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Metasurface-enabled broadband
multidimensional photodetectors

Hao Jiang1,8, Yinzhu Chen2,3,8, Wenyu Guo1,4,5,6, Yan Zhang1, Rigui Zhou4,5,
Mile Gu1,6, Fan Zhong 3, Zhenhua Ni 3, Junpeng Lu 3 ,
Cheng-Wei Qiu 2 & Weibo Gao 1,6,7

Light encodes multidimensional information, such as intensity, polarization,
and spectrum. Traditional extraction of this light information requires discrete
optical components by subdividing the detection area intomany “one-to-one”
functional pixels. The broadband photodetection of high-dimensional optical
informationwith a single integratedon-chipdetector is highly sought after, yet
it poses significant challenges. In this study, we employ ametasurface-assisted
graphene photodetector, enabling to simultaneously detect and differentiate
various polarization states and wavelengths of broadband light (1-8 μm) at the
wavelength prediction accuracy of 0.5 μm. The bipolar polarizability
empowered by this design allows to decouple multidimensional information
(encompassing polarization and wavelength), which can be achieved by
encoding vectorial photocurrents with varying polarities and amplitudes.
Furthermore, cooperative multiport metasurfaces are adopted and boosted
by machine learning techniques. It enables precise spin-wavelength differ-
entiation over an extremely broad wavelength range (1-8 μm). Our innovation
offers a recipe for highly compact and high-dimensional spectral-polarization
co-detection.

Extracting multidimensional information from light is crucial for
achieving holistic understanding, multilayer perceptron and
maneuverability of optical information, such as in optical sensing,
optical communication and optical computing1–5. However,
detecting information other than light intensity typically requires
the collaborative action of massive optical components6–8. On-
chip integrated optoelectronic detection technology has the
capability to unleash its spatial degrees of freedom, thereby
offering possibilities for the design of the next generation of
miniaturized optoelectronic chips9–20. However, most current
endeavors are limited to achieving, at most, two-dimensional

parameter detection, such as spectral detection (wavelength and
intensity)21–24 or polarization spectrum detection (polarization
and intensity)2,25,26. Detecting spectra with higher-dimensional
parameters poses even greater challenges.

Recently, twisted bilayer graphene with individual biased gatings
has been successfully employed and demonstrated simultaneous
photodetection of light’s polarization states at two wavelengths (5μm
and 7.7μm)27. More recently, the dispersion-assisted high-dimensional
photodetector is shown to detect full polarization sates and 6 wave-
lengths without resorting to metasurfaces or moire low-dimensional
materials28. However, this method still suffers from spatial resolution
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due to the use of commercial CMOS camera array, and the corre-
sponding spectral bands are also limited by intrinsic dispersion of the
thin film atop of the CMOS camera, and itmay be elusive to extend this
recipe into mid-infrared regimes due to the lack of proper dispersions
as in the visible-light counterpart28. The involvement of commercial
CMOS detectors inevitably requires N-detectors for mapping
N-dimensional input states to the ouput, resulting in sacrifice in spatial
resolution even with the assistance of machine learning algorithms29.

Here, we employ ametasurface-assisted graphene photodetector,
enabling to simultaneously detect and differentiate various polariza-
tion states and wavelengths of broadband light (1–8μm) at the wave-
length prediction accuracy of 0.5μm. The bipolar polarizability
empowered by this design allows to decouple multidimensional
information (encompassing polarization and wavelength), which can
be achieved by encoding vectorial photocurrents with varying pola-
rities and amplitudes. Furthermore, cooperative multiport meta-
surfaces are adopted and boosted by machine learning techniques. It
enables precise spin-wavelength differentiation over an extremely
broad wavelength range (1–8μm). This design only requires a single
measurement of each port of device to detect broadband high-
dimensional optical information, thereby balancing both temporal and
spatial resolutions. This provides a solution for ultra-compact, high-
dimensional spectral detection. Importantly, the design of our core
sensor does not require additional degrees of freedom such as twists,
heterojunctions, or gate control. Instead, it can be achieved by rela-
tively simple and mature metasurface designs combined with gra-
phene films, ensuring reliability in information detection, processing,
and stability.

Results
Approach of intelligent high-dimensional spectral detection
As far, high-dimensional spectral detection is limited to achieving two-
dimensional parameter detection (spectrum-intensity detection or
polarization-intensity detection), as depicted by the sliced sections in
the left subplot of Fig. 1a. In ubiquitous natural scenarios, a lightfield to
be detected may exhibit arbitrarily varying polarizations and inten-
sities across a wide range of wavelengths, as depicted by the curved
surface in Fig. 1a. This essentially necessitates the establishment of a
high-dimensional photodetector capable of fully characterizing the
three-dimensional parametric coordinate space and accurately
describing any light field. Therefore, there is an urgent demand for
sensor designs that can effectively detect and differentiate high-
dimensional information simultaneously.

In our design proposal, we propose to apply machine learning to
process signals collected by sensors with high-dimensional detection
capabilities, aiming to achieve high-dimensional spectral detection, as
depicted in the right subplot of Fig. 1a. The core sensor is designed to
utilize a set of integrated dual-arm plasmonic nanostructures on a
graphene platform to detect light with different polarization states in
two wavelength bands. Light with different wavelengths and polar-
ization states can lead to photovoltage signals with distinct polarities
and amplitudes. The bidirectional and polarizability detection induced
by this design enables the decoupling of multidimensional informa-
tion, encompassing polarization and wavelength. By employing a
photovoltage with positive and negative polarities as new signal
dimensions, we demonstrate significant resolution capabilities in both
wavelength and polarization states. As an extension, the fabrication of
dual-arm plasmonic nanostructures with different designs for three-
port devices enables polarization detection in threewavelength bands,
spanning from the near-infrared to mid-infrared (1.55 µm, 4 µm and
7 µm) regions, as depicted in Fig. 1b.

Furthermore, leveraging machine learning techniques to learn
from and reconstruct the collected three-port photocurrent data.
Multiport cooperative interactions and machine learning techniques
enable precise differentiation of both the wavelength and polarization

information of light over an extremely broad wavelength range.
Finally, when light with unknown wavelength and polarization infor-
mation is incident upon the device, the resulting photocurrent signals
are input into the established photocurrent model for sampling.
Through this process, the wavelength and polarization information of
the incoming light signal can be determined, as demonstrated in
Fig. 1c. We showcase the wavelength prediction accuracy can reach
0.5μm over an ultra-wide wavelength range of 1–8μm.

Nanoantennas for multidimensional information detection
Here, the core design principle of multidimensional spectral detection
lies in the realization of a sensor with the capability to resolve both
wavelength and polarization information. Typically, we take the
example of circularly polarized light with complex polarization infor-
mation, and endeavor to implement detection of both wavelength and
spin information using graphene-based metasurface. A schematic of
the designedmetasurface-mediated photodetector is shown in Fig. 2a.
Themetasurface consists of dual-armplasmastructures asmeta-atoms
on top of graphene flakes. The device morphology characterization is
shown in Supplementary Fig. 1 and Supplementary Fig. 2 of Supple-
mentary Note 1. Two different wavelengths (λ1 and λ2) of light pass
through a quarter-wave plate (QWP), transform into CPL with distinct
chirality, and then illuminate the device. Therefore, four types of
combined signals with different wavelengths and circular polarization
information can be obtained: λ1 LCP, λ1 RCP, λ2 LCP, and λ2 RCP. The
design principle of our proposed plasmonic nanostructures is illu-
strated on the right side of Fig. 2a. The length of the dual arms
determines the resonance wavelengths at λ1 and λ2. Four types of light
will interact with the four-sided resonances of a dual-arm nanos-
tructure, giving rise to four distinct asymmetric resonancemodes30–33.
The simulated near-field distribution of the structure and its photo-
current density distribution are depicted in Fig. 2b. Due to the gapless
properties of graphene, we consider the photocurrents to originate
from the local heating of light and subsequent heat flow via non-
uniformities in the Seebeck coefficient, S, with the direction and
amplitude determined by the gradient of S, that is, Iph / jE2j � ∇!S,
where E is the amplitude of light in the local area34–38. Therefore, light
with different wavelengths and circular polarization states will gen-
erate vector photocurrents of varying magnitudes and directions. The
local optical response fromnanoantennas can effectively contribute to
external circuits in a nonlocal manner, thereby achieving a cascaded
total photocurrent with distinctions in polarity and magnitude. The
near-field mode and photocurrent analysis of the dual-arm nanos-
tructure are explained in Supplementary Figs. 3–11 of Supplemen-
tary Note 2.

For the size of our designed nanoantennas, during simulation, we
discovered that varying the length of the central axis of thedouble-arm
nanoantenna can make the device sensitive to linearly polarized light
as well. We can write the general expression for a polarization-
dependent photoresponse: Vph =R0 · S0 +R1 · S1 +R2 · S2 + R3 · S3, with
the R0,1,2,3 as the respective responsivities to the four Stoke para-
meters, S0,1,2,3. Note that S0, S1, S2, and S3 represent the intensity of
light, two linearly polarized components, and the circularly polarized
light component, respectively. In the design of our nanoantennas, we
can adjust the structural dimension L to alter the ratio of linearly
polarized (S1 and S2) and circularly polarized (S3) components, as
illustrated in Fig. 2c. Specifically, we canmeasure all polarization states
of light by adjusting the dimensions of the device, as shown in Sup-
plementary Figs. 12–14 of Supplementary Note 3.

In actual testing, we chose to systematically explore the device
which is sensitive only to the circular polarization component (S3), as
indicated by the dashed box in Fig. 2c. The collected photovoltage
patterns that are highly consistent with the simulation, as shown in
Supplementary Fig. 8. of Supplementary Note 2. Figure 2d shows the
experimentally measured QWP angle-dependent photovoltages at
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wavelengths of 1.55μm and 4μm. Through fitting, it can be observed
that the photocurrent varies with the QWP angle following a standard
sine function relationship. This indicates that it effectively mitigates
the impact of linear polarization components to a large extent,
demonstrating excellent circular polarization sensitivity for detection.
Furthermore, the functions for the two wavelengths exhibit opposite

phases, enabling effective detection and discrimination from both the
wavelength and circular polarization state perspectives. To gain a
clearer understanding of the mechanisms and patterns of photo-
current generation, we conducted a 1.55 μm photocurrent mapping
test on the device, as demonstrated in Supplementary Figs. 15–17 of
Supplementary Note 439–41.
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Fig. 1 | Overall approach of intelligent high-dimensional spectral detection.
a The current photodetection methods can, at most, capture two-dimensional
optical information within a three-dimensional parameter space encompassing
intensity, polarization (stokes parameters S0,1,2,3), and wavelength. Specifically,
they are capable of measuring either the intensity and polarization at a fixed
wavelength (polarimeter, depicted as a light yellow plane), or the intensity and
wavelength at a fixed polarization state (spectrometer, illustrated as a light blue
plane). Simultaneously detecting all three dimensions of parameters poses a
significant challenge (spatially colorful slices). In our design proposal, the
implementation of multidimensional spectral detection requires the integration
of deep learning techniques with sensors capable of simultaneously detecting
and distinguishing polarization and wavelength information. b A schematic dia-
gram demonstrating a method for simultaneously sensing and processing both
polarization and wavelength information of light. Graphene devices modified

with nanoantennas exhibit varying photocurrent responses to light of two dif-
ferent wavelengths and polarizations, manifesting distinct amplitudes and pola-
rities. This capability enables the differentiation of multidimensional information
combinations. The three devices exhibiting responses to different wavelengths
can be integrated into a three-port device. Through pairwise information map-
ping, this device can identify more combinations of wavelengths and polariza-
tions. Polarization information (P1,2,3) is deciphered from themeasured ellipticity,
while wavelength information (λ1,2,3) is determined by the varying sizes of the
nanoantennas. c Conceptual diagram of machine learning for the acquisition and
identification of optical wavelength and polarization information using a three-
port system. By training on the trends of photocurrents and utilizing neural
networks, the recognition of polarization information for any wavelength of light
can be achieved.

Article https://doi.org/10.1038/s41467-024-52632-8

Nature Communications |         (2024) 15:8347 3

www.nature.com/naturecommunications


Based on the measured photoelectric signal, it is evident that the
device exhibits photocurrent signals with different amplitudes and
polarities for two different wavelengths (1.55μm and 4μm) and cir-
cular polarization states (LCP and RCP). In addition to demonstrating
excellent detection capabilities for dual-wavelength circularly polar-
ized light, this also a potential platform for applications in the fields of
high-capacity photonics that can carry diverse information42–47. Here,
optical information can offer multiple degrees of freedom by com-
bining wavelength and chirality dimensions, and it can be encoded
using easily distinguishable photocurrent amplitudes and polarities
for the purpose of transcribing and decoding in optical communica-
tion. Figure 3a shows a schematic diagram of the photovoltage signal
collection. Photovoltages were measured by a lock-in amplifier under
illumination with LCP and RCP light, which was modulated by an
optical chopper at 500Hz.

Under the single-light incident mode, which means that only a
beam carrying specific wavelength and polarization information is
incident on the device, the corresponding photocurrent signal is
obtained. Whenwe encode it as “0”, “−1”, “1”, “−2”, or “2” according to
the amplitude and polarity of the photovoltages, the wavelength and
polarization information of the input light can be easily identified
through the obtained output signals, as shown in Fig. 3b. The
experimentally measured photovoltage signals corresponding to
different encodings are shown in Fig. 3c. Different wavelengths and
circular polarization information correspond to photovoltages with
distinct amplitudes and polarities. Notably, the photovoltage
amplitude at the 4 μm wavelength is approximately twice that at the

1.55μm wavelength. Therefore, the photovoltage signals corre-
sponding to the four different encodings are easily recognizable and
distinguishable.

In addition to the single-light incidentmode, this device can also
be used for encoding and distinguishing in dual-light incident mode,
where any two beams carrying wavelength and polarization infor-
mation can be incident on the device. Encoding the interweaving of
two different multidimensional information types by photovoltages
is not overly complex. When the wavelength information is different
but the circular polarization information is consistent, the photo-
voltage polarities are opposite, leading to subtraction of the photo-
current in dual-light coupling, resulting in a weaker signal, which can
be encoded as “−1” and “1”. When both the wavelength and circular
polarization information are different, the photovoltage polarities
are the same, causing an accumulation of photocurrent in dual-light
coupling, resulting in a larger photocurrent signal, which can be
encoded as “−2” and “2”. When different circular polarization states
of the same wavelength are coupled, the photovoltages cancel out,
yielding a value of “0”, as displayed in Fig. 3d. The experimentally
measured photovoltage corresponding to the encoding in dual-light
incident mode is depicted in Fig. 3e, demonstrating stable optical
computing capabilities.

Design of the three-port device
The successful detection of dual-wavelength circularly polarized
light by the double-armed structure indicates that by adjusting the
sizes of the double arms, it is possible to achieve circular polarization
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detection, where changing the arm length L allows realize the adjustment of the
proportion of circularly polarized light components and linearly polarized light
components. The orange dashed box represents the size most sensitive to the
circular offset component (S3). d Experimentally measured QWP (quarter-wave
plate) angle-dependent photovoltages under normally incident illumination at
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detection for any two wavelengths. Furthermore, dual-wavelength
circular polarization detection offers four information channels for
optical communication, considering the two dimensions of wave-
length and polarization states (2 wavelengths × 2 polarization
states = 4 optical channels). These four types of information can be
precisely distinguished based on the two-dimensional photocurrent
mapping composed of the magnitude and polarity of the photo-
current collected by a single device, as illustrated in the left subplot
of Fig. 4a. If we boldly expand the device ports of nanoantennas with
different sizes as the third dimension of the two-dimensional pho-
tocurrent mapping, we can obtain a spatial photocurrent mapping
model as depicted in the right subplot of Fig. 4a. This allows us to
precisely distinguish more wavelengths and their polarization
information.

Therefore, by adjusting the structural parameters, we designed a
three-port device, as shown in Fig. 4b, for the purpose of three-
wavelength circular polarization detection. Such a three-port layout is
also beneficial for ensuring that the circular light spot can cover all the
devices, making full use of the available space. Among them, we used
plasmonic nanostructure arrays for circular polarization detection at
1.55μm and 4μm, 1.55μm and 7μm, and 4μm and 7μm as three dif-
ferent ports, named “1.55-4,” “1.55-7,” and “4-7”, respectively. By indi-
vidually applying circularly polarized light of the corresponding
wavelengths to each of the three ports, we measured the relationship
between the photocurrent and theQWP angle, as shown in Fig. 4c. The
photovoltages obtained at each port exhibit a perfect sinusoidal rela-
tionship with the QWP angle, demonstrating excellent dual-
wavelength circular polarization detection capabilities for each port.

Importantly, each port is sensitive only to the two specific wave-
length bands designed for it and does not respond to the third wave-
length band. Consequently, there is no interference between the ports.
This can be verified by conducting 1.55μm photocurrent scanning
mapping on a three-port device, as shown in Fig. 4d. It can be observed
from the photocurrent scanning maps for the 1.55-4 and 1.55-7 ports
that LCP and RCP light induce photocurrent distributions with com-
pletely opposite polarities. However, for ports 4-7, there is no differ-
ence in the photocurrent distribution between LCP and RCP
illumination, and the net photocurrent within the channel is close to
zero. The stable switch photovoltage signals of the corresponding
ports under LCP and RCP light at 1.55μm, 4μm, and 7μmare shown in
Supplementary Fig. 10 of Supplementary Note 2. Each device can
ensure long-term operational stability while achieving low noise and
fast response speed to ensure signal stability (see Supplementary
Figs. 18–21, and Supplementary Tables 1 and 2 in Supplementary
Note 5). Even though the responsivity of device does not show sig-
nificant advantages compared to typical and commercial zero-bias
infrared detectors (see Supplementary Table 3), we can attempt to
apply gate voltage andmodify the device layout to further enhance its
responsivity (see Supplementary Figs. 22 and 23 of Supplementary
Note 5). Three-port devices will have more encoding modes and data
capacity. When a beam of light carrying both wavelength and spin
information is incident on the device, the incident light spot will cover
the entire region of the three-port device. Three sets of photoelectric
voltage signals from a three-port device are collected by three testing
channels. These signals are encoded as “0,” “±1,” and “±2” based on
their polarity and amplitude. Therefore, the combination of output
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a Schematic diagram of the optical information encoding device. Under uniform
illumination at 1.55 µmand 4 µmwavelengths with LCP and RCP, photovoltages are
measured at zero external bias (Vd = Vg=0V). b Optical information encoding in
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colored backgrounds represent the photoelectric switch signals corresponding to
different output signals. d Optical information encoding in dual light incidence
mode. The input signals consist of any two beams of light, each carrying circular
polarization and wavelength information. Based on the polarity and amplitude of
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“2”. e Corresponding encoded photovoltage output signal in dual light inci-
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signals from the three optical channels allows for the unique deter-
mination of the wavelength and spin information of the incident light,
as displayed in Fig. 4e. Similarly, in multilight incidence mode, the
wavelength andpolarization information of light canbedeterminedby
encoding and distinguishing the amplitude and polarity of the col-
lectedphotovoltage signals (Fig. 4f). Additionally, each portdevice can
operate in multiple light incidence modes, leading to signal

superposition and cancellation, which provides the potential for
implementing optoelectronic logic gates (Supplementary Fig. 24 of
Supplementary Note 5).

Machine learning mechanisms for three-port devices
Applying machine learning to the processing of three-port informa-
tion can help us establish intelligent high-dimensional detectors with
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dependent photovoltages of three ports under incident illumination at 1.55μm,
4μm and 7μm wavelengths. d Photocurrent scanning mapping for three ports

under illumination of 1.55μm in LCP and RCP light. The photocurrent scanning
maps at ports 1.55-4 and 1.55-7 exhibit opposite current distributions for 1.55 μm
LCP and RCP, whereas there is no distinction at ports 4-7. The black scale bar
represents 20μm. The orange dashed box represents the shape of the electrode.
e Photovoltage encoding generated by the incidence of circularly polarized light
with three different wavelengths. The combination of output signals from each
channel allows for the identification of the wavelength and polarization informa-
tion of the incident light. f Schematic representation of the extraction of three-
wavelength circularly polarized signals. In the case of mixed light incidence, the
processing of photovoltage signal encoding allows for the extraction of the
wavelength and circular polarization information of the incident light.
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discernment and predictive capabilities48–50. With an exceptionally
high level of conformity between experimental testing and simulated
trends, we endeavor to use simulated data as an example to predict
the photoelectric current trends of a three-port device under ultra-
broadband (1–8 μm) circularly polarized light through machine
learning. This endeavor aims to achieve the extraction of spin
information from arbitrary spectral bands under ultrabroadband
conditions. Figure 5a–c shows the simulated photocurrent trends of
the “1.55-4,” “1.55-7,” and “4-7” three-port devices, respectively, in
response to circularly polarized light with wavelengths ranging from
1 to 8 μm.

We applied multilayer perceptron (MLP) to predict the wave-
length and polarization state of the corresponding photocurrent here.
We employ supervised learning techniques to train an MLP neural
network consisting of fully connected neuronswith a nonlinear kind of
activation functionorganized inmultiple layers to distinguishdata that
are obviously not linearly separable in our dataset. The architecture of

the neural network is formalized as follows51:

N: I1, I2, I3
� �

i, S, λð Þi
n o

!yields Ŝ, λ̂
� �

i

n o
ð1Þ

Here, Ii represents the photocurrent values detected from the
three-port device under ultrabroadband, where I1,I2,I3

� �
i denotes the

ith group of photocurrent values in our dataset. The term S is the spin
label associated with the photocurrent, which provides information
about the left circular polarization (LCP) or right circular polarization
(RCP) of the device. λ pertains to the wavelength associated with the
photocurrent, S,λð Þi is the label for the ith photocurrent, and Ŝ,λ̂

� �

i
is

the prediction outcome of the network.
The neural network designed for the prediction of spin informa-

tion and wavelength is a multi-input multi-output (MIMO) model with
multiple layers of neurons (Fig. 5d), where neurons in the Lth layer only
accept the output from the ðL� 1Þth layer and only project to the
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Fig. 5 | Implementation of intelligent spin spectrum detectors based on
machine learning mechanisms for three-port devices. a–c Predicted photo-
current of a three-port device under different wavelengths for LCP and RCP inci-
dent light based on a simulation model that closely fits the experimental data. d A
potential neural network structure diagram for training, testing, and predicting
spin information andwavelength. Themultilayer perceptronneural networkmodel
typically consists of an input layer, an output layer, and several hidden layers. Each
hidden layer includes a fully connected layer and some layers designed to optimize
the model, such as dropout layers and batch-normalization layers. In real model
training and prediction, we use the ReLU activation function in the hidden layers.
For the output layer, we have adopted the Sigmoid and Softmax functions as
appropriate activation functions to better adapt to the network’s training and

prediction purposes. e A confusion matrix generated based on the neural network
model’s predictions of wavelength (left subplot) and spin (right subplot) infor-
mation on the test set, which comes from the simulation dataset. The numbers on
the diagonal represent the count of accurately identified samples, while the num-
bers off the diagonal indicate the count of incorrectly predicted samples. f The
prediction results of a setof real laboratorydata onour constructedneural network
model. The solid spheres represent experimental data, and the line segment
intervals represent the prediction intervals of the model. g The confusion matrix
drawn based on the prediction results of this set of real laboratory data. For the
eight collected samples, our neural network model can accurately predict wave-
length (left subplot) and spin information (right subplot).
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ðL+ 1Þth layer.

r1 = I, I 2 Rn×d

rL = f WLrL�1 +bL
� �

, 1 < L<N

yi = giðWNrN�1 +bNÞ
ð2Þ

Here, I is the input stored in the shape of an Rn ×d matrix from a
specific dataset collected by a photodetector, rL denotes the neural
activity in the Lth layer, andWL is the connection matrix from ðL� 1Þth
to the Lth layer. f �ð Þ,g �ð Þ are (usually nonlinear) activation functions of
themodel. The output of the network is read through connectionsWN .
Parameters bL and bN are the biases for the hidden layers and output
units, respectively. We utilize the Sigmoid function as an activation
function to classify the polarization information of the input photo-
current values while using SoftMax as the activation function for
wavelength prediction.

In our study, we methodologically reformulated wavelength pre-
diction as a category task, which permits our model to estimate the
corresponding wavelength for any given input with an error margin
that is maintained below the 0.5 μm threshold (Supplementary
Figs. 25 and 26 of Supplementary Note 6). We elaborately design a
combination cost function for multiple output tasks as follows:

Cost =α1 k S� Ŝk2 +α2 k λ� λ̂k2 +βkWk22 ð3Þ

whereα1,α2 areweighting factors thatbalance the contributionof each
loss component to the total cost, βkWk22 is the L2 regularization
equation and β is the regularization factor. To enhance network opti-
mization, several traditional optimization algorithms, such as the
Adam optimization algorithm, which is celebrated for its adaptive
learning rate features, were chosen to improve the model’s perfor-
mance. Upon completion of the training phase, a neural network
model is acquired that is capable of predicting the polarization state
and wavelength for a set of valid photocurrent values52. As shown in
Supplementary Table 4 of Supplementary Note 6, our machine learn-
ing model achieved satisfactory results for the prediction of spin and
wavelength based on the simulated database. The prediction of the
wavelength for the input photocurrent set is shown in Fig. 5e, and the
diagonal entries of the confusion matrix represent the number of
accurate predictions. The detailed information of the model workflow
is shown as Supplementary Fig. 27 of Supplementary Note 6.

Ideally, when we test our device with circularly polarized light of
arbitrary wavelengths (1.55μm, 2.7μm, 4μm and 7μm), the predicted
results from the model closely match the actual values, as shown in
Fig. 5f, g. This validates the feasibility of our approach.

Discussion
We have demonstrated a high-dimensional spin spectrometer capable
of deciphering complex spectral information of arbitrary spin light
across an ultra-wide band. While the demonstration was conducted
under circular polarization, the geometric design of the metasurface
has been proven to simultaneously detect linearly and circularly
polarized light. Essentially, we can detect information from any
polarization state. It is worth noting that our approach offers advan-
tages compared to natural materials. With the assistance of machine
learning, utilizing the dispersion and anisotropy of natural materials
enable the generation of necessary training data points for light under
various incident conditions during the training process. However, the
distinguishability of natural materials has boundaries, leading to cer-
tain functional limitations. Here, our metasurface design can over-
come this inherent issue in natural materials, possessing adjustable
and sufficiently significant discriminative capability. Additionally, our
device fabrication process is simple and well-established, offering
better controllability and reproducibility compared to heterojunction

and twist systems. Therefore, applying machine learning to our
metasurface design scheme exhibits robust learning and precise dis-
crimination capabilities, enabling us to achieve high-dimensional
spectral detection using conventional methods without the need for
complex material systems or cumbersome processing techniques. A
detailed comparison with existing work can be found in Supplemen-
tary Table 5.

Based on the exploration presented in this work, there are still
some problems that need further investigation to resolve. For exam-
ple, regarding responsivity, performance can be further enhanced by
applying gate voltage, improving material quality, and optimizing
device layout. Additionally, to further enhance integration, single-unit
devices can be expanded into array pixel devices, enabling multi-
channel signal output and further reducing time resolution.

Methods
Device fabrication
The graphene sample preparation involved mechanically exfoliating
graphene onto a silicon substrate with a 285 nm thick layer of silicon
dioxide (heavily p-doped silicon wafer). Suitable graphene flakes were
then selected under anopticalmicroscope, and their coordinates were
recorded. The graphene flakes are marked using electron beam litho-
graphy (EBL) to create correspondingmarkers on the silicon substrate.
(EBL, JBX-6300FS, Jeol; PMMA, A5; spin-coating speed of 4000 rpm;
development with MIBK: IPA = 1:3 for 30 s, followed by IPA rinsing for
30 s.) The markers are metalized using AJA Ebeam Evaporator
deposition of 5 nm Ti and 50 nmAu, followed by a lift-off process with
acetone at 65 °C for 2 h and an IPA rinse for 10min. Graphene pat-
terning is achieved by spin-coating the sample with PMMA following
the parameters from step one, using EBL to define the areas for gra-
phene etching, developing the pattern, plasma etching the exposed
graphene (O2 gas 20 sccm, power 20W, duration 30 s), removing the
PMMA with acetone, and then rinsing the acetone with IPA. Nanos-
tructures and electrodes are fabricated using EBL to define the pat-
terns, followed by thermal deposition of 5 nmPd and 60nm Au and a
lift-off process.

Characterization methods
We utilized quantum cascade lasers with wavelengths of 4μm and
6–8μm as excitation sources and directed the light onto the device
base using a mirror and an off-axis parabolic mirror, which then
transmitted the light onto the device. We used quarter-wave plates
with wavelengths of 4μm and 7μm to modulate circularly polarized
light. The device’s source and drain contacts were connected to a lock-
in amplifier, which was also connected to a chopper placed at the laser
output to ensure the output of the light signal, and the lock-in amplifier
signal output was controlled using a program written in Labview.

For the 1550nm photocurrent scanning mapping setup, the
1550nm laser is directed by a single-mode fiber to the homemade
setup. The light passes through a lens, a polarizer, and a quarter-wave
plate. The laser beam is focused by an objective into a submicrometer
diameter on the sample surface. For the electrical measurement setup,
the longitudinal voltage and gate voltage are applied using a Keithley
2604B source meter. An FS Pro Integrated Semiconductor Parameter
Testing System (Noise Analyzer) is used to measure the photocurrent,
noise, and resistance of devices.

Simulation
The optical responses of dual-armplasmananostructures on graphene
were simulated with a single unit and applying periodic boundary
conditions using the finite-difference time-domain method (FDTD
Solutions package, Lumerical). The light source was a plane wave with
normal incidence from the air. The boundaries above and below the
array of the diamond flower structure were perfectly matched layers.
The mesh spacings were less than 10 nm in all dimensions. From
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bottom to top, the simulated structure consists of a silicon substrate,
SiO2 (300nm thickness), a goldmetasurface (20 nm thickness) and air.
The photocurrent is calculated based on the hydrodynamic photo-
current model in Matlab using the near-field distribution extracted
by FDTD.

Data availability
All the technical details for producing the figures are provided in the
supplementary information. The data are available from the corre-
sponding authors C.-W.Q. or W.B.G. upon request.

Code availability
All the technical details for implementing the simulation are provided
in the Supplementary Information. The code for this study is available
in GitHub (https://doi.org/10.5281/zenodo.13762816).
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