as the one generated here, become avail-
able across a more diverse range of cell types and conditions, it will be 
possible to use Perturb-seq data more effectively to extrapolate from 
one context to another with increasing accuracy70,71 and, in the case of 

malignant cell states, using CNA-to-RNA and CNA-to-cell-state associa-
tions to further guide Perturb-seq experimental design.

The key findings from our study provide new leads and resources 
to study HGSC immune evasion toward new diagnostic and interven-
tion strategies.

ICB and other immunotherapies have shown modest effects in 
tumors with low TIL levels at baseline3,15. Our findings demonstrate that 
this may be not only due to immune exclusion per se, but also due to 
malignant cell-intrinsic differences between TIL-rich and TIL-deprived 
tumors that protect malignant cells even in the presence of targeting 
CTLs. Supporting this model, we show that CTLs have a substantial 
effect on the cancer cell transcriptome (Fig. 7c), such that perturbing 
malignant cells to prevent or enhance this malignant cell transcrip-
tional response significantly impacts cancer cell susceptibility to CTL 
cytotoxicity, as we show in highly controlled co-cultures where spatial 
segregation is unlikely to have a major effect.

We show that stratifying patients based on such malignant 
cell-intrinsic features—whether through gene expression or CNAs—
can help determine patient response to ICB and which aspects of the 
immune response are genetically dysregulated. Instead of a single 
immune evasion driver, we propose that immune evasion in HGSC is a 
result of the composite effects of multiple gene deletions and amplifica-
tions that dysregulate both well-established mechanisms (as interferon 
signaling and chemokine mediated recruitment) as well as specific 
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Fig. 8 | Inhibiting MTIL repressors sensitizes cancer cells to T/NK cell-mediated 
cytotoxicity. a, Fluorescent caspase-3/caspase-7 activity monitored in NTC 
and PTPN1, ACTR8 and B2M KO syngeneic TYK-nu cell lines in monoculture 
and co-culture with NK-92 cells over 16 h. b, Fluorescent caspase-3/caspase-7 
activity monitored in NTC, PTPN1 and ACTR8 KO syngeneic TYK-nu cell lines in 
monoculture and co-culture with TCR-specific CD8+ T cells over 16 h. In a and b, 
P values were derived from Satterthwaite’s ANOVA in time-controlled two-sided 

LMMs; n = 3 technical replicates per experimental condition. c, PTPN1/PTPN2 
inhibitor (ABBV-CLS-484) increased NK-mediated cytotoxicity in TYK-nu (left) 
and OVCAR3 (right) ovarian cancer cell lines in a dose-dependent manner.  
P values were derived from Satterthwaite’s ANOVA in dose-controlled two-sided 
LMMs; n = 3 technical replicates per experimental condition. For a–c, all data 
shown represent the mean + s.e.m. GCU, global counting unit.
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genes and processes proposed by our analyses and data (for example, 
BMP7 and RUNX1). As ST data provide a single snapshot in time, we also 
note that MTIL-high areas that are deprived of TILs may mark situations 
where the snapshot is not representative of TIL location in the past or 
the probability that these areas will be infiltrated in the future. This 
may explain the improved ability of MTIL to predict clinical response 
to ICB compared to TIL levels in certain cohorts.

We anticipate that the detailed mapping of HGSC tumors pro-
vided here will help inform the design of new interventions including 
T/NK cell engineering strategies to enhance T/NK cell infiltration. 
Our findings demonstrate that the stroma differentially retains or 
sequesters certain subsets of T/NK cells, but not others, providing 
new leads to activate or inhibit chemokine receptors as CXCR6 and 
CXCR4 to mobilize endogenous or engineered T/NK cells into the 
tumor. Our findings also underscore the need to map T cell clonality 
as a function of location at the micro level to examine whether T cells 
that reside in the malignant and stromal compartments are part of the 
same or different TCR clones, and dynamically track tumor-reactive 
T/NK cells to examine if these can egress back to the stroma to avoid 
or reverse exhaustion72.

Our data provide new leads to target HGSC resistance, including 
the inhibition of ACTR8 and PTPN1. PTPN1’s protein product PTP1b is 
inactivated by oxidation73, which may explain MTIL activation under 
oxidative stress (as indicated by the upregulation of GPX3 and SOD2). 
PTP1b posttranscriptional regulation may also explain why it could 
not have been identified as an MTIL regulator with a standard approach 
of gene expression correlations. PTP1b is a negative regulator of 
insulin and leptin signaling74 that has been an attractive drug target 
for treatment of type 2 diabetes and obesity75–78. PTPN1 KO mice have 
been shown to be viable and resistant to the development of obesity 
and diabetes, with more recent work demonstrating that PTPN1/
PTPN2 inhibition is enhancing antitumor immune response, pri-
marily via activation of CD8+ T cells50,69,79. Here we show that PTPN1 
KO in ovarian cancer cells as well as its inhibition via ABBV-CLS-484 
selectively sensitized ovarian cancer cells to both T cell-mediated 
and NK cell-mediated killing, providing rationale to include patients 
with HGSC in the ongoing phase I clinical trials (NCT04777994 and 
NCT04417465)80,81.

Taken together, this integrative study provides a blueprint to 
functionally map and probe the molecular landscape of multicellular 
interplay in complex biological tissues and reveals spatial, molecular 
and genetic aspects of immune escape in HGSC, opening new avenues 
to activate targeted immune responses.

Online content
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Methods
Human tumor specimen collection
All ST data other than the Validation 2 dataset were obtained from 
archival clinical FFPE tumor tissues, retrospectively procured from 
archival storage under an Institutional Review Board (IRB)-approved 
protocol (number 44615). In patients with both adnexal and omental 
tumors available for study, tumor blocks from both sites were selected 
by an expert gynecologic pathologist (B.E.H.) using histopathologic 
review of the associated H&E slides. HGSC diagnosis was confirmed 
in all cases. Tumor content as well as tissue quality and preservation 
were assessed for inclusion in the study. The Validation 2 dataset was 
obtained from fresh HGSC tumors that were collected at the time 
of surgery by Stanford Tissue Procurement Shared Resource facil-
ity with the appropriate written informed consent and institutional 
IRB approval (number 11977). Samples were flash frozen and stored 
at −80 °C until requested for this study. Samples were embedded in 
optimal cutting temperature (OCT) compound. Sections were gener-
ated using a cryostat and stained with H&E, which were reviewed by 
an expert gynecologic pathologist (B.E.H.) to confirm the diagnosis, 
quality and tumor content. Summary statistics of tissue sections, 
tumors and patients profiled are available in Supplementary Table 1a. 
Annotations at the patient level and tissue level are provided in Fig. 1b 
and Supplementary Table 2a,b, respectively.

Primary CD8+ T cells were isolated from de-identified blood sam-
ples received from the Stanford Blood Center (IRB number 13942).

Tumor tissue DNA sequencing
HGSC tumor sample selection for next-generation sequencing 
(NGS) was based on the assessment of overall tumor content by a 
board-certified expert pathologist (B.E.H). Solid tumor tissue was 
digested by proteinase K. Total nucleic acid was extracted from FFPE 
tissue sections using Chemagic 360 sample-specific extraction kits 
(PerkinElmer). Percentage tumor cellularity as a ratio of tumor to 
normal nuclei was verified against pathologist-derived assessment, 
with a minimum requirement of 20% tumor content. Macro-dissection 
was utilized as required to enrich specimens below the 20% threshold. 
Specimens that met the 20% threshold of tumor to normal nuclei were 
selected for DNA sequencing. DNA sequencing was subsequently 
performed via Tempus Labs according to the xT platform protocol83. 
Additional information about NGS data generation and processing is 
provided in Supplementary Information Section 1.9.

ST data collection via SMI
The Discovery and Test datasets were generated using the CosMx 
SMI instrument according to the company’s protocols as described 
here and in greater detail in Supplementary Information Section 1.5. 
In brief, CosMx Universal Cell Characterization RNA 960-gene panel 
and the CosMx Human 6K Discovery Panel were used (Supplementary 
Table 1b), consisting of ISH probes. Each reporter set contains 16 read-
out rounds with four different fluorophores, creating a 64-bit barcode 
design with a Hamming distance of 4 (HD4) and a Hamming weight of 
4 (HW4) to ensure low error rates. Probe fluorescence was detected at 
subcellular resolution via the CosMx SMI instrument, and the signal 
was aggregated to identify the specific RNA molecule measured in 
each location21.

SMI tissue preparation and RNA assay were performed as follows. 
Five-micron tissue sections were cut from FFPE TMA tissue blocks and 
adhered onto VWR Superfrost Plus Micro Slides (VWR, 48311-703) or 
Leica BOND Plus slides (Leica Biosystems, S21.2113.A). After sectioning, 
the tissue sections were air-dried overnight at room temperature. Tis-
sue preparation was performed as described in the CosMx SMI Manual 
Slide Preparation Manual (MAN-10184-02). Briefly, the tissues under-
went deparaffinization, heat-induced epitope retrieval for 15 min at 
100 °C, and enzymatic permeabilization with 3 μg ml−1 digestion buffer 
for 30 min at 40 °C. Subsequently, a 0.0005% working concentration 

of fiducials were applied to the tissue, followed by post-fixation and 
blocking using NHS-acetate. Finally, an overnight hybridization was 
performed using the CosMx Universal Cell Characterization 960 plex 
RNA Panel or the CosMx Human 6K Discovery Panel of probes. The 
next day, the tissues were subjected to stringent washes to eliminate 
any unbound probes. The tissues were stained with CosMx Nuclear 
Stain, CosMx Hs CD298/B2M, CosMx Hs PanCK/CD45 and CosMx Hs 
CD3 nuclear and segmentation markers before loading onto the instru-
ment. The slide and coverslip constitute the flow cell, which was placed 
within a fluidic manifold on the SMI instrument for morphological 
imaging and in situ analyte readout. Analysis run on the instrument 
was set up using the 60 s FOV pre-bleaching profile and segmentation 
profile for human tissue.

ST data collection via Xenium
The Validation 1 dataset was generated via 10x Genomics’ Xenium 
platform according to the company’s protocols as described here and 
in greater detail in Supplementary Information Section 1.6. In brief, 
10x Genomics’ Xenium ISS technology was used with the Xenium 
Human Breast Panel for multiplexed measurement of 280 genes (Sup-
plementary Table 1b). Xenium hybridization padlock probes were 
designed to contain two complementary sequences that hybridize 
to the target RNA84. Probes also contain a third sequence encoding 
for a gene-specific barcode such that once the paired ends of the 
probe bind to the target RNA and ligate, a circular DNA probe is gen-
erated for rolling circle amplification. Five-micron FFPE TMAs were 
sectioned onto a Xenium slide, deparaffinated, permeabilized and 
incubated with a Xenium probe for probe hybridization and barcode 
amplification, as described in detail in Supplementary Information 
Section 1.6. Following washing and background fluorescence quench-
ing84, slides were placed into an imaging cassette and loaded on the 
Xenium Analyzer instrument for morphological imaging and in situ 
analyte readout.

ST data collection via MERFISH
The Validation 2 dataset was generated via the Vizgen platform accord-
ing to the company’s protocols as described here and in greater detail 
in Supplementary Information Section 1.7. In brief, a custom 140-gene 
panel was designed with an additional set of 50 blank negative control 
barcodes based on the MERFISH design that incorporates combinato-
rial labeling with an error-robust encoding scheme to mitigate detec-
tion errors85. Four HGSC fresh-frozen tissue samples were preserved 
in OCT compound and stored at −80 °C before sectioning. Ten-micron 
tissue sections were cut from the fresh-frozen OCT tissue blocks and 
adhered onto MERSCOPE slides (Vizgen, 20400001). After sectioning, 
the tissue sections were fixed with 4% paraformaldehyde in 1× PBS for 
15 min, washed three times with 1× PBS, and incubated overnight at 
4 °C in 70% ethanol. As described in detail in Supplementary Informa-
tion Section 1.7, following tissue sample preparation process samples 
were loaded onto the MERSCOPE instrument (Vizgen, 10000001) for 
analyte readout and morphological imaging.

Cell segmentation
Cell segmentation was performed using a deep-learning-based seg-
mentation image processing algorithm, Mesmer86, from the DeepCell 
platform on raw TIFF images. The cell segmentation algorithm was 
chosen after systematic comparisons with the Omnipose87 algorithm 
as described in Supplementary Information Section 1.7 (Extended 
Data Fig. 1a–f). The inputs for whole-cell segmentation for SMI images 
included immunofluorescence (IF) images of DAPI and CD298/B2M 
for nuclear and cell membrane detection, respectively. MERFISH 
whole-cell image segmentation was performed with DAPI and cell 
membrane stains (Vizgen stain boundary kit, 10400009). Nuclear 
segmentation was performed for ISS images wherein the input includes 
DAPI IF stain.
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ST data quantification and processing
Preprocessed RNA in situ data include RNA transcripts confidently 
identified for each gene and their spatial coordinates. Given these data, 
each RNA transcript was aligned to the cell segmentation outputs 
described above based on its spatial coordinates. Cell count matrices, 
C, were generated by counting the number of RNA transcripts detected 
within the segmentation boundaries of each cell j for each gene i to 
yield ci,j for entry of C in each ST dataset. Cell counts were converted 
to transcripts per million (TPM) according to equation (1):

TPMi,j = (
ci,j

∑G
i=1ci,j

) × 106 (1)

where G is the total number of genes in each ST dataset.
Expression levels were quantified as shown by equation (2):

Ei,j = log2 (
TPMi,j

10 + 1) (2)

Cells with fewer than 50, 20 and 5 genes detected in the SMI, 
Xenium and MERFISH data were excluded, as well as cells with excep-
tionally large volume (>441 μm2).

Expression of a gene signature or set was computed by consider-
ing all the genes in the signature/set, with additional normalizations to 
filter technical variation, similarly to the procedure reported before88 
with some modifications as described in Supplementary Information 
Section 2.1. For gene programs, the expression of the upregulated set 
minus the expression of the downregulated set was computed as the 
program expression.

The location of each cell was defined based on the location of 
its centroid. The r-neighborhood of a cell was defined as all the cells 
that reside at a distance of at most r μm from the cell. Spatial frames 
were defined by binning the tissue section FOV to squares with a size 
of 60 μm × 60 μm (that is, 3,600 μm2), with a median number of 53 
cells per frame.

As described in detail in Supplementary Information Section 2.2, 
the cell-type annotation procedure was applied separately for each 
of the three spatial datasets via an initial cell-type assignment fol-
lowed by an iterative subsampling procedure to obtain robust cell-type 
assignments with confidence levels. Cell-type signatures used for this 
purpose were derived from previous HGSC scRNA-seq datasets26,27,29,89.

Co-embedding ST and scRNA-seq datasets
A reference single-cell atlas was generated to examine consist-
ency across spatial and scRNA-seq cohorts and validate cell-type 
annotations. The atlas includes spatial datasets collected here and 
six scRNA-seq HGSC cohorts17,24–29. Preprocessed gene expression 
matrices were downloaded from Synapse (syn33521743)17, the Gene 
Expression Omnibus (GEO; GSE118828, GSE173682, GSE147082 
and GSE154600)24,26,25,28 and https://lambrechtslab.sites.vib.be/en/
data-access/27,29. Tumor samples derived from other anatomical sites, 
other than the adnexa or omentum, were removed to match the scope 
of this study. All nine datasets were co-embedded with reciprocal 
principal component analysis using the top 30 PCs fit on each dataset, 
using the Seurat R package version 5.1.0 implementation90, and then 
visualized with two-dimensional UMAP91. A detailed description of 
the co-embedding pipeline is available in Supplementary Information 
Section 2.3.

Mixed-effects modeling
Mixed-effect models were used to capture codependencies and the 
hierarchical structure of the data, where covariates at different levels 
(for example, cell, spatial frame and sample) are sampled from different 
distributions. The lme4 (version 1.1-35.4)92 and lmerTest (version 3.1–3) 

R packages93 were used to fit the models using the standard restricted 
maximum-likelihood method, identify the latent variables that maxi-
mize the posterior probability and compute P values and sum of squares 
in type II ANOVA via the Satterthwaite degree of freedom method.

Identifying spatial gene expression programs
Immune infiltration programs (Supplementary Table 4a) were identi-
fied by analyzing the Discovery dataset with the LMMs described above 
using the frame-level abundance of malignant cells as a measure of the 
infiltration level. To prevent impact of ambient RNA, only genes that 
had significantly higher expression levels (pairwise one-sided t-test 
P value < 1 × 10−3) in respective immune cell types were considered, 
using pairwise t-tests when comparing the respective immune cell 
type to all other cell types. CD8 TIP was extended based on scRNA-seq 
data17 (Supplementary Table 4b). Analyzing the CD8+ T cells from this 
scRNA-seq cohort, the top 50 genes that were significantly correlated 
(BH FDR < 1 × 10−10, Spearman correlation) with CD8 TIP expression 
were identified (Supplementary Table 4b). The MTIL program (Supple-
mentary Table 6a) was identified in a similar manner in the Discovery 
dataset, defining the presence of T/NK cells as a binary covariate at the 
frame level. P values were corrected for multiple hypotheses testing 
using the BH test, and topmost genes with FDR < 0.05 were reported.

Mapping ST data to clinical and genetic features
Mixed-effect models were used to compute the association between 
the expression of each gene in the different cell types and the 
patient-matched CNA measurements obtained at the bulk tumor level. 
Of the 626 genes with CNA measurements, 159 were also included in the 
Discovery dataset (SMI) panel. For each cell type and each of these 159 
genes the following model was fit: tpm ~ (1 | patient) + cna + nact + sites, 
where tpm denotes the expression of the gene in cells from cell type 
k, cna denotes the copy number of the same gene (CNA in cis), ‘nact’ 
denotes treatment status and ‘sites’ denote the anatomical site (Sup-
plementary Fig. 4a). To derive associations of clinical covariates, treat-
ment status, tumor genomics and anatomical site, a similar model was 
fit (tpm ~ (1 | patients) + age + stage + nact + sites) on all 960 genes in 
the Discovery dataset (Supplementary Fig. 4a). Here, ‘age’ denotes 
age at diagnosis (≤65 or >65 years), and ‘stage’ denotes disease stage 
(III or IV). Similarly, to examine the connection between CNAs and MTIL 
expression, all 626 genes with CNA were tested with an LMM, consider-
ing only malignant cells from the samples with genomic profiling, with 
MTIL expression as the dependent variable.

Spatial ligand–receptor network
A unified list of 2,678 unique ligand–receptor pairs was compiled based 
on three published ligand–receptor networks43–45 (Supplementary 
Table 5c). A CD8+ T cell-centered network (Supplementary Table 5d) was 
defined as follows. Ligand–receptor pairs are included in the malignant 
compartment of the network if they consist of a gene upregulated in the 
CD8 TIP and: (1) a gene upregulated in the TIP of another immune cell 
type, or (2) a gene upregulated in the MTIL program. Likewise, ligand–
receptor pairs are included in the stromal compartment of the network 
if they consist of a gene downregulated in the CD8 TIP and: (1) a gene 
downregulated in the TIP of another immune cell type, or (2) a gene 
that marks fibroblasts in T/NK cell high niches.

Survival analysis of the HGSC spatial cohort
Survival modeling and visualization was performed using the ‘sur-
vival’ (version 3.7-0) and ‘survminer’ (verion 0.4.9) R package94,95. The 
time-to-event ‘overall survival’ variable was constructed with the 
follow-up time (fu_time1; Supplementary Table 2a,b) defined as days 
between diagnosis and last follow-up, and the patient status (dead or 
alive) at last follow-up (event; Supplementary Table 2a,b). For all sur-
vival analyses of the HGSC spatial cohort, we combined the SMI TMA 
datasets from both Discovery and Test 1 datasets to sufficiently power 
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the analyses. Multivariate and univariate Cox proportional hazards 
regression models were fit with clinical and treatment features, tumor 
genomic features and spatiomolecular features in adnexal tumors, and 
P values were computed via the Wald statistic test. Kaplan–Meier curves 
were plotted to visualize the predictability of predefined discretization 
of MTIL expression and T/NK cell density on patient overall survival, and 
P values were computed via the log-rank test. These analyses as well as 
additional confounding analyses are described in detail in Supplemen-
tary Information Sections 2.7 and 2.6, respectively.

Survival and ICB response predictors
Confounder-controlled Cox proportional hazards regression mod-
els were used to quantify the prognostic value of a given marker in 
predicting ICB PFS in the ICB melanoma56 and NSCLC57 cohorts and 
in predicting overall survival in the International Cancer Genome 
Consortium (ICGC) Australian Ovarian Cancer Study cohort. In the 
breast and urothelial ICB cohorts, PFS was not available and thus 
categorical clinical response annotations were used to examine if 
the marker was associated with and predictive of response based on 
student’s two-sample t-tests and AUROCs. Further details on survival 
and ICB response predictions and comparison to other ICB response 
biomarkers are provided in Supplementary Information Section 2.8.

CNA analyses of TCGA data
TCGA data of array-based gene expression (EXP-A) and copy number 
somatic mutations were downloaded from the ICGC. The TIL levels 
of each sample were computed as the expression of a T cell signa-
ture. Amplifications and deletions were defined as a copy number 
log-transformed value (‘segment_mean’) above or below 0.5 and −0.5, 
respectively. A one-sided t-test was performed per MTIL gene to exam-
ine if samples with deletion in MTIL-up gene loci or amplifications in 
MTIL-down gene loci have significantly lower TIL levels compared to 
samples without the respective amplification/deletion. Amplifica-
tions and deletions that were found to show a statistically significant 
association are reported in Supplementary Table 9a. SVM classifi-
ers were generated to predict if a tumor has high (above median) TIL  
levels based on the CNA levels of all MTIL genes, using the ‘e1071’ 
(version 1.7–14) R package.

Quantifying IFN-γ and TNF secretion
NK-92 cells were treated with increasing concentrations of recombinant 
human BMP7 (Neuromics, PR27026). After 24 h, the supernatant was 
collected, centrifuged at 277g for 10 min, transferred into a new 1.5 ml 
tube, and stored at −80 °C. The supernatants collected were diluted at 
a 1:100 ratio before the IFN-γ ELISA assay. The concentration of IFN-γ 
and TNF was determined using the ELISA MAX Deluxe Set Human 
IFN-γ (BioLegend, 430115) and ELISA MAX Deluxe Set Human TNF 
(BioLegend, 430215) according to the manufacturer’s instructions 
and analyzed on a Varioskan LUX Multimode Plate Reader (Thermo 
Fisher). A standard curve was fitted using GraphPad Prism’s nonlinear 
regression (curve fit) built-in analysis on a log–log axis. The analyte 
concentration was calculated based on the fitted line according to the 
manufacturer’s instructions.

Lentivirus production
Lenti-X 293T cells were cultured in cOPTI-MEM (opti-MEM, Gibco, 
31985088), 1× GlutaMAX (Gibco, 35050061), 1 mM sodium pyruvate 
(Corning, 25-000-Cl), 5% FBS (Gibco, A3840302) and 1× non-essential 
amino acid (Corning, 25-025-CI). At ~90% confluency, cells were incu-
bated with TransIT-Lenti (MirusBio, 6603) transfection mixture at 
37 °C with 5% CO2. The transfection mixture included cOPTI-MEM sup-
plemented with 14 μg of the respective transfer plasmid, 10 μg psPAX2 
(Addgene, plasmid number 12260) and 4.33 μg pMD2.G (Addgene, 
plasmid number 12259). After 6 h of transfection, the medium was 
replaced with fresh cOPTI-MEM supplemented with 1× ViralBoost 

(Alstem Bio, VB100) and incubated for an additional 16 h. The super-
natant was harvested 24 h and 48 h after transduction. Harvested viral 
supernatants were pooled and concentrated with Lenti-X Concentrator 
(Takara Bio, 631232) by centrifugation at 1,500g for 45 min. Viral pellets 
were resuspended in medium at a volume 100 times smaller than the 
original volume and stored at −80 °C until retrieved for experiments.

CRISPR gene activation in NK-92 cells
Lentivirus for NK-92 transduction was produced as described above 
with the following vectors: dcas9-vp64-gfp (Addgene, plasmid num-
ber 61422), LentiMPH V2 (Addgene, plasmid number 89308) and a 
guide RNA (gRNA) backbone (Addgene, plasmid number 112925) 
cloned with non-targeting (5′-GGTCCATGGGTGGAGTTACG-3′) or 
CXCR6 (5′-GGATCTGAAGGACGGGAGT-3′) protospacer sequences. 
sgRNA protospacer oligonucleotides were purchased from IDT, 
annealed, and cloned into gRNA backbone digested with FastDigest 
BamHI (Thermo Fisher, FD0054). Briefly, NK-92 cells were transduced 
with dcas9-vp64-gfp at a multiplicity of infection (MOI) < 0.3. The 
GFP-positive cells were sorted using a Sony Biotechnology SH800S 
Cell Sorter, transduced with the LentiMPH V2 vector at an MOI < 0.3, 
and selected with 500 μg ml−1 hygromyin. dCas9-MPH NK-92 cells were 
transduced with sgRNA at an MOI < 0.3 and selected with 1 μg ml−1 puro-
mycin. Flow cytometry was used to assess CXCR6 protein expression. 
NK-92 cells transduced with the NTC or CXCR6 sgRNA and were stained 
with Human CXCR6 antibody (BioLegend, 35600525; 1:200 dilution) 
as described in the flow cytometry analysis of TYK-nu cells section. 
Cells were analyzed using a Sony Biotechnology SH800S Cell Sorter. 
All data were analyzed using FlowJo version 10.10.0.

Transwell migration assay
NK-92 cells were harvested, washed with serum-free RPMI media (Gibco, 
72400-047) and resuspended in 1 ml of RPMI containing 1% FBS (Gibco, 
A3840102). Cell numbers were determined by Countess 3 Automated 
Cell Counter (Invitrogen, AMQAX2000) and 2 × 105 cells in 200 μl were 
placed in each transwell insert (Corning, 3428). Around 600 μl of RPMI 
containing 1% FBS with various concentrations of recombinant human 
CXCL16 (PeproTech, 300-55) and untreated control was added to the 
bottom of a 24-well plate and incubated at 37 °C with 5% CO2. Four hours 
after incubation, top inserts were removed and the migrated cells at the 
bottom were collected and counted via flow cytometry (SH800S Cell 
Sorter) with cell counting beads (Precision Count Beads; BioLegend, 
424902) for precise cell counts.

Perturb-seq meta-analyses and data-driven screen design
Publicly available Perturb-seq datasets65,66 were used to identify MTIL 
regulators. For each dataset, counts were converted to TPM values, and 
two-sided t-tests were performed to identify differentially expressed 
genes for each perturbation in each one of the screens, comparing the 
cells with the perturbation to those with control sgRNAs. MTIL expres-
sion was computed, and a two-sided t-test was performed to examine 
if MTIL expression was significantly higher or lower in the cells with the 
perturbation compared to the control cells (with control sgRNAs). For 
perturbations that showed a significant effect on the MTIL expression 
(BH FDR < 0.05, t-test), hypergeometric tests were used to further 
confirm that the perturbation significantly represses or activates the 
MTIL genes, having opposite effects on the MTIL-up and MTIL-down gene 
subsets.

CRISPR KO library of ovarian cancer cells
Guide sequences were selected from the Human CRISPR Knockout 
Pooled Library (GeCKO v2)96. The pooled sgRNA library was purchased 
from GenScript in a plasmid format utilizing the pLentiGuide-Puro 
vector. In total, the library includes 232 sgRNAs targeting 74 genes with 
three guides per gene and ten non-targeting controls (Supplementary 
Table 10b). Lentiviral stocks were obtained as described in ‘Lentivirus 
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production’ by transfecting lentiCas9-Blast and the custom sgRNA 
lentiviral library into Lenti-X 293T cells (Takara, 632180).

TYK-nu ovarian cancer cell line ( JRCB Cell Bank, JCRB0234.0) was 
used for the CRISPR screens. To obtain stable Cas9 expression in the 
TYK-nu cell line (TYK-nuCas9), 100,000 wild-type TYK-nu cells were 
seeded in a 24-well plate (Corning, 3526) and incubated overnight. 
Cells were transduced with the lentiCas9-Blast lentivirus at an MOI of 
0.2 with 8 μg ml−1 of polybrene (MilliporeSigma, TR-1003) and incu-
bated overnight in 37 °C with 5% CO2. Transduced TYK-nu cells were 
then washed with DPBS, and selected over 10 days with 10 μg ml−1 of 
blasticidin (Invivogen, ant-bl-05). Successful transduction of Cas9 was 
validated via western blot (Extended Data Fig. 8a,c) and flow cytometry 
analyses (Extended Data Fig. 8b,d). The resulting TYK-nuCas9 cells were 
then transduced at an MOI of 0.15 with the sgRNA lentiviral library and 
selected over 5 days with 0.5 μg ml−1 of puromycin (Invivogen, ant-pr-1).

Knockout efficiency was quantified via pMCB306 plasmid. The 
plasmid contains puromycin-T2A-EGFP with EF-1 alpha promoter and an 
EGFP-targeting sgRNA driven by a mU6 promoter. Following cell trans-
duction with the pMCB306 plasmid, loss of GFP fluorescence indicates 
functional Cas9 activity, as cleavage of GFP by Cas9 results in loss of 
fluorescence, whereas intact GFP retains fluorescence. TYK-nuCas9 cells 
were transduced at an MOI of 0.15 with pMCB306 virus and 8 μg ml−1 of 
polybrene and incubated overnight at 37 °C with 5% CO2. Transduced 
TYK-nuCas9 cells were washed with DPBS, and selection was conducted 
over 5 days with 0.5 μg ml−1 of puromycin (Invivogen, ant-pr-1). Editing 
efficiency was validated via flow cytometry (Extended Data Fig. 8b).

Flow cytometry analysis
Flow cytometry analysis was conducted to sort and analyze 
TYK-nuCas9,B2M-KO cells and a TYK-nuCas9 GFP transduced cell line. 
TYK-nuCas9,B2M-KO cells were washed in 1× PBS and stained with Alexa Fluor 
700 anti-human B2M antibody (BioLegend, 395708; 1:20 dilution) for 
20 min. Additional cells were set aside to use as unstained controls and 
to adjust gating. The cells were washed twice in PBS with 1.5% FBS after 
staining and were filtered through a 35-μm cell strainer before analy-
sis on an LSR II instrument. TYK-nuCas9 GFP cells were prepared in the 
same way without the staining and analyzed on a Sony Biotechnology 
SH800S Cell Sorter. All plots were generated with FlowJo version 10.8.1.

Cancer CD8+ T cell co-cultures
TYK-nuCas9, NY-ESO-1+ cells were generated by transducing TYK-nuCas9 cells 
to stably express the NY-ESO-1 antigen, as described in detail in Sup-
plementary Information Section 3.1. Primary human CD8+ T cells were 
isolated from human whole-blood buffy coat and transduced to express 
a NY-ESO-1 TCR (1G4) construct (generously provided by the laboratory 
of K. Wucherpfennig97, DFCI), as described in detail Supplementary 
Information Section 3.2.

TYK-nu T cell co-cultures were performed in parallel with either 
NY-ESO-1 TCR+ or wild-type CD8+ T cells from the same donor as a con-
trol, as follows. TYK-nuCas9, NY-ESO-1+ cells were seeded into a clear-bottom, 
black-walled 96-well plate and incubated in 100 μl of T cell medium 
(Supplementary Information Section 3.2) per well overnight. CD8+ 
T cells were activated with Dynabeads for 72 h. Following magnetic 
removal of the Dynadeads, T cells were added to the TYK-nuCas9, NY-ESO-1+ 
culture at varying effector-to-target (E:T) ratios to a total volume of 
100 μl per well. The cells were co-cultured for 24 to 72 h.

TYK-nu cell viability and IFN-γ levels in the co-culture were meas-
ured to validate the cytotoxicity of the edited CD8+ T cells. For ELISA 
readouts, supernatants were collected from the 96-well plate at the end 
of each co-culture period, spun down at 400g for 5 min and stored at 
−20 °C in single-use aliquots for subsequent ELISA assays (Extended 
Data Fig. 7h). The supernatants collected were diluted at a ratio of 
1:1,000 before the IFN-γ ELISA assay (BioLegend, 430104). For cell 
viability readouts, each well was washed twice with 200 μl of DPBS 
to remove the T cells at the end of each co-culture period. PrestoBlue 

cell viability dye (Thermo Scientific, A13261) was added to each well 
and incubated for 30 min before fluorescence plate reader reading 
(Tecan Infinite, M1000).

Cancer NK cell co-cultures
TYK-nu ovarian cancer cells ( JRCB Cell Bank, JCRB0234.0) were cul-
tured in EMEM (American Type Culture Collection, 30-2003) with 
10% heat-inactivated FBS (Life Technologies, A3840102). NK-92 cells 
(American Type Culture Collection, CRL-2407) were cultured in RPMI 
1640 Medium, GlutaMAX Supplement, HEPES medium (Gibco, 72400-
047) with 10% heat-inactivated FBS (Life Technologies, A3840102), 
200 U ml−1 recombinant human IL-2 (PeproTech, 200-02), 1 mM 
non-essential amino acids (Cytiva, SH30238), 1 mM sodium pyruvate 
(Cytiva, SH3023901) and 1% penicillin–streptomycin 100× solution 
(Cytiva, SV30010). For co-culture experiments, TYK-nu cells were 
seeded in a black-walled, clear-bottom 96-well plate (Greiner, 655090) 
and incubated overnight. NK-92 cells were added in varying E:T ratios, 
and the cells were incubated for 24 to 72 h (Extended Data Fig. 8e). 
NK-92 cell line cytotoxicity was validated using PrestoBlue cell viability 
dye (Thermo Scientific, A13261) following the manufacturer’s protocol.

To validate the specificity of NK cell cytotoxicity in the co-culture 
experiments, a TYK-nuCas9,B2M-KO cell line was generated by transducing 
TYK-nuCas9 cells with B2M sgRNA lentivirus at an MOI of 0.15. Success-
ful transduction was validated via flow cytometry and western blot 
analyses (Extended Data Fig. 8c,d). All cell lines were routinely tested 
for mycoplasma using the Promokine PCR Mycoplasma Test Kit I/C 
(PromoKine, PK-CA91-1024).

CRISPR screen in cancer CD8+ T cell co-culture
TYK-nuCas9, NY-ESO-1+ cells were transduced with the 232 sgRNA library at 
an MOI of 0.15 and selected with 0.5 μg ml−1 of puromycin over a period 
of 5 days. The resulting library cells were seeded in a 75-mm flask and 
allowed to adhere overnight to maintain >1,000× coverage. NY-ESO-1 
TCR+ CD8 T cells were added at a 5-to-1 E:T cell ratio. The TYK-nu library 
cells were grown in: (1) monoculture, (2) co-culture with wild-type CD8+ 
T cells and (3) co-culture with NY-ESO-1 TCR+ CD8 T cells. In all three 
conditions, TYK-nu cells were incubated for 72 h, in either monocul-
ture or co-culture, before being washed twice in 1× DPBS to remove 
the CD8+ T cells. TYK-nu library cells were snap frozen and stored at 
−80 °C before genomic DNA extraction and sgRNA amplification. As 
a second selection, 2 days after recovery, cells were grown under the 
same conditions again for 72 h and then allowed to recover again before 
collection and sequencing. All samples were sequenced on a MiSeq 
Micro V2 in a single-end run.

CRISPR and Perturb-seq screens in cancer NK co-culture
TYK-nuCas9 cells were transduced with the sgRNA library at an MOI of 
0.15 and selected with 0.5 μg ml−1 puromycin for 5 days. The first screen 
was performed for sgRNA and Perturb-seq readouts. TYK-nu library 
cells were seeded in a 75-mm dish (Corning, 353136) and allowed to 
adhere overnight. NK-92 cells were added at 1:1 and 2.5:1 E:T cell ratios. 
Perturb-seq readouts67,98 were obtained from TYK-nu library cells grown 
for 48 h in monoculture and co-culture with NK-92 cells. After the com-
pleted growth timeline, TYK-nu library cells were washed twice with 
10 ml 1× DPBS to remove the suspended NK-92 cells. Two replicates 
from each condition were put into a single-cell suspension according 
to the 10× ‘Single Cell Suspensions from Cultured Cell Lines for Single 
Cell RNA Sequencing’ protocol (10x Genomics, CG00054 Rev B). The 
libraries were prepared according to the Chromium Next GEM Single 
Cell 5′ Reagent Kits v2 (Dual Index) with Feature Barcode technology 
for CRISPR Screening protocol (10x Genomics, CG000510 Rev B). 
Equimolar amounts of indexed libraries were pooled and sequenced on 
a NextSeq 2000 P3 in a paired-end run. A subset of replicated TYK-nu 
library cells was allowed to recover for an additional day until conflu-
ency before being snap frozen and stored at −80 °C. Genomic DNA of 
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the snap-frozen cells was extracted using the Quick-DNA Midiprep 
Plus Kit (Zymo Research, D4075). sgRNA amplification was performed 
following a previously published protocol52. Equimolar amounts of 
indexed libraries were pooled and sequenced on a MiSeq Nano V2 in 
a single-end run.

A second screen was performed for sgRNA sequencing. TYK-nu 
library cells were seeded in a six-well dish (Cole-Parmer, 0192770) and 
were allowed to adhere overnight. NK-92 cells were added at 2.5:1, 5:1 
and 7.5:1 E:T ratios for 48 h. Library cells were allowed to recover for 3 
days before being snap frozen and prepared for genomic DNA extrac-
tion as described above. Each experimental condition was performed 
in triplicates with >1,000× cells per sgRNA, resulting in 6 and 12 sequen-
cing samples from the first and second screen, respectively.

CRISPR screen and Perturb-seq data analyses
Raw fastq files were processed using the cellranger pipeline (10x 
Genomics Cell Ranger 7.1.0), and counts were converted to TPM values. 
For each condition (monoculture, 1:1 co-culture, and 2.5:1 co-culture), 
data were analyzed to remove nonmalignant cells. Seurat R package was 
used for k-nearest neighbor clustering, resulting in a distinct NK cluster 
in the co-culture conditions, with expression of CD3E and NCAM1. This 
cluster was removed, and only cancer cells with a detection of a single 
sgRNA were retained for downstream analyses. For each of the three 
conditions, differentially expressed genes were identified for each 
perturbation using a two-sided t-test comparing the cells with the 
perturbation to those with NTCs. Fisher’s test was used to combine the 
three P values. Hypergeometric tests were performed to examine if the 
upregulated or downregulated genes identified for each perturbation 
were enriched with MTIL-up or MTIL-down genes, or vice versa, and the 
combined P values (Fisher’s test) were reported as the final summary 
statistics.

MAGeCK algorithm (version 0.5.9.4)82 was used to compute dif-
ferential fitness effects in the cancer cells under the monoculture 
and co-culture conditions, either with the CD8+ T cells or with the NK 
cells. In brief, the sgRNA counts of the different samples were first 
median normalized to adjust for the effect of library sizes and read 
count distributions. Second, the variance of read counts was estimated 
by sharing information across the different sgRNAs, allowing to fit a 
negative binomial model to test whether sgRNA abundance differs 
significantly between treatments (that is, co-culture) and controls 
(that is, monoculture or co-culture with nonspecific T cells). Third, 
sgRNAs were ranked based on P values calculated from the negative 
binomial model, and an α-robust ranking aggregation algorithm was 
used to identify positively or negatively selected genes. The pairwise 
tests across the different screens were combined with Fisher’s statistic 
P values as the summary statistics.

Single-hit CRISPR knockout validation
PTPN1 and ACTR8 sgRNA sequences were taken from the library used in 
the CRISPR screen (Supplementary Table 10b). Lentivirus production 
and transduction of PTPN1 and ACTR8 knockouts were generated as 
described in the lentiviral production section. TYK-nuCas9,NY-ESO-1+ cells 
were transduced at an MOI < 0.5 and selected with puromycin for 5 
days. Knockout efficiency was validated with Sanger sequencing using 
the Synthego ICE analysis tool (Synthego Performance Analysis, ICE 
Analysis. 2019. V3.0. Synthego (April 2024); Extended Data Fig. 10a,b).

Apoptosis assay
TYK-nu cells (TYK-nuPTPN1KO, TYK-nuACTR8KO, TYK-nuNTC) were seeded at a 
density of 80,000 cells per ml in a 24-well dish and incubated overnight. 
The next day, TYK-nu cells were pretreated with NucView 488 caspase-3 
substrate (Biotium, 10403) at a concentration of 1 μM for 30 min. NK-92 
cells or NY-ESO-1 TCR+ CD8+T cells were added at a 4:1 or 1:1 E:T ratio, 
respectively. The plates were then placed into a Sartorious Incucyte 
S3 and imaged every hour for 16 h. Sixteen images were taken per well 

for each time point using a ×10 objective. Incucyte analysis software 
was used to compute integrated intensity of green fluorescence signal 
(global counting units × μm²/image).

PTPN1/PTPN2 inhibition
Wild-type TYK-nu cells were seeded at a density of 80,000 cells per ml 
in a 24-well dish and incubated overnight. The next day, NK-92 cells were 
added at a 2.5:1 E:T ratio and PTPN1/PTPN2 inhibitor ABBV-CLS-484 
(MedChemExpress, HY-145923) was added at varying concentrations 
(4 μM, 8 μM and 16 μM). After a 48-h incubation, NK-92 cells were 
washed away, and cytotoxicity was measured using the PrestoBlue cell 
viability dye according to the manufacturer’s instructions. The same 
procedure was conducted in parallel with TYK-nu monoculture. Simi-
larly, wild-type OVCAR3 cells were seeded at a density of 200,000 cells 
per ml. NK-92 cells were added at a 1.5-to-1 E:T ratio, and ABBV-CLS-484 
was added at varying concentrations (0.5 μM, 1 μM, 2 μM, 4 μM, 8 μM 
and 16 μM). After a 24-h incubation, NK-92 cells were washed away, and 
cytotoxicity was measured using the PrestoBlue cell viability dye. The 
same procedure was conducted in parallel with OVCAR3 monoculture.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
ST data, targeted genomics, de-identified clinical meta data and 
single-cell Perturb-seq data have been deposited in Zenodo via https://
doi.org/10.5281/zenodo.12613839 (ref. 99) and the Single Cell Portal 
(SCP2640, SCP2641, SCP2650, SCP2644, SCP2646 and SCP2707). 
Additional data and code to reproduce the figures are provided 
in the Zenodo repository. Data deposited in the SCP are also avail-
able for interactive web visualization. scRNA-seq studies with HGSC 
tumor samples were accessed from Synapse (syn33521743), the GEO 
(GSE118828, GSE173682, GSE147082, GSE154600 and GSE146026) 
and https://lambrechtslab.sites.vib.be/en/data-access/. An additional 
external validation dataset hosted on the European Genome-Phenome 
Archive (EGAD00001006973 and EGAD00001006974) was made 
available for this study through a Data Access Agreement with Genen-
tech. Ovarian cancer ‘Sequencing-based Gene Expression’ data and 
accompanying overall survival and clinical annotations of the Austral-
ian Ovarian Cancer Study cohort (OV-AU) were downloaded from the 
ICGC (https://docs.icgc-argo.org/docs/data-access/data-download/). 
TCGA data of ‘array-based gene expression’ (EXP-A) and ‘copy number 
somatic mutations’ were also downloaded from the ICGC (https://
docs.icgc-argo.org/docs/data-access/data-download/). Processed 
gene expression and clinical data of ICB-treated patients with cancer 
were downloaded from Supplementary Tables in Liu et al.56, Zenodo via 
https://doi.org/10.5281/zenodo.7625516 (ref. 57), http://research-pub.
gene.com/IMvigor210CoreBiologies/ and the GEO (GSE173839 and 
GSE194040). Perturb-seq datasets used for the meta-analysis were 
downloaded from https://gwps.wi.mit.edu/ and the GEO (GSE133344). 
Source data are provided with this paper.

Code availability
Code to reproduce results and figures presented in this study is 
provided as a GitHub repository (https://github.com/Jerby-Lab/
HGSC_SpatialPerturbational).
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Extended Data Fig. 1 | Cell segmentation. (a) Representative whole-cell 
segmentation performed for the Discovery dataset. Input data includes DAPI 
immunofluorescent (IF) and cell membrane stain. Cell boundaries represented 
as white contours. This is a single representative sample out of 100. Similar 
results were obtained for all 100 other samples. (b) Representative nuclear 
segmentation performed for Validation 1 dataset. Input data includes DAPI 
IF stain. Cell boundaries represented as white contours. This is a single 
representative sample out of 32 samples. Similar results were obtained for all 
other samples. (c) Representative comparison of Mesmer vs. Omnipose cell 

segmentation in a tissue profile (1 of 100) from the Discovery dataset.  
(d) Representative comparison of Mesmer Nuclear (left) and Mesmer Nuclear-
with-Expansion (right) segmentation in a tissue profile (1 of 32) from Validation 
1 dataset. (e) P values denoting if cell type confidence scores are significantly 
higher (one-sided Wilcoxon sum rank test) for whole cells segmented by Mesmer 
vs. Omnipose for each cell type in the Discovery dataset. (f ) P values denoting 
if cell type confidence scores are significantly higher (one-sided Wilcoxon sum 
rank test) in cells segmented by Mesmer Nuclear vs. Mesmer Nuclear-with-
Expansion for each cell type in Validation 1 dataset.
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Extended Data Fig. 2 | Cell type annotations of spatial transcriptomics.  
(a) UMAP projection (matches (b) and Fig. 1c) of high confidence (Supplementary 
Methods) spatial single cell transcriptomes (Discovery dataset); cells colored by 
overall expression of pre-defined cell type signatures (Supplementary Table 3,a,  
Methods). (b) UMAP projection of high confidence (top panel, matches (a) 
and Fig. 1c) spatial single cell transcriptomes (Discovery dataset) to yield a 
reference map. UMAP projection of all cells in the Discovery dataset (bottom 
panel) onto the high confidence reference map. (c-d) UMAP embedding of 
single positive (that is, CD4+ or CD8+) T cell transcriptomes (Discovery dataset), 
cells colored by (c) CD8 and CD4 expression, and (d) expression of de novo 
CD8 (left) and CD4 (right) T cell expression signatures. (e) Projection of double 

negative T/NK cell transcriptomes (Discovery) onto CD8/CD4 T cell reference 
map in (b), with cells colored by overall expression of the de novo CD8 (left) 
and CD4 (right) T cell gene signatures (Supplementary Table 3,b). (f ) UMAP 
embedding of CD4 T cell transcriptomes (Discovery dataset), cells colored by 
CD4 expression (left) and FOXP3 expression (right). (g) UMAP as in (f), with cells 
(Discovery dataset) colored based on de novo FOXP3+CD4 T cell gene signature 
expression (left) and pre-defined regulatory T cell (Treg) signature expression 
(Methods; Supplementary Table 3,a). (h-i) UMAP embedding T/NK single cell 
transcriptomes in Validation 1 dataset, cells colored by (h) final T/NK cell subtype 
annotations, (i) detection of (from left to right): CD4, CD8A/B, FOXP3 (regulatory 
T cell marker), and NCAMI (NK cell marker).
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Extended Data Fig. 3 | Cross-platform ST data validations. (a) Hematoxylin 
& Eosin (H&E) staining (left), Immunofluorescence (middle) of in situ cell type 
annotations in the Discovery dataset (right) for four representative tissue FOV  
(4 of 100). (b-c,e-f ) cells colored according to cell type legend in (a).  
(b) H&E staining (left), Immunohistochemistry (IHC) stain for CD163 (middle;  
monocyte marker) with corresponding in situ cell type annotations (right) in  
a representative tissue core (1 of 32) in Validation 1 dataset. (c) H&E (left), IHC  
stain for FOXP3 (middle, Treg marker), and corresponding in situ cell type 
annotations (right) in a representative tissue (1 of 32) FOV from Validation 1 
dataset. (d) H&E stains of HGSC6 omentum tumor tissue (1 of 100) resolving 

morphology of plasma cells (black arrows) identified based on the Discovery 
tissue profile shown in panel (a)(iii). (e) H&E (left), in situ cell type annotations 
from Validation 1 dataset (middle), and Discovery dataset (right) from technical 
replicate pairs (2 of 39). Each dataset was processed and annotated separately. 
White box denotes region of tissue profiled by ISS via Xenium in the Validation 1  
dataset that corresponds an adjacent region profiled by SMI in the Discovery 
dataset (same row). (f ) Cell type proportion in technical replicates profiled both 
in the Discovery and Validation 1 datasets. Straight lines correspond to the linear 
regression fit; grey ribbons correspond to 95% confidence interval; rs denotes the 
Spearman correlation coefficient.

http://www.nature.com/natureimmunology


Nature Immunology

Resource https://doi.org/10.1038/s41590-024-01943-5

Extended Data Fig. 4 | CD8 T cell states reflect CD8 T cell tumor infiltration 
levels. (a) Size and overlap between the tumor infiltration programs (TIPs) 
identified in the Discovery dataset for the five different immune cell subsets, 
shown for the up-regulated (left) and down-regulated (right) subsets.  
(b) Stratification CD8 T cell subsets based on tumor infiltration status 
(Validation 1 dataset). (c-d) UMAP embedding of CD8 T cells (Discovery dataset) 
from gene expression only; cells colored by CD8 T cell states30 (c), overall 
expression of predefined CD8 T cell signatures30. (d). (e) Stratification CD8 T cell 

subsets based on tumor infiltration status (Discovery dataset). (f ) Expression of 
CD8 TIP in infiltrating vs. non-infiltrating CD8 T cells (Test 1 and Test 2 datasets); 
p-value derived from one-sided student’s t-test. (g) CD8 TIP expression marks 
infiltrating CD8 T cells in the Test datasets, shown in situ for a representative 
whole tissue section (HGSC2, Adnexa, 1 of 4); p-value derived from one-sided 
student’s t-test. (h) Abundance of malignant cells in a 30um radius of CD8 T cells 
in Test datasets, stratified by CD8 T cell subset.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | MTIL marks T/NK infiltration at micro- and macro-
scales. (a) Statistical significance and effect size showing the association of 
each gene’s expression in malignant cells with T/NK cell levels, quantified via 
mixed effect models (two-sided) applied to the Discovery dataset (Methods). 
(b-d) In the Discovery dataset: MTIL expression in malignant cells as a function 
of (b) discretized T/NK cell levels across tissue profiles (n = 99 profiles, top) and 
spatial frames (n = 6699 frames, bottom), (c) T/NK cell levels in spatial frames 
(n = 6699 frames) across anatomical sites, (d) presence of T/NK cell subtypes in 

spatial frames (n = 6699 frames): CD4 T cells (left), CD8 T cells (middle), and NK 
cells (right); p-values derived from one-sided student’s t-test. (e) Cumulative 
probability analysis of fraction of T/NK cells in spatial frames stratified by MTIL 
expression in 6 representative tissue profiles (Discovery dataset) shown in  
Fig. 3c. In (b-d) Boxplots middle line: median; box edges: 25th and 75th percentiles; 
whiskers: most extreme points that do not exceed ± IQR x 1.5; further outliers are 
marked individually with circles (minima/maxima).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | MTIL is predictive of T/NK infiltration. (a-d) MTIL 
expression in malignant cells, stratified by discretized TIL levels in a malignant 
cell’s niche in (a) Validation 1 dataset, (b) Validation 2 dataset, (c) Test 1 dataset, 
and (d) Test 2 dataset. (e) MTIL expression in malignant cells, stratified by tissue 
immune subtyping in Hornburg et al scRNA-seq study47. In (a-e) p-value derived 
from one-sided t-tests. (f ) MTIL expression in malignant cells as a predictor of 
T/NK cell levels. Predictive performances are quantified and visualized via the 
receiver operating characteristic (ROC) curves shown per ST dataset. Area under 
the ROC (AUROC) curve is reported in parentheses. (g) In situ MTIL expression 
marks T/NK cell levels shown in a representative whole tissue section (HGSC1, 
Adnexa, Test 2 dataset; MTIL expression is higher in TIL-high versus TIL-low niches, 
p = 2.87 × 10−107, one-sided Wilcoxon rank sum test). A magnified version of 

region (1) is shown in Fig. 3f, region (2) is magnified in the right image. (h-i) MTIL 
predicts T/NK cell levels at the microenvironment level in an independent ST 
SMI data from NSCLC21. (h) ROCs depicting prediction performances in NSCLC 
when predicting the top 10%, 25%, and 50% most T/NK cell rich frames based on 
the MTIL expression in malignant cells. (i) MTIL expression in NSCLC malignant 
cells stratified by the level of T/NK cells in their vicinity (‘high’ and ‘low’ depict 
the top and bottom quartiles, respectively, and ‘moderate’ otherwise). p-value 
derived from one-sided mixed effect tests. In (a-e, i) boxplots middle line: 
median; box edges: 25th and 75th percentiles; whiskers: most extreme points that 
do not exceed ± IQR x 1.5; further outliers are marked individually with circles 
(minima/maxima).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Establishing an ex vivo model of TCR-dependent 
T cell cytotoxicity. (a) Top: NY-ESO-1 [1G4] TCR lentiviral construct used to 
engineer primary human CD8 T cells. Bottom: NY-ESO-1 peptide with 1G4 epitope 
lentiviral construct used to edit TYK-nu Cas9 cells to express the 1G4 NY-ESO-1 
antigen. A non-functional, extracellular domain of human growth factor 
receptor (NGFR) was used to detect and isolate NY-ESO-1 expressing cancer 
cells. Created with BioRender.com. (b) Representative flow cytometric analysis 
gated on the expression of the non-functional NGFR tag to quantify TYK-nu 
Cas9 cells transduced to express NY-ESO-1 antigen (TYK-nuCas9,NY-ESO-1+). (c) qPCR 
quantification of CTAG1B mRNA expression in TYK-nuCas9,NY-ESO-1+ cells relative to 
A375 melanoma cell line with endogenous CTAG1B expression. (d) Western  
blot of NY-ESO-1 expression from NY-ESO-1 transduced MDA-MB-231 Cas9,  
TYK-nuCas9,NY-ESO-1+, TYK-nuCas9, and A375 whole cell lysates. GAPDH was used as a 
loading control. Data shown in (d) is one representative experiment repeated 
three times with similar results. (e) Representative flow cytometric analysis of 
CD8+ T cells isolated from PBMC. (f ) Representative flow cytometric analysis 

of NY-ESO-1 TCR transduced CD8 T cells. HA (α chain) and PC (β chain) double-
positive CD8+ T cells were sorted (left). Cells were re-analyzed immediately after 
sorting to determine sorting quality (middle). Sorted HA+PC+ CD8+ T cells that 
were frozen and thawed were re-sorted to determine population purity over 
time (right). (g) TCR-dependent cytotoxicity: NY-ESO-1 TCR expressing primary 
CD8 T cells were co-cultured with TYK-nuCas9 cells or TYK-nuCas9,NY-ESO-1+ cells at 
variable effector to target cell ratios (E:T). The percentage of dead cancer cells 
was calculated by normalizing to cancer cell monoculture conditions. (h) ELISA 
quantification of IFNγ secreted in the co-culture supernatant (1:1000). In (g) and 
(h): co-cultures were performed using n = 3 technical replicates per condition 
and n = 3 different T cell donors; comparisons are indicated with brackets; 
p-values ****p < 1 × 10−4 (two-way analysis of variance (ANOVA) with multiple 
comparisons for (g) and (h)); ‘ns’ denote non-significant (p > 0.05) comparisons. 
Exact p-values and raw blot images are provided with the Source Data. Data 
shown for (g) represent mean ± standard deviation and (h) mean ± s.e.m.
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Extended Data Fig. 8 | Establishing an in vitro cancer-NK model for CRISPR 
screens. (a) Western blot of Cas9 protein from WT and Cas9 transduced whole 
cell lysates. Alpha tubulin measured as a loading control. (b) Representative  
flow cytometric analysis gated on GFP expression to measure Cas9 efficiency 
using pMCB306 plasmid. Loss of GFP denotes Cas9 activity (Methods).  
(c) Western blot of beta-2-microglobulin (B2M) from whole cell lysates of WT, 
Cas9, and B2MKO TYK-nu. GAPDH measured as a loading control. (d) B2M  
surface expression by flow cytometry in B2Mwt and B2MKO Cas9 TYK-nu cells.  
(e) 24-to-72-hour time course cell viability in co-cultures of TYK-nuCas9 and NK-
92 cells at variable effector to target cell ratios. Percent killing was calculated 
by normalizing to monoculture conditions. Co-cultures were performed in 4 

replicates per condition as shown. (f ) 48-hour cell viability of B2MKO and B2MWT 
TYK-nu cell lines in co-culture with NK-92 cells. Percent killing was calculated 
by normalizing to the respective monoculture conditions. Data shown in (a) 
and (c) are one representative experiment repeated two or more times with 
similar results. In (e) and (f ), co-culture data is represented by mean ± s.e.m. for 
(e) and mean ± standard deviation for (f) with each experiment performed in 
n = 4 technical replicates; p-values **** represent p < 1 × 10−4 and *p < 0.05 (two-way 
analysis of variance (ANOVA) with multiple comparisons); ‘ns’ shown denote 
non-significant (p > 0.05) comparisons. Exact p-values and raw blot images are 
provided with the Source Data. All statistical tests were conducted on GraphPad 
Prism version 10.2.3.
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Extended Data Fig. 9 | Perturb-seq screen in ovarian cancer identifies 
immune response regulators. (a) Number of cells detected with sgRNAs 
targeting each gene in the CRISPR knockout (KO) library. (b) Gene expression 
of MTIL-up genes under different gene KOs. (c) Gene KOs mimic (top and second 
tows) and repress (third and bottom rows) transcriptional response to NK cells: 

Expression of KO gene signatures (ACTR8, MED12, IRF1, and STAT1) across ovarian 
cancer cells (n = 18,585 cells in each row) stratified based on culture condition 
and gene KO combination. Boxplots middle line: median; box edges: 25th and 75th 
percentiles; whiskers: most extreme points that do not exceed ± IQR x 1.5; minima 
and maxima are depicted by extreme ends of whiskers.
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Extended Data Fig. 10 | Validation of PTPN1 KO and ACTR8 KO in ovarian 
cancer cells. (a-b) Discordance of base pairs corresponding to KO target genes 
(a) PTPN1 and (b) ACTR8 generated from Sanger sequencing using Synthego 
ICE Analysis tool (v3). Non-targeting control (NTC) depicted in grey. Alignment 

window for sequences depicted with dashed black bar; interference window for 
sequences depicted with solid black bar; start of guide sequence is depicted as a 
grey dotted line.
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