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Wastewater is a geospatially- and temporally-linked microbial fingerprint of a
given population, making it a potentially valuable tool for tracking public
health across locales and time. Here, we integrate targeted and bulk RNA
sequencing (N = 2238 samples) to track the viral, bacterial, and functional
content over geospatially distinct areas within Miami Dade County, USA, from
2020-2022.Weused targeted amplicon sequencing to track diverse SARS-CoV-
2 variants across space and time, and we found a tight correspondence with
positive PCR tests from University students and Miami-Dade hospital patients.
Additionally, in bulk metatranscriptomic data, we demonstrate that the bac-
terial content of different wastewater sampling locations serving small popu-
lation sizes can be used to detect putative, host-derived microorganisms that
themselves have known associations with human health and diet. We also
detect multiple enteric pathogens (e.g., Norovirus) and characterize viral
diversity across sites. Moreover, we observed an enrichment of antimicrobial
resistance genes (ARGs) in hospital wastewater; antibiotic-specific ARGs cor-
related to total prescriptions of those same antibiotics (e.g Ampicillin, Genta-
micin). Overall, this effort lays the groundwork for systematic characterization
of wastewater that can potentially influence public health decision-making.

Wastewater is a wellspring for geospatially delineated, epidemiologi-
cally relevant public health data.One sample contains a cross-sectional
collection of human pathogens, commensals, animal/plant detritus,
biomolecules, and environmental features (e.g., pollutants) deriving
from a specific locale1. Depending on the sampling location, it repre-
sents small populations, like the residents of one building or entire

cities2. As a result, wastewater is a potential source for continuous,
precise monitoring of public health and potential pathogens for
communities3. Applications of wastewater-based epidemiological sur-
veillance include tracking community drug abuse, pollutants, and
pathogen load4–6.
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The SARS-CoV-2 pandemic galvanized efforts to develop low-cost
tools for pathogen surveillance. Targeted sequencing of SARS-CoV-2
wastewater gained popularity for its advantages over clinical or indi-
vidual testing-based approaches7. Wastewater surveillance can (1)
predict outbreaks before cases spike8, (2) eliminate individual patient
level data, reducing privacy concerns, (3) capture undersampled
populations that may not be regularly tested9, (4) be more cost-
effective than doing repeated individual tests10, and (5) reduce the
reliance on self-reported data, which has proven a challenge in esti-
mating both global SARS-CoV-2 burden and individual vaccination
status11. Numerousprior studies have explored the useof targetedRNA
sequencing in tracking pathogens, most notably SARS-CoV-2. These
have been executed in numerous areas around the globe, including the
US, Germany, Switzerland, Japan, Hong Kong, India, and Africa12–19.

However, the utility of wastewater surveillance extends beyond
monitoring single pathogens. Many past wastewater studies tracked
environmental pollutants, like heavy metals and fertilizer runoff 20., or
sewage in canals21. Recent efforts have used a combination of targeted
(e.g. Polymerase-Chain-Reaction(PCR)-based) and untargeted (e.g.
shotgun) amplification approaches to characterize multiple pathogen
abundances simultaneously, including clinically relevant enteric
viruses22. These have revealed uncharacterized microbial life in was-
tewater, someofwhichhave the potential to be biomarkers for aspects
of human and societal health, ranging from nutrition (derived from
metabolomics and 16S ribosomal RNA sequencing) to cardiovascular
disease and cancer23,24. More specifically, prior efforts have proved
successful at the detection of and culturing of bacterial pathogens and
antimicrobial organisms in wastewater24–28.

To leverage these advances and explore the potential of micro-
biome sequencing in monitoring public health, we collected and
amplicon-sequenced966 (weekly, on average) samples from34 sites in
Miami-Dade County between 2020 and 2022 (Fig. 1a, Supplementary
Data 1). We performed targeted qPCR and targeted sequencing to
estimate total SARS-CoV-2 and variant proportions. On an additional
set of samples, (N = 1272), we completed bulk RNA sequencing to
ascertain the broader microbial community. We sampled five diverse
location types: primary/secondary schools (median population size of
1003 individuals across nine distinct sites), the University of Miami
Campus wastewater basin (median population size of 1088 individuals
across six distinct sites), dormitories (median population size of 370
individuals across 16 distinct sites), hospitals (median population size
of 340 individuals across five distinct sites), and a regional wastewater
treatment plant (representing a population of over 800,000). We
developed standardized collection and analysis workflows to holi-
stically evaluate the microbial content of wastewater and generate
public-health-relevant guidance (Fig. 1a)7,29–34.

Bioinformatically, the analysis process involved quality control
(i.e., filtering targeted sequencing data for samples with >75% SARS-
CoV-2 genome coverage at >10×) as well as, in the case of bulk data,
processing with multiple algorithmic workflows (i.e., kmer-based
taxonomic classification, alignment-based taxonomy, de novo
assembly-based approaches) and databases to yield multiple taxo-
nomic and functional calls for each sample. The end result is a report
integrating multiple views into the composition of each wastewater
sample during various waves of the COVID-19 pandemic.

Results
Geospatially resolvedwastewater vs. clinical SARS-CoV-2 variant
tracking
We used targeted sequencing to generate high-resolution maps of
SARS-CoV-2 Variant of Concern (VoC) levels across time based on
coverage in wastewater sequencing data (Supplementary Data 1). Our
sequencing and analytic workflow was executed in part to reproduce
other substantial efforts8,14,35 to monitor SARS-CoV-2 VoC levels in
wastewater while also adding the dimension of geospatial and

population size variation in sampling locations. Thesepast efforts have
shown that wastewater VoC abundance correlates with population
VoC abundance in clinical samples and can predict outbreaks15,36. We
hypothesized that different sites provided distinct levels of lead time,
for example, in identifying outbreaks before clinical testing. In total,
we observed across all wastewater samples the rise and fall of the VoCs
that dominated the pandemic up to the Omicron BA5 strain. Waste-
water VoC abundance was positively correlated with VOCs (Patient vs.
Wastewater: rho =0.53, p <0.001, Student vs. Wastewater: rho =0.61,
p <0.001) in 5442 sequenced or otherwise characterized samples from
University of Miami (UM) students (N = 1503) and the UM UHealth
hospital patients (N = 3939 patients) (Fig. 1b, c).

The initial observation of different VoCs in wastewater was coin-
cident with their initial identification in these other samples, especially
data later in the pandemic as dominant variants becamemore defined.
We additionally observed that the monthly proportion of VoCs in
wastewater varied over time (Fig. 1b, c), especially compared to the
proportion of VoCs detected in the clinical and student settings
(Fig. 1b); in other words, wastewater VoCs appeared to track the
monthly waves the pandemic more effectively that individual testing.
Variant detection in wastewater preceded either (or both) student/
patient detection for 5/8 VoCs identified in 2021 and 2022 (Supple-
mentaryData 1). On average, VoCs inwastewaterwere identifiedwithin
1.8 days of their identification in either student or patient samples.
Notably, the delta variant was detected eight days in wastewater prior
to its detection in student samples.

Not only did the wastewater data provide an antecedent view of
circulating strains in patients, the data also gave a more complete
picture of all variants circulating inMiami-Dade County than either the
student or patient data alone, especially since these approaches relied
on random sampling-based with single individuals being tested
(Fig. 1c). For example, the Mu variant was identified in the wastewater
and patient data (at high coverage for the clade-specific variants), but
not in the student data, further indicating the propensity for individual
testing to overlook potential circulating VoCs.

In addition, the continual sampling of different wastewater sites
enabled us to observe spatial variation in variant detection within the
different sites we collected wastewater (Fig. 1d). For example, the Eta
variant was present in March/April 2021 in the UM Campus Basin,
whereas Lambda was more detectable in wastewater treatment plants
and UM dormitory sites. Mu was observed in hospital wastewater but
in no other wastewater collection site. In this sense, geospatially
resolved, continual targeted monitoring provided transmission
information for alternative variants from potentially survey-under-
sampled, non-hospital-associated communities for alternative variant
transmission.

As expected, wastewater-based VoC surveillance enabled tracking
of the mutational-level transitions between dominant strains across
time (Fig. 2). We were able to observe transitions in both unique and
recurrent mutations between VoCs. This high-resolution phylogenetic
tracking enabled monitoring of the rise and fall of competing variants
across space. We attained clear tracking of the variant mutational
landscape despite using only weekly sampling.

Wastewater contains human gut microbial taxa that have
reported associations with nutrition and host health
While the ability of targeted sequencing to track specific, low-
abundance pathogen load in wastewater has been demonstrated, the
potential utility of bulk RNA sequencing for monitoring public health
has been explored in only a few instances, predominantly for esti-
mating virome composition37. We hypothesized, however, that the
bacterial gene expression of wastewater could provide signals corre-
lated to either environmental health (e.g., correlation to contaminant
abundance) and/or bioindicators for human community health. To
provide an initial basis of evidence for this hypothesis, we searched for
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Fig. 1 | Overview of approach and targeted sequencing of SARS-CoV-2.
a Sampleswere taken at (on average)weekly intervals between 2020and2022 from
34 sites within Miami-Dade County. Samples were sequenced with targeted ARTIC
sequencing to measure SARS-CoV-2 abundance and bulk RNA sequencing to
ascertain the broader microbial community. A variety of algorithms and analytic
approaches were employed to identify and compare the taxonomic and functional
profiles of each site across time and space, with the end result being a system-
atically characterized dataset with comparisons to clinical data to provide infor-
mation relevant topublic health surveillance showing the evolution of variants over
space and time. b The monthly VoC proportions across datasets. Point color

corresponds to themonth. X-axis is the proportion of samples annotated as a given
VoC for patient or student samples (derived from individual tests). Y-axis is the
average variant abundance in targeted wastewater sequencing. c An additional,
density-plot-based, view of all variants in wastewater vs patient/student cohorts
over time. Colors correspond to different variants as defined in the legend between
(c) and (d); this legend is relevant to both panels. d The variation in wastewater
VoCs across time in different sampling sites. Source data are provided as a Source
Data file. a created with BioRender.com released under a CC-BY-NC-ND 4.0 Inter-
national license.
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microbial signals– both pathogenic and commensal– in different sites
that were derived clearly from taxa known to be associated with var-
iation in human nutrition or gut health.

We collected 1272 bulk RNA sequencing samples. After read
quality control, thesedata comprised 14.7 billion readpairs at amedian
per sample sequencing depth of 11,802,903 reads. This included con-
trol samples, which we used to bioinformatically filter potential pro-
cessing and sequencing contaminants (see “Methods” section). We
report the taxa removed by this contaminant filtering process in
Supplementary Data 2. We compared multiple taxonomic annotation
approaches and found complementary results in the profiles they
produced (Supplementary Fig. 1). We recorded metadata on all sam-
ples and assemblies, and computed mapping summary statistics
(Supplementary Data 3). With Kraken2, only a small percentage
(median = 3.71%; first percentile = 1.80%, 99th percentile = 16.25%) of
our reads went unclassified at the Domain level. While concordant in
terms of genera identified, however, the three taxonomic classifiers we
implemented identified different numbers of species, with Kraken2
capturing the most, followed by Xtree, followed byMetaPhlan4. While
this could derive from variation in database size and/or sensitivity, we
hypothesize the substantially fewer taxa identified by MetaPhlAn4
could arise from its classification strategy stemming from marker
genes instead of whole-genome based kmer-matching; metatran-
scriptomics will only capture transcriptionally active portions of a
genome, and there is no reason why active genes would be those that
are discriminating in MetaPhlan4’s database. Alternatively, kmer-
based, whole-genome approaches could provide inflated species
estimates due to false positive alignments. Xtree had themost overlap
withboth classifiers, in total, and as such, for the rest of this section,we
report in figures the Xtree classifications that were found additionally
by at least one other taxonomic classifier, unless otherwise stated.

We first observed that, as to be expected, the bacterial content of
wastewater comprised an amalgamation of both host-associated
clades as well as microbes normally found in the natural environ-
ment (Fig. 3a). We detectedmany human gut commensal families (e.g.
Ruminococcaceae, Lachnospiraceae, Akkermansiaceae, Bifidobacter-
iaceae) as well as oral microbiome commensals (e.g., Nanogingivala-
ceae, Fusobacteriaceae). Outside of host-associated organisms, many
different environmental families, including those previously reported
in wastewater (e.g. Rhodocyclaceae, Nitrospiraceae) were also
present38,39. The average abundance of these physiologically diverse
(i.e., spanning both anaerobes and aerobes) taxa varied as one would
expect; clades more abundant in the wastewater treatment plant were
previously found to also be prevalent in activated sludge40, whereas
the human-associated organisms were more abundant in other sites.
Overall, the amalgamof humanandenvironmentalmicrobes increased
our confidence that it could potentially contain a broad spectrum of
biomarkers indicative of different public health-relevant indications.

To better understand the patterns of site-specific bacterial abun-
dance variation observed in Fig. 3a, we next interrogated the seasonal
variation in bacterial microbiome content as a function of sampling
location and population size (Fig. 3b). Measuring within-site variation
(i.e., beta diversity, the dissimilarity between any pair of samples from
a given site), we found that each sampled location had distinct tem-
poral signatures. Specifically, there was an inverse relationship
between population size and average within-site variation. Areas ser-
ving low populations –most notably, dormitories, demonstrated high
variation in wastewater bacterial content between any two samples;
conversely, the wastewater treatment plant samples had low variation
and served a massive population.

We next aimed to identify the source of this site-specific differ-
ence in variation, hypothesizing that it likely arose from high variation
in some of the site-specific families present in Fig. 3a. We computed
overlap in identified bacterial species between each site as well as each
species average abundance and prevalence within a given location

type (dormitories, the entire university campus, primary/secondary
schools, wastewater treatment plants, hospital/medical campus
buildings) (Fig. 3c). A total of 182 species were present in at least one
sample from each of these five location types. These comprised pre-
dominantlymembers of thewastewater-specific and/or environmental
families (Fig. 3a). It was clear, however, that the sample-to-sample
variation in dormitorymicrobiota, as observed in Fig. 3b,wasdriven by
a large number (N = 646) of unique species that were both (1) high
abundance (Fig. 3c, middle) and (2) low (i.e., less than 10%) prevalence
(Fig. 3c, top). The overlaps between other sites were as expected; for
example, the University of Miami locations all shared more taxa with
each other than with the wastewater plant or the primary/secondary
schools.

To compute the microbiome architecture of wastewater41,42, we
completed a Microbial Association Study (MAS) between species
abundance and sampling sites, representative population size, and
various environmental features, like salinity and pH (Supplementary
Fig. 2). We considered a significant association as having a
Benjamini–Yekutieli (BY) p-value below 0.05. Bacterial composition
was associated most strongly with location type and population size,
as expected, and these results were reproduced across taxonomic
classifiers (Supplementary Data 4). We confirmed that the organisms
associated with dormitories and other sites with low populations
tended to be known human gut commensals (Fig. 3d, Supplementary
Data 4) and potentially pathogenic microbes (e.g., Klebsiella
pneumoniae).

Overall, in wastewater samples representing small populations
(<1000 individuals) the bacterial content comprised numerous taxa
typically observed in the gut microbiome that are known to be asso-
ciated with dietary intake For example, F. prausnitzii, R. hominis,
Anaerostipes hadrus, Agathobaculum butyriciproducens, and B. ani-
malis, all found in our wastewater data, have been associated with
healthy plant-based and animal-based food intake43. Similarly, other
organisms found (e.g., Clostridium leptum, Bifidobacterium bifidum,
Eggerthella lenta, Ruthenibacterium lactatiformans, Clostridium
innocuum), have been reported as associated with poor diets43. This
indicates that geospatially variable wastewater may be useful for
tracking population dietary choices in wastewater samples repre-
senting small (<1000 individuals, as in the dormitories in this study)
populations.

Moreover, many of these small-population-associated species are
also potential gut-based indicators of human disease or health status.
For example, F. prausnitzii has been repeatedly and robustly reported
as inversely correlated with multiple diseases, including Colorectal
Cancer, Inflammatory Bowel Disease, and Atherosclerosis42,44–46. Bilo-
phila wadsworthia, also detected in our dataset, is known to be cau-
sative for gastrointestinal discomfort and inflammation47. There were
also some bacterial associations with environmental variables. We
observed other statistically significant, environmental indicators of
wastewater microbiome content (Supplementary Data 4), including
pH (25 positive associations, 17 negative), specific conductivity (15
positive, 0 negative), and dissolved oxygen content (49 positive
associations, 11 negative).

We additionally performed a more targeted search for additional
potential bacterial pathobionts of interest. We used themost sensitive
taxonomic classifier (Kraken2) for this, as it was most likely to pick up
low-abundance organisms; however, it is also prone to false positives,
so any results would need to be validated with further effort.
Regardless, this approach identified numerous potential pathogens
potentially filtered out by Xtree’s coverage thresholds or not identified
by alignment to MetaPhlAn4’s marker gene database (Supplementary
Fig. 3), including Campylobacter jejuni, Enterococcus faecium, Shigella
sonnei, and Bordetella pertussis, all of which are pathogens of interest
to global health organizations, in large part due to their growing
resistance to antibiotics48–50.
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De novo assembly and short-read alignment provide discrete
views of wastewater virome composition
The wastewater virome has been proposed as a potential source for
monitoring viral community pathogen load writ large37. With this in
mind, we next interrogated the degree to which the wastewater
virome in our dataset could be used for both public health sur-
veillance as well as discovering novel viral genomes. Akin to the
bacterial analysis, we implemented multiple methods for viral dis-
covery, using both short-read, kmer-based classification as well as
de novo assembly.

Overall, the virome demonstrated even greater within-site diver-
sity than bacterial clades (Supplementary Fig. 4). Despite this, there
was a similar trend in relative viral diversity between sites; low-
population sites hadhigher numbers of unique viruses.Only 52 species
were detected in every type of sampled location. Viral content had
more associations with environmental variables than bacteria (Sup-
plementary Fig. 5, Supplementary Data 4). Detected viruses from
short-read alignment derived from families that targeted a diverse
array of eukaryotic and prokaryotic hosts and spanned genome com-
positions (ssRNA+, dsRNA, ssRNA-RT, and dsDNA, Fig. 4a), with the

Article https://doi.org/10.1038/s41467-024-52427-x

Nature Communications |         (2024) 15:8386 6

www.nature.com/naturecommunications


most prevalent families across sites being Virgaviridae, Mitoviridae,
Tombusviridae, Betaflexiviridae, and Picornaviridae.

After filtering assembled viral contigs for quality and potential
viral genes, we identified 913,596 putative genomes of varying quality
(903,349 low quality, 5490 medium quality, 4749 high quality, eight
complete, Fig. 4b). Median genome length was 350 nt, 3076 nt,
3730 nt, and 5093 nt for low, medium, high, and complete quality
genomes, respectively. Clustering these contigs at 90% percent iden-
tity resulted in 214,383 non-redundant genomes.

We assigned taxonomy to these contigs and found that they
captured a discrete view of the wastewater virome compared to short-
read alignment (Fig. 4c); de novo assembly overall outperformed
short-read alignment. For example, it captured 46 families and 7 phyla
(Cossaviricota, Duplornaviricota, Negarnaviricota, Nucleocytoviricota,
Peploviricota, Preplasmiviricota, Saleviricota) not detected by align-
ment. Analogously, both approaches yielded different views of viral
genome composition and target host domains: assembly detected
expression of ssDNA viruses, alignment did not. Assembly also cap-
tured greater phage diversity and more dsDNA viruses, whereas
alignment captured more putative eukaryotic-targeting viruses and
RNA viruses.

Wastewater reveals numerous pathogenic viruses and novel
viral clades
Given the assembly’s ability to provide a taxonomically high-resolution
view of wastewater viral communities, we aimed to characterize the
phylogeny of assembled RNA viruses (Fig. 4e) using alignments of
RNA-dependent RNA polymerase sequences, focusing specifically on
the kingdom Orthornavirae. Of the 7058 contigs visualized in Fig. 4e
where RdRp could be detected, 6558 (92.9%) belonged to Lenarvir-
icota. This analysis highlighted the challenge of taxonomically anno-
tated (via HMM conservation) genomes; only 165 Lenarviricota
genomes had family-level annotations and only 568 (8.0%) of all con-
tigs in this phylogeny even order-level genomad taxonomies, most of
them in Picornavirales.

To gain a higher resolution of assembled contigs potentially
relevant to humanhealth,we focused specifically on contigs annotated
as Pisuviricota, a phylum containing numerousmammalian pathogens
(Fig. 4f). To identify potential species-level annotation, we used BLAST
to align assembled contigs against all complete genomes in NCBI
RefSeq at the 90% identity level, a method utilized in related efforts51.
To increase confidence in the results displayed, wefiltered this tree for
contigs above 1000 base pairs. This analysis resulted in the identifi-
cationofmultiple humanpathogens, includingNorovirusGII, Sapovirus
MC10, Mamastrovirus 1 B1347, and aHuman astrovirus. The abundance
of these and/or viral strains was present in the short-read alignment
data as well. We note that their assembled contigs were annotated as
low-quality however their ability to be placed on a reasonable phylo-
geny, have high homology to reference genomes, and were detected
via multiple algorithmic approaches, which indicates that even poor-

quality assembled genomes can feasibly be used for pathogen
detection.

We additionally searched the viral assemblies, Kraken2 align-
ments, and Xtree alignments for viral genomes not represented in
Fig. 4 that were of potential public health interest. For example,
additional human-relevant viruses (i.e., other Norovirus strains, an
8280 base pair putative Aichivirus genome) were also annotated by
alignment to BLAST but were too short or divergent to be included in
thephylogeny (see “Methods” section). Kraken2was also identified, via
short-read alignment.

Antimicrobial resistance genes in wastewater are associated
with hospital antibiotic prescription levels
Having explored targeted RNA sequencing, bacterial metatran-
scriptomics, and viral metatranscriptomics, we next evaluated the
public health benefit of one final microbial data modality: Anti-
microbial Resistance Gene (ARGs). Since ARGs are the functional unit
of microbial resistance, these data could feasibly provide a high-
resolution view into the public health relevance of wastewater
sequencing for ARG tracking.

Specifically, we queried the variation in both markers of patho-
genicity as well as ARG presence in our dataset. We identified
36,378,395 called Open-Reading Frames (ORFs) in the de novo
assemblies. We identified putative ORFs annotated as human health-
relevant pathogen-associated proteins52 as those that varied sig-
nificantly (adjusted p-value < 0.05) across location types as measured
by ANOVA (Supplementary Fig. 6). These included various fimbrial
proteins, virulence factors, and cell surface proteins involved in
infection. We additionally identified other genes associated with
microbial-borne diseasemechanisms, like CagA, which is the causative
gene for Helicobacter pylori-caused gastric cancer53. Wastewater is
hypothesized to be a mode of transmission for H. pylori infection54,55.
We provide, as a genomics resource to the community, our non-
redundant protein catalogs clustered at 90% (7,708,163 clustered
proteins), 70% (5,171,907 clustered proteins), 50% (3,691,505 clustered
proteins), and 30% (3,243,790 clustered proteins) with full annotation
data (see “Data availability” section).

We found numerous ARGs throughout our dataset and hypothe-
sized that low-population size sites with high-antibiotic exposure (e.g.,
hospitals), would have more antimicrobial resistance writ large than,
say, wastewater treatment plants, where ARGs have been previously
identified by other methods predominantly outside of bulk RNA
sequencing (e.g., long-read sequencing, culturing)56–58. Identification in
metatranscriptomics could then identify the activity of these genes as
opposed to solely their abundance. Accordingly, we identified an
enrichment of these genes overall in hospital samples, compared to all
other samples (Fig. 5a). Dormitories had the second-most ARGs,
whereas wastewater treatment plants had the fewest. ARGs were
consistently the highest in hospitals across all timepoints, and we did
not identify any clear seasonality in their monthly variation (Fig. 5b).

Fig. 3 | Wastewater bacterial phylogenetics and diversity. a The average relative
abundance (RA) of all bacterial families represented in the metatranscriptomic
data. Outer rings correspond to mean abundance within a family across the dif-
ferent location types extending from the WWTP wastewater treatment plant
(outermost ring) to SCHOOL primary/secondary school, UC university campus,
DORM dormitory, and HOSP hospital, (innermost ring). The color of the family
name corresponds to its phylum. b The top panel is the beta diversity (Bray Curtis
distance) betweenall sampleswithina given site. Eachpoint in this panel represents
a comparison between two different samples taken from the same location (e.g.,
two random samples from a given hospital). The line underneath the top panel
corresponds to the average beta diversity at each associated site. The dots in the
PopulationSize sub-panel correspond to the approximate population servedby the
site from which samples are being compared between. The colored blocks on the
bottom are vertically aligned with the population size points and the beta diversity

dotplots, and colors correspond to the different sampling location types indicated
in the legend. Boxplots represent themedian (center line), the 25th (lower boundof
thebox), and 75th (upperboundof thebox)percentiles. Thewhiskers extend to the
smallest and largest values within 1.5 times the interquartile range (IQR) from the
lower and upper quartiles, respectively. c The intersections between different
location types, with the bars indicating the intersection size and the black dots
indicating the sites underneath being compared. These bars are vertically aligned
with themiddle and toppanels, which show the relative abundanceandprevalence,
respectively, of all bacterial species represented by each bar. d The log10 RA of
bacteria potentially associated with any location type in our Microbial Association
Study (MAS). Bacteria occurring in at least three samples and with a BY-adjusted p-
value of less than 0.1 are plotted. Orange names indicate gut commensals. Source
data are provided as a Source Data file.
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Fig. 4 | Wastewater viral phylogenetics and diversity through assembly vs.
short-read alignment. a The relative abundance (RA) of top viral families. Heat-
map values are log10(RA) of a given viral family as estimated by short-read align-
ment. Annotation bars on the left-hand side correspond to the International
Committee on Taxonomy of Viruses (ICTV) proposed genome composition, geN-
omad phylum, and ICTV host range for a given geNomad family-level annotation.
Alignments were done to a database of 9 public databases comprising 6 million+
dereplicated, taxonomically annotated, and quality-controlled viral genomes (see
“Methods” section). Columns and rows are hierarchically clustered. HOSP hospital,
DORM dormitory, SCHOOL primary/secondary school, WWTP wastewater treat-
ment plant, UC university campus. b Left side: The number of putative viral contigs
detected by CheckV compared to the number remaining when clustered at 90%

nucleic acid identity. Right side: The number of contigs with andwithout geNomad
taxonomic annotations. cThe overlapbetween taxa identifiedbydenovo assembly
vs. short-read alignment at different ranks. d The different genome compositions
and target host information identified by de novo assembly and short-read align-
ment. e A maximum likelihood phylogeny of RNA viruses present in our de novo
assembled data. Scale bar is indicated on the plot. f A second maximum likelihood
phylogeny of RNA viruses present in de novo assembled data annotated as the
family Pisuviricota. Species-level annotations derive from BLASTing viruses against
the complete RefSeq viral genomes at the 90% identity level. The numbers fol-
lowing the species names indicate the genome length, percent identity to the
named reference species, and the bitscore of the alignment. Source data are pro-
vided as a Source Data file.
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We next evaluated the specific antibiotics and drug classes (Sup-
plementary Fig. 6, Fig. 5c) to which identified ARGs ostensibly con-
ferred resistance. Via t-tests, we identified an enrichment of resistance
(adjusted p-value < 0.05) to specific types of commonly prescribed
antibiotics in hospitals compared to other sites. Tobramycin, Dibeka-
cin, Cefalotin, and Gentamicin resistance dominated in hospitals

(Supplementary Fig. 7). By drug class, penam, cephalosporin, and
carbapenem resistance were enriched in hospital wastewater, con-
sistent with the presence of the dominant ARGs. The most prevalent
ARGs in hospital wastewater encoded beta-lactamase resistance
(Fig. 5d). These genes included GES, KPC, NPS, TEM, CTX-M, CARB,
MIR, and FOX.
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Conversely, certain antibiotics and drug classes (e.g., Kasugamy-
cin, Telithromycin, Capreomycin, Tetracyclines, Glycopeptides) had
similar resistance profiles between all wastewater sites. We hypothe-
size, therefore, that these signs of putative resistance may not derive
from exposure to the same concentration of antibiotics as in hospitals,
but rather may be indicative of naturally occurring microbial
machinery that, while potentially conferring resistance in certain
contexts, in this case, are expressed to serve another purpose. Alter-
natively, specific resistancegenes couldbederiving fromhighly similar
antibiotics, instead of those named in Supplementary Fig. 7.

Considering that perceived antibiotic resistance may not actually
be driven by antibiotic exposure in some cases, we aimed to validate
our observation of enriched resistance profiles in hospital wastewater
by integrating hospital antibiotic prescription data. We acquired
month-by-month prescription data from the hospital sites we sampled
in Miami and computed correlations between observed antimicrobial
resistance (both overall and on a specific antibiotic basis). To generate
a null set of comparisons we computed correlations between pre-
scription data and hospital ARG abundance as well as correlations
between prescription data and ARG abundance in all other sites,
hypothesizing that non-hospital sites would have limited to no corre-
lation, overall, with prescriptions.

We found statistically significant (p <0.05), moderate positive
correlations (Pearson correlation between all antibiotics in hospitals
and all ARGs =0.25) between both (1) overall antibiotic prescriptions
and amount of overall hospital wastewater ARGs across all other sites
(Fig. 5e) and (2) Ampicillin and Gentamicin prescriptions and their
associated specific resistance genes in each specific location type
(Fig. 5f). Correlations with Ciproflaxin andOxacillin were also trending
in significance (p <0.1). In other words, the prescription of specific
antibiotics correlates to the amount of genes for resistance to those
antibiotics in wastewater. Notably, as one would expect, we did not
observe these correlations in other sites: this result was unique to
hospitals. No correlation was identified between, say, dormitory or
wastewater ARG load and hospital prescriptions. We claim this
observation strengthens the hypothesis that wastewater ARG levels
can predict the spread of antibiotic resistance in a given community
based on antibiotic use data (https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC6396544/), potentially meaning wastewater could be
used to directly advise physician prescriptions and guide antibiotic
stewardship.

Discussion
In this longitudinal wastewater microbial census, we integrated tar-
getedqPCRplus targeted anduntargetedRNA sequencing todetail the
bacterial, viral, and functional landscape of samples from multiple
areas withinMiami-Dade County across two years. By combining these
different approaches, we capture the breadth and depth of microbial
diversity: targeted sequencing, for example, can identify viruses
beyond the limit of detection of bulk sequencing (down to 100
genomic copies per liter)7,31, which itself is superior at measuring

overall community composition. Further, we leverage and compare
multiple, redundant bioinformatic approaches, demonstrating how
different algorithms (assembly vs. short-read alignment, for example),
highlight distinct site-specific and shared microbial features. With the
increased integration of wastewater sequencing and geospatial epi-
demiologic data, we can identify increasingly precise signatures for
these and other features, potentially replacing onerous and costly
public health surveillance methods in the long run.

Overall, we showed thatwastewater can be potentially used for (1)
viral pathogen detection, (2) observing gut-associated microorgan-
isms positively and negatively associated with human health, and (3)
tracking geospatially varying and prescription-correlated, drug class-
specific, community antimicrobial resistance. In addition to various
pathogens of interest, we detectedmicrobes known to be found in the
human gut that have reported associations with human health and
human habits, including F. prausnitzii, R. hominis, and B. wadsworthia.
Finally, resistance genes for fluoroquinolones, cephalosporins,
penams, aminoglycosides, macrolides, and glycylcyclines antibiotics
were detected at high concentrations in hospital wastewater samples.
Many of the specific geneswe identified are plasmid-encoded enzymes
and are responsible for the rise of resistant infections worldwide59.

As a result, based on the current needs within public health sur-
veillance and the results of this (and other) studies, we propose two
immediate courses of action for extending these efforts and building
tools that leverage wastewater microbiome ecology to track public
health: (1) using wastewater to mitigate community antibiotic resis-
tance spread by, for example, advising physician prescriptions based
ARG wastewater abundance (comparing ARGs detected in wastewater
sequencing to existing approaches, like hospital-specific anti-
biograms) and (2) monitoring pathogens and determining the feasi-
bility of constructing gut health indicators of community diet and
overall disease prevalence. This could include, for example, exploring
the potential to discover biomarkers of cancer. Regarding the former,
new antimicrobial resistance markers could feasibly be discovered by
correlation prescription levels with de novo assembled gene abun-
dance in wastewater. Regarding the latter: for validation and bio-
marker development, existing, zip code-stratified public health
surveillancedatasets, like theNational Health AdministrationNutrition
Examination Survey (NHANES)60, should be integrated with ongoing
wastewater sequencing in the same zip codes to identify wastewater-
based correlates of the variables (e.g., lab tests, dietary survey data,
disease burden) recorded in NHANES. Together, these two initiatives
could provide a tool tomitigate antibiotic resistance in real-time while
also tracking public health and nutrition at high resolution (e.g.,
monitoring the spread of food deserts).

To take advantage of wastewater’s potential as a single point
source for monitoring multiple population-level characteristics,
uniting both targeted (e.g., specific pathogens or resistancemarkers)
and untargeted analyses (metagenomics or metatranscriptomics)
will be critical (https://www.sciencedirect.com/science/article/pii/
S0048969721042509). Targeted ARTIC sequencing, for example,

Fig. 5 | The antimicrobial resistance landscape of wastewater across time
and space. a The total number of called Antimicrobial Resistance Genes (ARGs)
across different sample types per 10 thousand reads, with p-values deriving from t-
tests on log10 transformed ARG counts normalized by sequencing depth. HOSP
hospital, DORMdormitory, SCHOOLprimary/secondary school,WWTPwastewater
treatment plant, UC university campus. b The total ARGs identified across time.
c The top 25 most prevalent ARGs in hospital wastewater. Color scheme relates to
the legend above. d The top specific ARGs for different drug classes across all
sample types. Asterisks correspond to if a given ARG was enriched (in terms of
log10 observations per 10k reads) in hospital wastewater when compared to all
other sites according to the adjusted p-value on a t-test. P-values were adjusted by
the Benjamini–Yekutieli procedure. For an asterisk to be present, an antibiotic class

must have been enriched in all four comparisons (e.g., hospitals vs dormitories,
hospitals vs the university campus, hospitals vs primary schools, and hospitals vs
the wastewater treatment plant). e The Pearson correlation between the sum total
of all sampled hospital antibiotic prescriptions and the total ARGcounts per 10k for
hospitals (black) and (all other sites). This color scheme only applies to this panel.
Data are presented as a linear regression line (mean values) surrounded by 95%
confidence intervals (area shaded in gray). f The same as (e), except the only genes
considered in the correlation are those annotated as conferring resistance for the
two antibiotics listed. The antibiotic data, similarly, is only for prescriptions of
those two antibiotics. Data are presented as a linear regression line (mean values)
surrounded by 95% confidence intervals (area shaded in gray). Source data are
provided as a Source Data file, and all p-values reported stem from two-sided tests.
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can identify extremely low-abundance (parts per billion) viruses that
require many rounds of amplification via PCR to be able to sequence.
It could feasibly also be used to target specific disease-causing
microbial genes, like CagA (in the case of gastrointestinal cancer).
However, it is limited in its ability to only capture a single organism
per set of primers. Bulk sequencing, on the other hand, can theore-
tically capture information from all domains of life living in waste-
water. Given that wastewater is an aggregate of environmental and
human biology from a single geography, it stands to reason that
microbial signals in wastewater could be used as a one-stop-shop for
public health surveillance. From heavy metal levels (e.g., lead, cop-
per, fertilizer runoff) to gut health to cancer clusters, theoretically,
integrated microbial surveillance could capture all modalities in one
sample type for low cost, with limited privacy concerns.

An added benefit of the wastewater surveillance documented
here, specifically, is the continuous monitoring of geographically dis-
tinct sites serving different community sizes. We observed variation in
microbial composition and consistency across representedpopulation
size, for example, observing low variability in wastewater treatment
plant microbiomes compared to dormitories. It stands to reason that
temporal variation in major environmental pollutants might be best
monitored at treatment plants, whereas isolated outbreaks (e.g., gas-
troenteritis) might be better tracked at locations housing smaller
populations.

Of course, our approach is not without drawbacks. Some SARS-
CoV-2 genomes were likely filtered out due to our coverage threshold,
some wastewater samples had low depth of sequencing, and a certain
amount of data could be lost prior to collection or during processing;
this can dramatically confound associations. Similarly, our processing
methods (electronegative filtration, etc), could skew microbial com-
munity composition. Further, microbes from other hosts (e.g., farm
animals) that appear human-associated could add noise to public
health signals, so monitoring and controlling sampling locations
carefully will be critical61. Analogously, some genes – like ARGs – that
appear human health-relevant may in fact just be naturally occurring
and not utile biomarkers. Additionally, bioinformatic annotation of
viruses is extremely challenging; as we observed, species-level reso-
lution is difficult to attain and can yield false positives. Even BLASTing
at a high percent identity (>90% in our case) could yield mis-
classifications at the species level. Finally, we focus here on viruses and
bacteria; fungi are also important for human health and detectable in
wastewater62,63. Feasibly, this dataset we generated could be used, in
future work, to measure fungal pathogen abundance as well.

In total, by uniting targeted pathogen tracking with broad
monitoring of epidemiologically relevant microbial and environ-
mental signals, there is a potential to use wastewater as a primary
source for monitoring multiple dimensions of public health. The
development of consistent protocols for sampling, sequencing, and
analyzing wastewater data is critical for it to achieve clinical impact
(https://pubs.acs.org/doi/full/10.1021/acsestwater.2c00045). Fur-
ther, once these protocols are established, robust biomarkers for
human population health must be discovered via large-scale asso-
ciation studies, leveraging those that have been successful in other
disciplines42,64–67. This study represents an additional step in this
direction. Overall, by characterizing the ecology and its variation
across time and space, we aimed to lay the groundwork for building a
dataset of taxa of interest to bemonitored with bulk RNA sequencing
alongside targeted approaches for pathogens of import. While
shotgun metagenomics and metranscriptomics methods hold rich
information about a wide range of pathogens, they can also be used
to monitor host dynamics, drug interactions, (https://pubmed.ncbi.
nlm.nih.gov/33712587/), and eukaryotic species as well (https://
pubmed.ncbi.nlm.nih.gov/26836631/). Future studies can link to
changes in other organisms’ movements and genotypes (e.g. zoo-
notic reservoirs), and also link to national-level wastewater profiling,

such as the CDC’s National Wastewater Surveillance System (NWSS).
Eventually, linking regional, national, and international datasets
would empower a global, semi-automated surveillance system, which
could serve as a first line of defense against future pandemics, con-
taminant buildup, ARG tracking, and establish essential tools to
mitigate future public health crises.

Methods
Study design and IRB approval
Thegoalof the studywas to evaluate associations between clinical data
andwastewater SARS-CoV-2 RNA levels inmatched populations aswell
as describe the microbial composition of wastewater via bulk RNA
sequencing. This project was approved by the University of Miami IRB
(#20210164). Starting the Fall 2020 semester, to optimize on-campus
safety against the spread of COVID-19, the University of Miami
embarked on a clinical tracking program based on testing, tracking,
and tracing (3-T). For students who lived or commuted to campus, the
University required weekly or bi-weekly testing. Employees were tes-
ted on a random basis.

All patient data used in this study was published in a separate
manuscript, Carattini et al. 68. Documented clinical data were available
on a building basis at the University of Miami dormitories, for the
University campus for both student and employee populations who
resided or commuted to campus, and at the University of Miami hos-
pital. In addition, a subset of positive clinical samples (both students
and employees) were amplified for SARS-CoV-2 variants and
sequenced at a University of Miami laboratory (Oncogenomics Shared
Resource, OGSR). The OGSR ran both the clinical and wastewater
samples reported in this study providing for consistency in the
detection between both datasets. The sharing of clinical data for
internal research purposes was approved by the University of Miami
IRB (IRB ID: 20210164,MOD00047150). In addition, at the county level,
the Florida Department of Health documented positive COVID-19
detections by zip code and this datawas provided to the research team
through delegation of the above IRB. Given the availability of clinically-
based data, the wastewater sample collection program was designed
to provide a population match between clinical data and populations
contributing wastewater to a specific wastewater sampling location. A
waiver of consent was obtained for the retrospective review of charts
and test results, and for the reviewof aggregated and deidentified data
inclusive of SARS-CoV-2 sequencing results from environmental and
clinical samples.

Sample collection
Samples were collected weekly from September 30, 2020, through
September 21, 2022. Sampling sites included sewer holes from resi-
dential dormitories (14 sites), sites representing major portions of
campus (4 sites, 3 corresponding to themain residential campus and 1
corresponding to the university marine campus with no residences),
from laboratory/administrative buildings at the medical campus
(2 sites), from the University Hospital (2 sites), grade school sites (8
locations representing 9 grade schools, 3 high schools, 2 middle
schools, and 4 elementary schoolswith one elementary school andone
middle school discharging to the same sewer hole), and from a
regional wastewater treatment plant (Central District) serving a
population of 830,000 fromMiami-Dade County. In addition, at three
sites both grab and composite samples were collected accounting for
the balance of the 34 sampling sites. Between September 2021 and
January 2022, samples were collected two times per week at the dor-
mitory sites to provide additional data for on-campus mitigation
measures.

Composite samples were collected at the building and cluster
scale using either an ISCO 6712 autosampler (time-paced) or at the
community-scale wastewater treatment plant using a HACH auto-
sampler (flow-paced). All other samples were collected using a grab
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sampling technique, due to the limited availability of multiple auto-
samplers. Sample collection volumes were 2 liters with the first liter
being used for water quality analyses in the field (pH, water tempera-
ture, dissolved oxygen, specific conductivity, and turbidity). Addi-
tional details about sample collection andbasicwater quality data have
been published earlier7,29,30,33.

Primary concentration and downstream processing of wastewater.
Upon collection, wastewater was transported to the Biospecimen
Shared Resource Laboratory at the University of Miami on ice and
immediately succumbed to pretreatment for a primary concentration
of suspended solids. Wastewater samples had [106 genomic copies
(gc)/L] human coronavirus-OC43 added as a recovery tool for quanti-
tative PCR assessment, occurring prior to targeted sequencing. Addi-
tionally, 51% w/v magnesium chloride was added as well as drops of
10% Hydrochloric Acid (pH reduction down to 3.5–4.5) to assist with
altering the chemical charge of ambient viral particles found in was-
tewater to positive. The primary concentrationmethod employed was
Electronegative Filtration (ENF)31 using HAWP mixed cellulose ester
membranes (Millipore Sigma#HAWP04700, 47mmdiameter, 0.45 µm
pore size) which were negatively charged, thus requiring the necessity
for the pretreatment to aid in binding affinity between the viral parti-
cles and membranes. Via the use of vacuum filtration, electronegative
HAWP membranes captured wastewater-suspended solids, and vari-
able sample volumes (20–150mL, depending upon turbidity andwater
quality parameters) were filtered until clogging/filter saturation to
create concentrates. HAWP filter membranes containing a saturated
layer of suspended wastewater solids were folded in on themselves
four times, and placed immediately within 1.5mL 1× DNA/RNA shield
within 5mL microcentrifuge tubes. Three filter concentrate replicates
were generated per wastewater sample collected over the course of
the study period; each replicate was sent to a separate laboratory, the
Center for AIDS Research (CFAR) Laboratory (on ice), the OGSR
Laboratory (on ice) both at theUniversity ofMiami and atWeill Cornell
Medicine (WCM) (on dry ice).

Three workflows were implemented to extract SARS-CoV-2 from
wastewaterwhichoccurred in separate laboratories to standardize and
achieve overlapping analyses following extraction. These processes
includedquantitative PCR (atCFAR), ARTICanalysis (at theOGSR), and
bulk RNA sequencing (at WCM). At the CFAR laboratory the Zymo
Research QuickRNA-Viral Kit, with a modified protocol using 250 µL
wastewater concentrate - discussed in detail within Babler et al.29 to
reduce inhibition - was utilized as input for Volcano 2nd Generation-
qPCR (V2G-qPCR). This in-house created assay is equivalent to that of
RT-qPCR but bypasses the need for the initial reverse transcription
step as the DNA polymerase utilized within the reaction can read both
RNA and DNA templates, thus reducing the total reaction time and
allowing for additional analyses of other targets within the same
timeframe (i.e., normalization parameters, control parameters)7. To
assess for inhibition within RNA samples, 30 µL of HIV RNA was added
to each 10 µL eluate of wastewater RNA, and assessed alongside a
weekly generatedwater control (10 µL Nuclease-Free water + 30 µLHIV
RNA) by V2G-qPCR; following amplification, the Cq values were com-
pared and if the wastewater sample Cq values measured within ±2
cycles of the water control, samples were considered uninhibited.

The choice for determining which samples were ultimately
brought through ARTIC analyses, via collaborative communication
between CFAR and OGSR, was based on the gc/L measurements
determined by V2G-qPCR taking into consideration the overall recov-
ery and inhibition as determined by the controls. This was because
routine extraction and multiple V2G-qPCR assessments occurred
within the CFAR laboratory weekly, wherein the filter replicate sent to
theOGSR following concentrationwas kept at−80 °Cuntil extracted in
batches for specific analyses.

Targeted sequencing of SARS-CoV-2
Libraries were synthesized using the NEBNext® ARTIC SARS-CoV-2 FS
Library Prep Kit (E7658L) following the Express Protocol and
employing the V3 primer set throughout. Eight microliters of total
nucleic acid (TNA) extracted with Nanotrap Microbiome Particles
(Ceres Nanoscience, 44202) enrichment and MagMAX™ Viral/Patho-
gen Ultra Nucleic Acid Isolation Kit (ThermoFisher ScientificSciencific,
A42356) were used as input without quantification nor assessment of
RNA integrity. Finished libraries were pooled volumetrically with final
pools of 96 libraries cleaned using 0.9× AMPure bead cleanup (Beck-
manA63882). Poolswere sequenced on an IlluminaNextSeq 500using
Mid-Output 150 cycleflowcells (130Mclusters, 20024904) run as 76|8|
8|76 chemistry or NovaSeq 6000 using various flow (SP S1, S2 or S4;
20028400, 20028319, 20028317 20028314, or 20028312, respectively)
as 151|8|8|151 chemistry, with up to 3% PhIX (FC-110-3001).

Detection of SARS-CoV-2 variants in ARTIC data
Broadly speaking, the pipeline for variant detection involved (1) iden-
tification of reads aligning to the SARS-CoV-2 genome with Kraken2,
(2) aligning to the Wuhan-Hu-1 reference and filtering samples based
on breadth anddepth of alignment coverage, (3) trimming primers, (4)
calling variants using anensemble approach, (5) annotatingmutations,
and (8) estimating VOC lineage abundances. All software was run with
the default settings unless otherwise specified.

We used Kraken269 (V2.1.2) running the default settings to tax-
onomically classify short-read sequencing data for the ARTIC samples.
We used a custom Kraken2 database that included the SARS-CoV-2
Wuhan-Hu-1 reference (GCF_009858895) as well as an assortment of
viral, archaeal, bacterial, fungal, protozoan, and mammalian genomes
(available upon request). The reads assigned exclusively as SARS-CoV-
2 were then filtered into individual files using seqtk (V1.3-r106).
Alignment to the Wuhan-Hu-1 reference was done with bwa (V0.7.17-
r1188), and the alignment was then sorted and indexed with sam-
bamba. We then trimmed primers with ivar (V1.13) and generated
coverage statistics afterward with the bedtools genomecov (V2.30.0)
command andmosdepth (V0.3.3).We filtered out samples that did not
have atminimum10×meancoverage per amplicon across at least 73 of
the 98 amplicons (roughly 75%) that were targeted by the ARTIC
protocol.

For variant calling, we used an ensemble approach, combining the
output of lofreq (V2.1.5), and iVar, only the union of calls found in both
approaches, and computing the mean variant allele frequency
between the two. We used VEP (V104.3) to annotate mutations and
estimate VOC lineage abundance with Freyja (V1.4.2), using the latest
available VOC database (as of April 2023), provided by the software.

Bulk RNA sequencing
After concentration via ENF, the filter concentrates were preserved in
1.5mL of 1× DNA/RNA Shield (Zymo Research, R1100), transported on
dry ice, and remained stored at−80 °Cuntil further processing atWeill
Cornell Medical College. Nucleic acid extraction took place using the
DreamPrep NAP workstation (TECAN, NAP-DREAMPREP), a liquid-
handling automation device, and the Quick-DNA/RNA Viral Magbead
Kit (Zymo Research, R2140) using 400 µL of wastewater concentrate,
following manufacturer’s recommendations.

Samples were sequenced in two batches by two separate provi-
ders. HudsonAlpha Discovery (Huntsville, AL) performed the first
sequencing library preparation on the generated nucleic acids. The
nucleic acid samples underwent purification using the RNA Clean and
Concentrator Magbead Kit with DNase digestion (Zymo Research,
R1082), following the manufacturer’s recommended protocol on the
Biomek i5 automated workstation (Beckman Coulter, 52018). This
process resulted in an 18 µL elution of RNA in nuclease-free water. The
LabTouch GX Touch (Perkin Elmer, CLS137031/C) nucleic acid analysis
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system quantified the RNA, with samples prepared according to the
manufacturer's instructions.

After normalizing RNA concentrations, sequencing libraries were
generated using the NEBNext rRNA Depletion Kit (Human/Mouse/Rat)
and NEBNext Ultra II DNA Library Prep Kit (New England Biolabs,
E6310X, E7645L) for Illumina. The KAPA Library Quantification Kit
(Roche, 07960140001) was employed to quantify the resulting
libraries, all samples were brought to 20 cycles of PCR at the final step.
All libraries were next evaluated and pooled at equimolar concentra-
tions. Sequencing was carried out on the NovaSeq 6000 platform
(Illumina, 20012850) with an S4 flow cell, using a read length of
2 × 151 bp in paired-end configuration.

The second batch of samples were sequenced by Element Bios-
ciences. The nucleic acid samples underwent purification identical to
that of HudsonAlpha Discovery, using the RNA Clean and Con-
centrator Magbead Kit with DNase digestion (Zymo Research, R1082),
which cuts both double-stranded and single-stranded DNA. The
resulting elution of RNA was quantified using a Qubit 4.0 Fluorometer
(ThermoFisher, Q33238), using 10 ng of total input for the library
preparation. The sequencing libraries were generated using the NEB-
Next rRNA Depletion Kit (Human/Mouse/Rat) and NEBNext Ultra II
DNA Library Prep Kit (New England Biolabs, E6310X, E7645L) for Illu-
mina, following the vendor protocol with two modifications. First,
Element Biosciences adapters and unique dual indexes (Element
Biosciences, 830-00005) were used instead of NEB-recommended
Illumina adapters and indexes. Second, because of this change, the
USER treatment stepwas omitted. Completed librarieswerequantified
by Qubit or equivalent and run on a Bioanalyzer or equivalent for size
determination. Libraries were pooled and then circularized and
quantified using the Element Elevate Library Circularization Kit (Ele-
ment Biosciences, 830-00001). Sequencing was performed using the
Element AVITI sequencing instrument (Element Biosciences, AVITI),
using 2 × 75 bphigh output kits (Element Biosciences, 860-00004) run
in HD Expert Mode.

Metatranscriptomic quality control and short-read taxonomic
profiling
We submitted all short-read metatranscriptomic sequencing data first
to a quality control pipeline, predominantly using the bbtools suite
(V38.92)70. Clumpify (parameters: optical=f, dupesubs=2,dedupe=t)
wasused to groupoverlapping reads, andbbduk (parameters: qout=33
trd=t hdist=1 k=27 ktrim=“r” mink=8 overwrite=true trimq=10
qtrim=‘rl’ threads=10 minlength=51 maxns=−1 minbase-
frequency=0.05 ecco=f) was used to deduplicate reads and remove
adapters, accounting for duplicates generated by the PCR-amplication
process. Potential human contaminating reads were removed by
bowtie2 (V2.4.4, parameters: --very-sensitive-local) alignment to the
HG38 human genome assembly71. Any samples remaining with uneven
numbers of reads were repaired with bbtools’ repair function. Finally,
tadpole (parameters: mode=correct, ecc=t, ecco=t) was used to cor-
rect sequencing errors.

Quality-controlled reads were run through different taxonomic
classification approaches: (1) Kraken2 (V2.1.2) against all of the com-
plete genomes for microorganisms on RefSeq (2) and MetaPhlan4
(V4.0.4) against its default database, (3) Xtree (V0.92i) against the
Genome Taxonomy Database (GTDB) r207, and (4) Xtree against the
dataset of complete a 6 million dereplicated, high-quality viral gen-
omes (the Pan Viral Compendium) from nine public databases, the
metadata of which is available at Figshare (https://figshare.com/
articles/dataset/PVC_Release_V0_1/24566995/1). All of the genomes in
these listed databases were dereplicated at the 90% identity level and
quality checked and annotated with CheckV and geNomad (identically
as described below in the de novo assembly section). Alignments were
done to the database of dereplicated complete, high, and medium-
quality genomes.

We ran Kraken2 with both –confidence 0.2 and –confidence 0.0
flags; the latter parameter was only used for estimating total, domain-
level read alignment. The former was used for species-level annota-
tions (e.g., as presented in Supplementary Fig. 3). Abundancematrices
for both confidence flags are available online (see “Data availability”
section).

Xtree is a kmer-based aligner that generates coverage statistics
(global, which corresponds to total genome coverage, and unique,
which corresponds to reads mapping to a specific genome in the
database). We filtered for bacterial genomes with 1% global and 0.5%
unique coverage. We filtered for viral genomes with 20% global and
10% unique coverage. Relative abundances for Xtree were computed
by dividing the total aligned reads to a given genome over the total
number of reads aligning to all genomes. MetaPhlAn4 computed
relative abundance automatically. We used Bracken to compute rela-
tive abundances for the kraken2 output. All the figures in the text were
generated with the Xtree relative abundances unless otherwise
specified.

The bacterial phylogeny generated in Fig. 2a was generated by
subsetting the GTDB taxonomic tree (provided at https://data.gtdb.
ecogenomic.org/releases/release214/214.1/) to the species identified in
the metatranscriptomic data. Family-level representatives were selec-
ted at random. Their abundance, reported in the circular heatmap, was
computed by averaging the relative abundance of all species in that
given family.

Removal of potential kitome or sequencing contaminants
To account for potential contaminants from sample processing, we
additionally sequenced and bioinformatically leveraged 15 negative
controls. These were uninoculated DNA preservative buffered (DNA/
RNA Shield) taken during extraction that was sequenced alongside the
other samples. We used the decontam R package (isContaminant
function, parameters: method=“prevalence”, threshold=0.5) on all
relative abundance matrices generated by the above alignment
strategies72. We used the parameters and approach derived from the
following example: https://benjjneb.github.io/decontam/vignettes/
decontam_intro.html. Taxa removed during decontamination from
each matrix are reported in Supplementary Data 2. Both decontami-
nated and raw abundancematrices are available (see “Data availability”
section).

Microbial Association Study
The Microbial Association Study (MAS) reported in Fig. 3 and Sup-
plementary Figs. 2 and 4 was executed via a linear mixed modeling
approach. Relative abundances were log-transformed with the smal-
lest non-zero abundance value being added to the entire matrix
beforehand. The following mixed effects model was fit for each bac-
terial/viral species that was found in over 10 samples:

log 10ðmicrobial f eatureÞ∼ f eature+ ð1jlocationIDÞ

The independent variable is the log10 transformed abundance of
any given bacteria and the dependent “feature” variables are the fea-
tures described in Supplementary Figs. 2 and 4 and Supplementary
Data 4. Note that log10 transformation worked slightly differently for
each aligner based on the raw data they output. MetaPhlan4 and
Bracken give relative abundances (ranging from 0 to 100 for the for-
mer, and from 0 to 1 for the latter); for both, we added a pseudocount
of 0.000001 to all zeros. Xtree gives raw counts. For it, we replaced all
zero values prior to computing relative abundance with 0.5 and then
log10 transformed. P-values were adjusted via the Benjamini–Yekutieli
procedure73, and an adjusted cutoff of 0.05 was used to gauge
significance.
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De novo assembly, viral contig identification and annotation,
gene catalog construction, and Resistance Gene/Open-Reading-
Frame identification
Quality-controlled reads were de novo assembled using
MetaViralSPAdes74 V3.15.5. The soft filtered transcripts output by
MetaViralSPAdes were fed into CheckV V0.7.0 to predict putative viral
contigs75. For all high, complete, medium, and low-quality contigs (i.e.,
putative viral contigs) Open-Reading-Frames (ORFs) were identified
with Prodigal-gv, a version of Prodigal76 modified for viral ORF iden-
tification (https://github.com/apcamargo/prodigal-gv?tab=readme-
ov-file)77. Called ORFs were annotated against the pFam database
(most recent version as of Feb 1, 2024) using hmmsearch78 (para-
meters: --notextw --noali --nobias --nseq_buffer 100,000 --nhmm_buf-
fer 1000). The best pFam annotation (based on minimum e-value) for
each gene was assigned. ORFs were clustered into a non-redundant
gene catalog at 90%, 70%, 50%, and 30% identity using mmseqs2
(V15.6f452, parameters: -c 0.9 --cov-mode 1) Antimicrobial Resistance
Genes (ARGs) and virulence factors were identified with RGI (V6.0.3,
parameters: –low_quality, –num_thresholds 4, –include_nudge) using
the CARD database (most recent versions as of Feb 1st, 2024)79. We
report in Fig. 5 the numbers of ARGs per 10,000 reads sequenced to
account for variation in sequencing depth between samples.

Putative viral contigs were annotated first with geNomad77. Spe-
cifically, for RNA viruses used in the phylogenies in Fig. 4, we addi-
tionally implemented a BLAST80 approach for species-level annotation,
modeled directly on published methods51, with code available at
https://github.com/snayfach/MGV/blob/master/ani_cluster/README.
md. Briefly, we BLASTed putative viral contigs against the RefSeq
database at the 90% identity level (using the lines and scripts provided
in the Github Repository). We report 4 matches, as well as contig
lengths and bitscores, in Fig. 4.

Viral phylogeny construction
We additionally constructed RdRp viral trees for viruses annotated in
the Orthornavirae kingdom by geNomad. We used BLAST to cluster
the 61,557 contigs with this annotation at the 90% identity level using
the approach described above51. This resulted in 10,446 genomes. For
each of these, we first identified RdRp sequences using a recently
published database and HMMER378,81. We took all annotations with an
e-value under 0.01. Viral RdRp ORFs which contain hits from several
regions were concatenated into one continuous genetic sequence per
sample andmerged into a single FASTA file. Filtering based on e-values
resulted in a total of 8131 contigs containing putative RdRp sequences.

MAFFT82 was used to align viral sequences. Due to the nature of
viral sequence alignment, gappy regions were filtered from our align-
ment in this case we trimmed columns that exceeded 67% using
TrimAI83. RAxML84 was used to infer our phylogenetic tree using the LG
evolutionary model85 with 10 starting parsimony trees and 100 boot-
strap replicates in order to obtain support values for our topology.
When plotting, to prune the tree and remove highly divergent viruses,
we removed branches in the top 5% of lengths. We additionally iden-
tified the most prevalent phylum annotation in each clade (10 nodes
back from a given tip) and removed genomes that were outside of that
annotation for said clade. This, combined with the length trimming,
reduced the total number of genomes included in the tree in Fig. 4e
to 7058.

We took the same approach for generating the tree in Fig. 4f. We
took the subset of 90% BLAST dereplicated viruses annotated as
Pisuviricota and used RAxML with the same parameters to place them
on a phylogeny. The same pruning approach was taken for tree
visualization.

Analysis of pathogenic genes in wastewater
We filtered ORFs (unclustered) for those with pFam annotations
with e-values below 0.01. For each annotation, we fit an ANOVA to

identify those varying in prevalence (i.e., count of a given anno-
tation in a given sample) between location types (primary/sec-
ondary schools, the wastewater treatment plant, hospital/medical
campus sites, the university campus basin, and dormitories). We
only considered annotations that had prevalences above 25
across all samples (9177 pFam annotations). We adjusted p-values
with the Benjamini–Yekutieli procedure and filtered for those
with adjusted p-values under 0.05 (N = 4380). We then intersected
these significant pFam annotations with the pFam annotations
used in the PathFam database86, filtering for those annotations
that were significant in our analysis and, in PathFam, had a
hypergeometric test adjusted p-value of less than 0.05 and also
occurred in both the VFDB and Victors databases (N = 102). The
resultant protein prevalences are visualized in Supplemen-
tary Fig. 6.

Association between Antimicrobial Resistance Genes and hos-
pital prescription data
We sourced monthly hospital antibiotic prescription data (per 1000
patients) abstracted from the health system’s electronic health record,
Epic. We computed the total number of identified ARGs by month
(overall and by the antibiotic to which a given gene conferred resis-
tance). We took the intersection of antibiotic prescribed and genes
annotated as having resistance to those antibiotics and computed a
Pearson correlation between the log10 counts of prescriptions and the
number of genes per 10,000 sequencing reads. We removed samples
with fewer than 1 million reads for this analysis, as we found they
artificially inflated the number of ARGs identified. We report raw
p-values in the figures and text. We computed and reported correla-
tions between both hospital ARG totals as well as the other sites
sampled.

Additional software
All analysis was done in RV4.1.387. Additional packages used include:
ggtree V3.7.288, ggplot2 V3.4.289, the tidyverse V2.0.090, Complex-
Heatmap V2.10.091, UpSetR V1.4.092, ComplexUpSet V1.3.393, phytools
V1.5-194, ape V5.7-195, ggbeeswarm V0.7.1, tidytext V0.4.196, circlize
V0.4.1597, vegan V2.6-498, broom V1.0.499, reshape2 V1.4.4100, and
ggpubr V0.6.0101.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In compliance with the NIH RADx-rad Data Coordination Center
(DCC) requirements, the raw sequencing data was submitted to the
Sequence Read Archive (SRA). The wastewater samples were
annotated with the rich metadata and the sequencing information
(fastq files) was included in the submission. The submitted data can
be found in the SRA under the accession PRJNA946141. Source data
are provided with this paper. Patient data used in Fig. 1 are descri-
bed in the following manuscript, Carattini et al.68. Furthermore, the
metadata associated with the wastewater samples’ sequencing data
was extracted from the Illumina operational files, validated, orga-
nized, and submitted to the NIH data hub via DCC [https://radx-hub.
nih.gov/home], where the SF-RAD data is associated with the dbGaP
study accession phs002525.v1.p1. The metadata standards specifi-
cations used to describe the data were developed in collaboration
with the SF-RAD members and the DCC and formally defined and
registered at FAIRsharing.org. Additional processed files (e.g.,
taxonomic abundance matrices) are available at https://figshare.
com/projects/Geospatially-resolved_public-health_surveillance_via_
wastewater_sequencing/198412. Source data are provided with
this paper.
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Code availability
All software used were published tools (which we report the para-
meters and implementations for in the other “Methods” sections).
Scripts used for plotting and slurm-based job management are avail-
able at https://github.com/b-tierney/radx-wastewater-scripts/tree/
main102.

References
1. Ejeian, F. et al. Biosensors for wastewater monitoring: a review.

Biosens. Bioelectron. 118, 66–79 (2018).
2. Korajkic, A. et al. Viral and bacterial fecal indicators in untreated

wastewater across the contiguous United States exhibit geospa-
tial trends. Appl. Environ. Microbiol. 86, e02967–19 (2020).

3. O’Brien, J. W. et al. A NationalWastewater Monitoring Program for
a better understanding of public health: a case study using the
Australian Census. Environ. Int. 122, 400–411 (2019).

4. Leong, L. Y., Rigby, M. & Sakaji, R. H. Evaluation of the California
wastewater reclamation criteria using enteric virus monitoring.
Data 26, 7–8 (1992).

5. Akpor, O. B. & Muchie, B. Environmental and public health impli-
cations of wastewater quality. Afr. J. Biotechnol. 10, 2379–2387
(2011).

6. Zuccato, E., Chiabrando, C., Castiglioni, S., Bagnati, R. & Fanelli, R.
Estimating community drug abuse by wastewater analysis.
Environ. Health Perspect. 116, 1027–1032 (2008).

7. Sharkey, M. E. et al. Lessons learned from SARS-CoV-2 measure-
ments in wastewater. Sci. Total Environ. 798, 149177 (2021).

8. Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic
SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).

9. Castro-Gutierrez, V. et al. Monitoring occurrence of SARS-CoV-2
in school populations: a wastewater-based approach. PLoS ONE
17, e0270168 (2022).

10. LaTurner, Z. W. et al. Evaluating recovery, cost, and throughput of
different concentration methods for SARS-CoV-2 wastewater-
based epidemiology. Water Res. 197, 117043 (2021).

11. Bradley, V. C. et al. Unrepresentative big surveys significantly
overestimated US vaccine uptake. Nature 600, 695–700 (2021).

12. Yousif, M. et al. SARS-CoV-2 genomic surveillance in wastewater
as a model for monitoring evolution of endemic viruses. Nat.
Commun. 14, 6325 (2023).

13. Dharmadhikari, T. et al. High throughput sequencing based direct
detection of SARS-CoV-2 fragments in wastewater of Pune, West
India. Sci. Total Environ. 807, 151038 (2022).

14. Xu, X. et al. Wastewater genomic sequencing for SARS-CoV-2
variants surveillance in wastewater-based epidemiology applica-
tions. Water Res. 244, 120444 (2023).

15. Jahn, K. et al. Early detection and surveillance of SARS-CoV-2
genomic variants in wastewater using COJAC. Nat. Microbiol 7,
1151–1160 (2022).

16. Iwamoto, R. et al. Identification of SARS-CoV-2 variants in waste-
water using targeted amplicon sequencingduring a lowCOVID-19
prevalence period in Japan.Sci. Total Environ.887, 163706 (2023).

17. Spurbeck, R. R., Minard-Smith, A. & Catlin, L. Feasibility of neigh-
borhood and building scale wastewater-based genomic epide-
miology for pathogen surveillance. Sci. Total Environ. 789,
147829 (2021).

18. Schumann, V.-F. et al. SARS-CoV-2 infection dynamics revealed
by wastewater sequencing analysis and deconvolution. Sci. Total
Environ. 853, 158931 (2022).

19. Alpert, T. et al. Early introductions and transmission of SARS-CoV-
2 variant B.1.1.7 in the United States. Cell 184, 2595–2604.e13
(2021).

20. Davis, J. A. & Jacknow, J. Heavy metals in wastewater in three
urban areas. J. Water Pollut. Control Fed. 47, 2292–2297 (1975).

21. Afshinnekoo, E. et al. Geospatial resolution of human and
bacterial diversity with city-scale metagenomics. Cell Syst. 1,
72–87 (2015).

22. Wyler, E. et al. Comprehensive profiling of wastewater viromes by
genomic sequencing. Preprint bioRxiv https://doi.org/10.1101/
2022.12.16.520800 (2022).

23. Amin, V., Bowes, D. A. & Halden, R. U. Systematic scoping review
evaluating the potential of wastewater-based epidemiology for
monitoring cardiovascular disease and cancer. Sci. Total Environ.
858, 160103 (2023).

24. Larsson, D. G. J., Flach, C.-F. & Laxminarayan, R. Sewage surveil-
lance of antibiotic resistance holds both opportunities and chal-
lenges. Nat. Rev. Microbiol. 21, 213–214 (2023).

25. Diamond, M. B. et al. Wastewater surveillance of pathogens
can inform public health responses. Nat. Med. 28, 1992–1995
(2022).

26. Xiao, K. & Zhang, L. Wastewater pathogen surveillance based on
One Health approach. Lancet Microbe 4, e297 (2023).

27. Sinclair, R. G., Choi, C. Y., Riley, M. R. & Gerba, C. P. Pathogen
surveillance through monitoring of sewer systems. Adv. Appl.
Microbiol. 65, 249–269 (2008).

28. Levy, J. I., Andersen, K. G., Knight, R. & Karthikeyan, S. Wastewater
surveillance for public health. Science 379, 26–27 (2023).

29. Babler, K. M. et al. Degradation rates influence the ability of
composite samples to represent 24-hourly means of SARS-CoV-2
and other microbiological target measures in wastewater. Sci.
Total Environ. 867, 161423 (2023).

30. Solo-Gabriele, H. M. et al. Predicting COVID-19 cases using SARS-
CoV-2RNA in air, surface swab andwastewater samples. Sci. Total
Environ. 857, 159188 (2023).

31. Babler, K. M. et al. Comparison of electronegative filtration to
magnetic bead-based concentration and V2G-qPCR to RT-qPCR
for quantifying viral SARS-CoV-2 RNA from eastewater. ACS ES T
Water 2, 2004–2013 (2022).

32. Zhan, Q. et al. Relationships between SARS-CoV-2 in wastewater
andCOVID-19 clinical cases and hospitalizations, with andwithout
normalization against indicators of human waste. ACS ES T Water
2, 1992–2003 (2022).

33. Amirali, A. et al. Wastewater based surveillance can be used to
reduce clinical testing intensity on a university campus. Sci. Total
Environ. 918, 170452 (2024).

34. Zhan, Q. et al. Correlative analysis of wastewater trends with
clinical cases and hospitalizations through five dominant variant
waves of COVID-19. ACS ES T Water 3, 2849–2862 (2023).

35. Smyth, D. S. et al. Tracking cryptic SARS-CoV-2 lineages detected
in NYC wastewater. Nat. Commun. 13, 635 (2022).

36. Amman, F. et al. Viral variant-resolved wastewater surveillance of
SARS-CoV-2 at national scale. Nat. Biotechnol. 40, 1814–1822
(2022).

37. Tisza, M. et al. Wastewater sequencing reveals community and
variant dynamics of the collective human virome. Nat. Commun.
14, 6878 (2023).

38. Wang, Z., Li, W., Li, H., Zheng, W. & Guo, F. Phylogenomics of
Rhodocyclales and its distribution in wastewater treatment sys-
tems. Sci. Rep. 10, 3883 (2020).

39. Numberger, D. et al. Characterization of bacterial communities in
wastewater with enhanced taxonomic resolution by full-length
16S rRNA sequencing. Sci. Rep. 9, 9673 (2019).

40. Begmatov, S. et al. The structure of microbial communities of
activated sludgeof large-scalewastewater treatment plants in the
city of Moscow. Sci. Rep. 12, 3458 (2022).

41. Tierney, B. T. et al. Longitudinal multi-omics analysis of host
microbiome architecture and immune responses during short-
term spaceflight. Nat. Microbiol. 9, 1661–1675 (2024).

Article https://doi.org/10.1038/s41467-024-52427-x

Nature Communications |         (2024) 15:8386 15

https://github.com/b-tierney/radx-wastewater-scripts/tree/main
https://github.com/b-tierney/radx-wastewater-scripts/tree/main
https://doi.org/10.1101/2022.12.16.520800
https://doi.org/10.1101/2022.12.16.520800
www.nature.com/naturecommunications


42. Tierney, B. T., Tan, Y., Kostic, A. D. & Patel, C. J. Gene-level meta-
genomic architectures across diseases yield high-resolution
microbiome diagnostic indicators. Nat. Commun. 12, 2907 (2021).

43. Asnicar, F. et al. Microbiome connections with host metabolism
and habitual diet from 1,098 deeply phenotyped individuals. Nat.
Med. 27, 321–332 (2021).

44. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina,
M. Faecalibacterium prausnitzii: frommicrobiology to diagnostics
and prognostics. ISME J. 11, 841–852 (2017).

45. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular
disease. Nat. Commun. 8, 845 (2017).

46. Tierney, B. T. et al. Systematically assessing microbiome-disease
associations identifies drivers of inconsistency in metagenomic
research. PLoS Biol. 20, e3001556 (2022).

47. Feng, Z. et al. A human stool-derived Bilophila wadsworthia strain
caused systemic inflammation in specific-pathogen-free mice.
Gut Pathog. 9, 59 (2017).

48. Feng, Y. et al. Emerging macrolide resistance in Bordetella
pertussis in mainland China: findings and warning from the
global pertussis initiative. Lancet Reg. Health West Pac. 8,
100098 (2021).

49. Hidron, A. I. et al. NHSN annual update: antimicrobial-
resistant pathogens associated with healthcare-associated
infections: annual summary of data reported to the National
Healthcare Safety Network at the Centers for Disease Control
and Prevention, 2006-2007. Infect. Control Hosp. Epidemiol.
29, 996–1011 (2008).

50. Shad, A. A. & Shad, W. A. Shigella sonnei: virulence and antibiotic
resistance. Arch. Microbiol. 203, 45–58 (2021).

51. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA
viruses from the human gut microbiome. Nat. Microbiol. 6,
960–970 (2021).

52. Tremblay, B. J.-M., Lobb, B. & Doxey, A. C. PhyloCorrelate: infer-
ring bacterial gene-gene functional associations through large-
scale phylogenetic profiling. Bioinformatics 37, 17–22 (2021).

53. Nes̆ić, D. et al. Helicobacter pylori CagA inhibits PAR1-MARK family
kinases by mimicking host substrates. Nat. Struct. Mol. Biol. 17,
130–132 (2009).

54. Farhadkhani, M., Nikaeen, M., Hassanzadeh, A. & Nikmanesh, B.
Potential transmission sources of Helicobacter pylori infection:
detection ofH. pylori in various environmental samples. J. Environ.
Health Sci. Eng. 17, 129–134 (2019).

55. Lu, Y., Redlinger, T. E., Avitia, R., Galindo, A. & Goodman, K. Iso-
lation and genotyping of Helicobacter pylori from untreated
municipal wastewater. Appl. Environ. Microbiol. 68, 1436–1439
(2002).

56. Conco, T. et al. Profiling of emerging pathogens, antibiotic resis-
tance genes and mobile genetic elements in different biological
wastewater treatment plants. J. Environ. Chem. Eng. 10, 107596
(2022).

57. Che, Y. et al. Mobile antibiotic resistome in wastewater treatment
plants revealed by Nanopore metagenomic sequencing.Micro-
biome 7, 44 (2019).

58. Chau, K. K. et al. Systematic review of wastewater surveillance of
antimicrobial resistance in human populations. Environ. Int. 162,
107171 (2022).

59. Waśko, I., Kozińska, A., Kotlarska, E. & Baraniak, A. Clinically rele-
vant β-lactam resistance genes in wastewater treatment Plants.
Int. J. Environ. Res. Public Health 19, 13829 (2022).

60. Dwyer, J., Picciano, M. F. & Raiten, D. J. Estimation of usual
intakes:whatweeat inAmerica–NHANES. J. Nutr. 133, 609S–623S
(2003).

61. Salazar, C. et al. Human microbiota drives hospital-associated
antimicrobial resistance dissemination in the urban environment
and mirrors patient case rates. Microbiome 10, 208 (2022).

62. Babler, K. et al. Detection of the clinically persistent, pathogenic
yeast spp. Candida auris from hospital and municipal wastewater
in Miami-Dade County, Florida. Sci. Total Environ. 898, 165459
(2023).

63. Lyman, M. et al. Worsening spread of Candida auris in the United
States, 2019 to 2021. Ann. Intern. Med. 176, 489–495 (2023).

64. Cox, M. J., Cookson, W. O. C. M. & Moffatt, M. F. Sequencing the
human microbiome in health and disease. Hum. Mol. Genet. 22,
R88–R94 (2013).

65. Janssens, Y. et al. Disbiome database: linking the microbiome to
disease. BMC Microbiol. 18, 50 (2018).

66. Lorenzo, M. & Picó, Y. Wastewater-based epidemiology: current
status and future prospects. Curr. Opin. Environ. Sci. Health 9,
77–84 (2019).

67. Xagoraraki, I. & O’Brien, E. Wastewater-based epidemiology
for early detection of viral outbreaks. In Women in Water
Quality: Investigations by Prominent Female Engineers (ed.
O’Bannon, D. J.) 75–97 (Springer International Publishing,
Cham, 2020).

68. Carattini, Y. L. et al. Combined use of RT-qPCR and NGS for
identification and surveillance of SARS-CoV-2 variants of concern
in residual clinical laboratory samples in Miami-Dade County,
Florida. Viruses 15, 593 (2023).

69. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic ana-
lysis with Kraken 2. Genome Biol. 20, 257 (2019).

70. Bushnell, B. BBTools software package. http://sourceforge.net/
projects/bbmap (2014).

71. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nat. Methods 9, 357–359 (2012).

72. Davis, N.M., Proctor, D.M.,Holmes, S. P., Relman,D. A. &Callahan,
B. J. Simple statistical identification and removal of contaminant
sequences in marker-gene and metagenomics data.Microbiome
6, 226 (2018).

73. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate
in multiple testing under dependency. Ann. Stat. 29, 1165–1188
(2001).

74. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaS-
PAdes: a new versatile metagenomic assembler.Genome Res. 27,
824–834 (2017).

75. Nayfach, S. et al. CheckV assesses the quality and completeness
of metagenome-assembled viral genomes. Nat. Biotechnol. 39,
578–585 (2021).

76. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and trans-
lation initiation site identification. BMC Bioinform. 11, 119 (2010).

77. Camargo, A. P. et al. Identification of mobile genetic elements
with geNomad. Nat. Biotechnol. https://doi.org/10.1038/s41587-
023-01953-y (2023).

78. Eddy, S. R. Accelerated profile HMM searches. PLoSComput. Biol.
7, e1002195 (2011).

79. Alcock, B. P. et al. CARD 2023: expanded curation, support for
machine learning, and resistomeprediction at theComprehensive
Antibiotic ResistanceDatabase.NucleicAcidsRes.51, D690–D699
(2023).

80. Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic
Acids Res. 36, W5–W9 (2008).

81. Sakaguchi, S. et al. NeoRdRp: a comprehensive dataset for iden-
tifying RNA-dependent RNA polymerases of various RNA viruses
from metatranscriptomic data. Microbes Environ. 37,
ME22001 (2022).

82. Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel
method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

83. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a
tool for automated alignment trimming in large-scale phyloge-
netic analyses. Bioinformatics 25, 1972–1973 (2009).

Article https://doi.org/10.1038/s41467-024-52427-x

Nature Communications |         (2024) 15:8386 16

http://sourceforge.net/projects/bbmap
http://sourceforge.net/projects/bbmap
https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.1038/s41587-023-01953-y
www.nature.com/naturecommunications


84. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30,
1312–1313 (2014).

85. Le, S. Q. & Gascuel, O. An improved general amino acid repla-
cement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

86. Lobb, B., Tremblay, B. J.-M., Moreno-Hagelsieb, G. & Doxey, A. C.
PathFams: statistical detection of pathogen-associated protein
domains. BMC Genom. 22, 663 (2021).

87. R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. https://www.
r-project.org/(2024).

88. Yu, G. Using ggtree to visualize data on tree-like structures. Curr.
Protoc. Bioinform. 69, e96 (2020).

89. Wickham, H. Ggplot2: Elegant graphics for data analysis. 2nd ed.
(Springer International Publishing, Cham, Switzerland, 2016).

90. Wickham, H. et al.Welcome to the Tidyverse. JOSS4, 1686 (2019).
91. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns

and correlations in multidimensional genomic data. Bioinfor-
matics 32, 2847–2849 (2016).

92. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H.
UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput.
Graph. 20, 1983–1992 (2014).

93. Krassowski, M., Arts, M., Lagger, C. & Max. Krassowski/complex-
Upset: v1.3.5. https://doi.org/10.5281/zenodo.7314197 (2022).

94. Revell, L. J. phytools 2.0: anupdatedRecosystem forphylogenetic
comparativemethods (and other things). PeerJ. 12, e16505 (2024).

95. Paradis, E. & Schliep, K. ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics 35,
526–528 (2019).

96. Silge, J. & Robinson, D. Tidytext: text mining and analysis using
tidy data principles in R. J. Open Source Softw. 1, 37 (2016).

97. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements
and enhances circular visualization in R. Bioinformatics 30,
2811–2812 (2014).

98. Dixon, P. VEGAN, a package of R functions for community ecol-
ogy. J. Veg. Sci. 14, 927–930 (2003).

99. Convert Statistical Objects into Tidy Tibbles [R package broom
version 1.0.6]. Comprehensive R Archive Network (CRAN); [cited
2024 Sep 19]; Available from: https://CRAN.R-project.org/
package=broom (2024).

100. Wickham, H. Reshaping data with the reshape package. J. Stat.
Softw. 21, 1–20 (2007).

101. Kassambara, A. “ggplot2” Based Publication Ready Plots [R
package ggpubr version 0.6.0]. Comprehensive R Archive Net-
work (CRAN); [cited 2024Sep 19]; Available from: https://CRAN.R-
project.org/package=ggpubr (2023).

102. Tierney, C. B. B-Tierney/radx-Wastewater-Scripts: Publication
Scripts. https://doi.org/10.5281/zenodo.13207462 (2024).

Acknowledgements
This study was financially supported by the National Institute on Drug
Abuse of the National Institutes of Health (NIH) under Award Number
U01DA053941, R01AI151059, WorldQuant, and the GI Research Foun-
dation (GIRF). The content is solely the responsibility of the authors and
does not necessarily represent the official views of the NIH.

Author contributions
C.E.M., H.M.S., and G.S.G. conceived the study. They coordinated
wastewater sampling alongside all authors based at the University of

Miami. D.A. and Y.C. provided results from clinically derived samples.
S.L.W. and B.C. additionally led the sequencing of the targeted
amplicon data for wastewater and clinical samples. Authors fromWeill
Cornell (K.A.R., D.B., N.D., B.G.Y., C.M., A.G.L., J.W.H., J.P., and K.C.K.)
led the sample extraction, sequencing, and analysis of the bulk
metatranscriptomic data.Wastewater sample collection was designed
and facilitated by K.M.B., A.A., B.R., J.L., S.C., W.E.L., J.J.T., N.K., and
H.M.S. Targeted PCR was designed and facilitated by M.E.S., K.M.B.,
and A.A. Human subjects compliance was facilitated by N.S.S., C.C.B.,
and E.K. Facilities were available throughM.S., M.M.B., and G.S.G. Data
standards and data archiving were facilitated by D.V., S.C.S., and X.Y.
Clinical-based information from the hospital was available through
B.S. B.T.T. led the analysis and wrote the manuscript with C.E.M. and
H.M.S. JF designed the amplicon sequencing bioinformatic pipeline.
All authors (including G.A.G. and G.M.C.) contributed to writing and
editing the manuscript as well as providing guidance on analytic
choices and validations.

Competing interests
B.T.T. is compensated for consulting with Seed Health on microbiome
study design. C.E.M. is a co-founder of Onegevity and Biotia. No entity
listed herewas involved in funding or advising the contents of this study.
G.M.C. lists competing interests at arep.med.harvard.edu/
tech.html. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-52427-x.

Correspondence and requests for materials should be addressed to
Braden T. Tierney, Helena M. Solo-Gabriele or Christopher E. Mason.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-52427-x

Nature Communications |         (2024) 15:8386 17

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.5281/zenodo.7314197
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://doi.org/10.5281/zenodo.13207462
https://doi.org/10.1038/s41467-024-52427-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


1Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA. 2The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for
Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA. 3Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
4Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA. 5Department of Pathology and Laboratory
Medicine, University of Miami Miller School of Medicine, Miami, FL, USA. 6Department of Medicine, University of Miami Miller School of Medicine, Miami,
FL, USA. 7Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA. 8Department of Molecular & Cellular
Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA. 9Sylvester Comprehensive Cancer Center, University of Miami Miller School of
Medicine, Miami, FL, USA. 10Institute for Data Science &Computing, University of Miami, Coral Gables, FL, USA. 11Environmental Health and Safety, University
of Miami, Miami, FL, USA. 12Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL, USA. 13Facilities and
Operations, University of Miami, Coral Gables, FL, USA. 14Seed Health, Venice, CA, USA. 15Harvard Medical School and the Wyss Institute, Boston, MA, USA.
16The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA. e-mail: btt4001@med.cornell.edu; hmsolo@mia-
mi.edu; chm2042@med.cornell.edu

Article https://doi.org/10.1038/s41467-024-52427-x

Nature Communications |         (2024) 15:8386 18

mailto:btt4001@med.cornell.edu
mailto:hmsolo@miami.edu
mailto:hmsolo@miami.edu
mailto:chm2042@med.cornell.edu
www.nature.com/naturecommunications

	Towards geospatially-resolved public-health surveillance via wastewater sequencing
	Results
	Geospatially resolved wastewater vs. clinical SARS-CoV-2 variant tracking
	Wastewater contains human gut microbial taxa that have reported associations with nutrition and host health
	De novo assembly and short-read alignment provide discrete views of wastewater virome composition
	Wastewater reveals numerous pathogenic viruses and novel viral clades
	Antimicrobial resistance genes in wastewater are associated with hospital antibiotic prescription levels

	Discussion
	Methods
	Study design and IRB approval
	Sample collection
	Primary concentration and downstream processing of wastewater

	Targeted sequencing of SARS-CoV-2
	Detection of SARS-CoV-2 variants in ARTIC data
	Bulk RNA sequencing
	Metatranscriptomic quality control and short-read taxonomic profiling
	Removal of potential kitome or sequencing contaminants
	Microbial Association Study
	De novo assembly, viral contig identification and annotation, gene catalog construction, and Resistance Gene/Open-Reading-Frame identification
	Viral phylogeny construction
	Analysis of pathogenic genes in wastewater
	Association between Antimicrobial Resistance Genes and hospital prescription data
	Additional software
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




