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Understanding species-specific and
conserved RNA-protein interactions
in vivo and in vitro

Sarah E. Harris 1,2, Maria S. Alexis3,8, Gilbert Giri2,4, Francisco F. Cavazos Jr2,
Yue Hu 2, Jernej Murn 5,6, Maria M. Aleman2, Christopher B. Burge 3 &
Daniel Dominguez 1,2,4,7

While evolution is often considered from a DNA- and protein-centric view,
RNA-based regulation can also impact gene expression and protein
sequences. Here we examine interspecies differences in RNA-protein inter-
actions using the conserved neuronal RNA-binding protein, Unkempt (UNK)
as model. We find that roughly half of mRNAs bound in human are also
bound in mouse. Unexpectedly, even when transcript-level binding was
conserved across species differential motif usage was prevalent. To under-
stand the biochemical basis of UNK-RNA interactions, we reconstitute the
human and mouse UNK-RNA interactomes using a high-throughput bio-
chemical assay. We uncover detailed features driving binding, show that
in vivo patterns are captured in vitro, find that highly conserved sites are the
strongest bound, and associate binding strength with downstream regula-
tion. Furthermore, subtle sequence differences surrounding motifs are key
determinants of species-specific binding. We highlight the complex features
driving protein-RNA interactions and how these evolve to confer species-
specific regulation.

Species divergence and adaptation rely on a delicate balance of
robustness—the ability to withstand mutations without serious dele-
terious effects on fitness—and evolvability—the susceptibility to
developing a novel phenotype1,2. Driving this balance are changes in
gene expression programs and coding sequences2–5. Understanding
how changes in trans (nucleic acid-binding proteins) and cis (nucleic
acid sequences) impact gene regulation across species remains an
important challenge. While changes in cis and trans across species are
both important, cis-regulatory elements change more rapidly than
trans factor amino acids or binding preferences6,7. For example, tran-
scription factors (TFs) and RNA-binding proteins (RBPs) are highly
conserved over long evolutionary distances while regions harboring

cis-regulatory elements that these proteins bind can vary drastically
over the same distances8,9.

Most previous studies have taken a DNA- and protein-centric view
(reviewed by Villar et al.10 and Mitsis et al.11); however, RNA regulation
influences both expression levels as well as protein-coding sequences,
resulting in potential widespread effects12–14. RBPs constitute a large
class of pan-essential regulatory factors15,16 that drive RNA regulation,
contributing significantly to transcription, splicing, and translation to
influence the expression and identity of proteins produced17–20. These
processes are dictated by the strength of the interaction betweenRBPs
and their RNA targets21–25. In the simplest model of RNA regulation,
RBPs bind short sequence motifs (3–8 nucleotides) within RNA to
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influence its regulation26. However, these interactions are complex as
change, loss, or gain of a single nucleotide within or surrounding a
motif can greatly impact binding27–29.

RBPs themselves have a striking level of amino acid conservation
with many RNA-binding domains (RBDs) remaining nearly identical,
even over hundreds of millions of years30. Generally, RBPs tend to be
more conserved than their DNA-binding counterparts, transcription
factors9. Paradoxically, RNAprocessing events regulatedbyRBPs, such
as alternative splicing and translation, have been found to be more
species-specific and to evolve more rapidly than gene expression
programs (i.e., tissue-specific expression across species)31–34.

How often are regulatory elements that control gene expression
and RNA processing conserved across species? If binding has chan-
ged, what are the mechanisms underlying that change? Previous
studies on TF binding to regulatory elements have addressed this in a
number of species6,7,35–38 (and reviewed by Villar et al.10). Multiple
studies—including one employing chromatin immunoprecipitation
and sequencing (ChIP-Seq) across five vertebrates—have found that
although TFs are highly conserved, cis-regulatory elements evolve
rapidly and primarily dictate TF binding profiles6. More specifically,
TF binding profiles (i.e., bound genes) demonstrate less than 40%
conservation between human andmouse, even though the individual
TFs studied are nearly identical ( >95% amino acid conservation for
the full-length protein) at the amino acid level and have identical or
near-identical binding preferences7. When a human chromosome is
placed in a mouse context, TF binding predominantly follows the
human binding patterns rather than that of the mouse35, indicating
that binding pattern changes are primarily cis-directed. Of course,
these forms of interactome evolution are partially dependent on
evolutionary time and the individual TFs being assessed39.

Few similar studies of species-specific RNA-protein interactions
have been conducted. But some emerging themes parallel the simila-
rities to that of TF-DNA interactions. For example, previous work has
examined the conservation of the Pumilio and FBF (Puf) superfamily of
proteins and their interactomes40–43. Puf3 exhibits highly similar RNA-
binding specificities across fungal species42; however, Puf3 targets
change significantly between S. cerevisiae and N. crassa43. More strik-
ingly, targets bound by Puf3 in one species are bound by a different
RBP—Puf4/5—in another43, highlighting the complex nature of RNA
binding site evolution and the interplay between cis and trans. Within
species, single nucleotide polymorphisms (SNPs) have been shown to
impact RBP-RNA interactions. A comprehensive analysis of RBP-RNA
interaction studies in two cell types identified over a thousand cases of
allele-specific RBP-RNA interactions, some of which were validated
biochemically and had functional impacts on RNA regulation44. The
complex paths in which RNA regulation evolves have been previously
reviewed45, but much work is still needed to understand how the
underlying driving forces, namely RBP-RNA interactions, drive changes
in regulation.

To understand species-specific RNA binding, we use available
individual-nucleotide resolution crosslinking and immunoprecipita-
tion (iCLIP) data27 from a neuronal RBP, unkempt (UNK), in human
and mouse. UNK regulates neuronal morphology, is a negative reg-
ulator of translation, mildly destabilizes RNA targets, and associates
with polysomes27,46,47. We identify species-specific and shared UNK
binding sites and find that ~45% of UNK transcript binding was con-
served across species. Importantly, while the binding of transcripts is
conserved, the individual motifs that are bound are far less con-
served, often switching between species. We reconstitute the in vivo
UNK-RNA interactomes of human and mouse in vitro to understand
thedriving forces underlying species-specific binding and regulation.
We find that while motif turnover is an important mediator of
species-specific binding, contextual sequence and structural features
in which motifs are embedded are of comparable importance and
contribute to binding site turnover. We extend our studies across

100 vertebrates to understand how sequence changes over longer
time scales affect binding and find striking correlations between
evolutionary distances, individual binding site conservation, and
strength of UNK binding. This work deepens our understanding of
cis-regulatory element evolution and highlights the complex nature
of evolving RNA binding sites.

Results
UNK-RNA binding patterns vary across species
We undertook an RNA-centric view and sought to determine how RNA
binding sites change or are conserved across species. We focused on
the conserved neuronal RBP, unkempt (UNK) for the following rea-
sons: i) UNK has a well-defined RNA-binding motif supported by
structural studies46; ii) UNK is 95% conserved between human and
mouse with only one amino acid difference within the RNA-binding
zinc finger domains (ZnFs)48–50; iii) Murn and coworkers demonstrated
that even the sea sponge (Amphimedon queenslandica) UNK paralog
functionally rescues knockdown of UNK in human cell lines46 even
though these species only share 53% similarity at the protein level and
80% similarity within the RBDs48–50. Thus, this level of functional con-
servation provides an opportunity to study changes in UNK binding
sites across species primarily driven by changes in RNA sequence
rather than in the protein’s binding properties.

We used UNK iCLIP data in human and mouse neuronal cells and
tissue, respectively27, to identify species-specific and conserved UNK
binding sites (Supplementary Fig. 1A). Only genes expressed at greater
than 5 transcripts per million (TPM) in both cell lines were included.
Comparing one-to-one binding sites across species at the transcript
level, we observe that ~45% of transcripts are bound in both species
(Fig. 1A-Venn diagram; p = 6e-94, hypergeometric test). As iCLIP allows
for individual nucleotide level determination of binding sites, we fur-
ther investigated where on each transcript UNK was bound. UNK
binding sites require a UAG coremotif, which has been identified both
in vitro and in vivo26,27. In instances where transcript-level binding
wasconservedbetweenhumanandmouse, roughly half of bindingwas
observed at aligned (homologous) motifs across species. In cases
where binding sites within transcripts changed across species, motif
loss only accounted for a minority of these changes. That is, in many
cases both human and mouse preserved a UAG motif in the same
location, yet binding was often identified elsewhere on the transcript
(Fig. 1A-top pie chart). Likewise, when comparing motif differences in
transcripts only bound in human or mouse, motifs were preserved
across species in over 70% of orthologous regions (Fig. 1A-bottom pie
charts) yet binding was differential. Thus, while UNK protein is highly
conserved, engagement of UNK with specific UAG motifs often varies
across species.

nsRBNS measures natural sequence binding differences in vitro
at massive scale
While iCLIP is a powerful technique that allows for the derivation of
nucleotide-level binding sites, several experimental factors, including
RNA crosslinking efficiencies and biases across RBPs, cell types, and
tissues, complicate its interpretation. Another important considera-
tion for understanding binding site conservation across species via
iCLIP is that false negative rates of CLIP experiments are largely
unknown51. Finally, the strength of RBP-RNA interactions found in
CLIP-based experiments have a limited dynamic range. That is, binding
affinity and occupancy are not easily determined, and binding is often
interpreted as binary when a continuum of occupancy levels likely
occur in vivo. To mitigate CLIP biases and understand binding differ-
ences across species due to the intrinsic properties of the RNA-protein
interactions, we sought to reconstitute the human and mouse UNK-
RNA interactomes in vitro.

We derived UNK binding sites from iCLIP data in one-to-one
orthologous human and mouse genes (see Methods) and designed
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12,287 natural RNA sequences, each 120 nucleotides long. Contained
within this pool were UNK binding sites identified via iCLIP in human
neuronal cells (n = 2023) and mouse brain tissue (n = 2346), as well as
orthologous regions (human: n = 2335; mouse, n = 1906) whether or
not they displayed evidence of binding in cells (Fig. 1B). Sequences
were designed such that UAGs identified via iCLIP were located in the
center of each oligo whenever possible (Methods). Non-bound control
regions (n = 2474) were also selected and matched for UAG content
(Fig. 1B). Additionally, 11,967 mutated oligos were also included and
are discussed below.

An arrayof these natural sequenceDNAoligoswas synthesized and
underwent in vitro transcription to generate anRNApool. To determine
how UNK protein binds these 25,000 sequences, we performed natural
sequence RNA Bind-n-Seq26,52 (nsRBNS), a quantitative large-scale
in vitro binding assay (Fig. 1B). Briefly, the RNA pool of natural
sequences was incubated with recombinant protein, protein-RNA
complexes were immobilized on magnetic beads, washed, and RNA
was isolated. RNA sequencing was used to quantify the abundance of
each RNA bound to UNK as well as the abundance of each RNA in
the input RNA pool. These experiments yield binding enrichments
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Fig. 1 | Design and validation of natural sequence RNA bind-n-seq (nsRBNS).
A (Venn diagram) Transcript-level conservation of iCLIP UNK hits between human
neuronal cells (SH-SY5Y) and mouse brain tissue. Significance determined via
hypergeometric test. (Pie charts) Motif level conservation of iCLIP UNK hits
between human neuronal cells (SH-SY5Y) and mouse brain tissue. B Design of
natural sequence oligo pool and layout of nsRBNS. C Correlation plot of two
experimental UNK nsRBNS replicates. Pearson’s correlation coefficient and p val
included. D Cumulative distribution function of log2 nsRBNS enrichment of all

oligos separated by UAG motif content. Inset shows significance values for all
comparisons via two-sided KS test and corrected for multiple comparisons via the
BH procedure. Red denotes significant (p ≤0.05). Values are as follows: a (ns), f
(p ≤0.0001). E Scatter plot of log2 nsRBNS enrichment of wild-type (Y-axis) versus
motif mutant (X-axis) oligos. Log2 change in enrichment (wt-mut) was calculated
for each sequence pair: >0.5 defined as bound better in wt (blue), <−0.5 defined as
bound better in mut (red), 0 ± 0.5 defined as similar binding (grey). Significance
determined via paired, one-sided Wilcoxon test.
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(R values) for eacholigowhich aredefined as the frequency (normalized
count for library size) of a given oligo bound toUNKvs the frequency of
that oligo in the inputRNA (Methods). GreaterR values indicate a higher
degree of binding. Previous work has demonstrated that nsRBNS cor-
relates well with in vivo binding and regulation53,54. This approach
enabled us to test the binding of nearly 25 thousand sequences in tan-
dem, with a wide range of in vivo binding properties.

UNK nsRBNS experiments were performed in duplicate and at
different protein concentrations with robust cross-replicate correla-
tion (Fig. 1C; R =0.95, Pearson’s correlation). We first asked whether
nsRBNS is capable of capturing binding differences based on pre-
viously derived UNKmotifs. UNK is known to bind a primary core UAG
motif with secondary U/A-rich motifs26,27. Presence of more than one
UNKmotif within anRNA has been shown to enhance binding26, driven
by engagement with the tandem ZnFs of UNK46. Indeed, when we
tested the individual domains (ZnF1-3 or ZnF4-6) via random RBNS as
previouslydescribed26,52, we observed strongUAGbindingwith ZnF4-6
(the primary domains) and U/A rich motifs with ZnF1-3 (Supplemen-
tary Fig. 1B). These data support previous crystal structures showing
UAG binding with ZnF4-6 and U/A binding via ZnF1-346. Within our
pool, we observe that binding enrichment increases with increasing
UAG count (Fig. 1D), consistent with previous studies26. Similar but
slightly more modest increases in binding occurred with increasing
counts of UUU and UUA (Supplementary Fig. 1C, D).

To further demonstrate that the core UAG motif is important for
binding, we included central motif mutants. For these sequences, if
there was a central UAG motif present within the 120 nt region, it was
mutated to CCG to assess whether binding is reduced (Methods). As
expected, and as reported previously27, mutating the central UAG
motif is enough to drastically diminish binding (Fig. 1E). This obser-
vation was further validated via an in vitro qPCR-based binding assay
for one gene, GART. We observed that mutation of the central UAG
motif to a CCG drastically diminished binding (Supplementary Fig. 1E;
p ≤0.01, one-sided, paired Wilcoxon test). Finally, given that UNK is
known to bind single-stranded RNA26, we computed the base-pairing
probability of the central 10 nt region harboring binding sites using a
thermodynamic RNA folding algorithm55. As the mean base-pairing
probability of this central region increased (e.g., more structure
occluding the region) enrichment values decreased (Supplementary
Fig. 1F; p ≤0.0001, KS test). These data confirm nsRBNS as a replicable
in vitro assay, capable of measuring binding differences based on
sequence features for 25,000 sequences in parallel.

In vivo binding patterns and regulation can be recapitulated
in vitro
Wenext testedwhether in vivobindingpatterns couldbe recapitulated
in vitro. For our in vitro analysis, we defined three classes of binding
sites: control where no evidence of binding was detected via iCLIP in
either species; bound, where binding was detected via iCLIP; and
orthologous notbound,where siteswerebound in one species andnot
bound in the other (Fig. 2A, diagram). As UNK has been shown to bind
primarily within the coding sequences (CDS) and secondarily within 3’
untranslated regions (UTRs)27, we assessed binding patterns individu-
ally for these regions. Within CDS binding sites, we found that ortho-
logous not bound oligos had similar enrichments as control oligos
whereas bound oligos were significantly more enriched (Fig. 2B,
p ≤0.01, KS test). In UTRs, bound oligoswere again themost enriched,
but in this case orthologous not bound sites in UTRs had greater
enrichments than controls (Fig. 2C, p ≤0.0001, KS test). In fact, UTR
sites overall had better enrichments than CDS, perhaps due to UTRs
being generally more enriched over CDS for U- and A- rich 3mers that
are bound by UNK (Supplementary Fig. 2A). Thus, nsRBNS captures
binding features derived from in vivo iCLIP.

nsRBNS enrichment values span several orders of magnitude, dri-
ven by differences in affinity and avidity (Fig. 1D). Although occurring in

a farmore complex environment, binding in cells likely also occurs on a
spectrum driven by affinity, though more difficult to capture experi-
mentally. To compare in vivo to in vitro patterns, we asked what pro-
portion of species-specific binding observed in vivo could be captured
in vitro. We measured how often a species-specific site was better
bound than its non-bound ortholog and found that ~60% (65% for CDS
and 58% for UTR) of binding sites mirrored the in vivo trend (Supple-
mentary Fig. 2B–E). However, the degree to which species-specific
binding was recapitulated in vitro ranged from no difference to greater
than 100-fold difference between the bound and unbound orthologous
site. To better understand these patterns, we turned to in vivo-bound
sites where we also mutated the UAG motif (see above Fig. 1E). We
reasoned that because UAG drives binding, these mutants would be
representative of minimal binding. Indeed, in ~80% (83% for CDS and
81% for UTR) of cases UAG mutation diminished binding (Supplemen-
tary Fig. 2B, C). In aggregate,we found that orthologous not bound sites
had an intermediate enrichment, that is, not as weakly bound as UAG
mutants but significantly less bound in vitro than the bound category
(Fig. 2B, C-inset). Consistent with these findings and what is known
about UNK-RNA interactions, the difference in UAG content between
human and mouse orthologous sites had a large impact on differential
binding (Fig. 2D), with gain of UAG enhancing binding and loss
decreasing binding. The same was true of the known secondary motifs
UUU (Supplementary Fig. 2F) and UUA (Supplementary Fig. 2G). Addi-
tionally, the greater the difference in percent identity between the 120
nt human and mouse binding sites, the greater the absolute difference
in enrichments across species (Supplementary Fig. 2H, I). These data
highlight that in vivo binding patterns can be recapitulated in vitro.
However, we note that some in vivo differences are not captured
in vitro, likely reflecting a combination of the cellular environment and
limitations of in vivo (CLIP) and in vitro (nsRBNS) assays.

In vitro binding patterns correlate with in vivo regulation
To determine whether these in vitro binding patterns also correspond
with in vivo regulatory patterns, we examined ribosome profiling data
upon UNK induction47. UNK is a translational repressor27, and mildly
destabilizes its target RNAs47, thus UNK-regulated RNAs are predicted
to have decreased translation as previously shown27. Genes with peaks
identified via iCLIP27 in both human and mouse were more transla-
tionally repressed than genes with peaks only identified in human or
genes lacking UNK peaks (Fig. 2E). These data highlight that conserved
targets display stronger regulation, consistent with what has been
observed for microRNAs and splicing factors56–59. We next asked
whether the strength of binding from in vitro (nsRBNS) also had an
impact on regulation. Greater in vitro binding enrichments were
associatedwith increased translational suppression for transcripts that
were common tomouse and human or to human alone (Fig. 2E). These
data support a direct relationship between interactions measured
in vitro and binding and regulation assessed in vivo.

In vivo binding differences can be recapitulated at the
binding site
As noted above, iCLIP analysis revealed that while binding can be
conserved at the transcript level, specific binding locations often
change (Fig. 3A). For example, within theGGPS1 transcript, we observe
two species-specific binding sites (Fig. 3B). In vivo, this transcript is
bound in both human and mouse, but different binding sites are used
(located 122 nt apart in the alignment) even though theUAGmotifs are
conserved (Fig. 3B, bottom). In our in vitro nsRBNS assay, we see
enrichments thatmirror these in vivo patterns (Fig. 3B, top) prompting
us to use this biochemical data to examine binding site preferences.

To determine how binding location changes across species in an
in vitro context, we included four additional classes of oligos within
our pool: binding conserved, where both the motif and binding
location were maintained across species; bound elsewhere, where
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transcript binding was conserved, yet there was still differential motif
usage across species (evenwhenamotifwaspreserved across species);
not bound, where the motif was maintained yet binding was not
detected in the orthologous species (Fig. 3A); and perfectly conserved,
the subset of binding conserved oligos with identical sequences
between human and mouse. In aggregate, the degree of conserved
binding in vivo correlated with in vitro enrichments. Least enriched
were the not bound category followed by bound elsewhere, then
binding conserved, and most enriched were perfectly conserved sites
(Fig. 3C, D and Supplementary Fig. 3A, B). Surprisingly, in vitro binding
followed in vivo binding even when only regions with UAG motifs
conserved across human and mouse were considered (Fig. 3D and
Supplementary Fig. 3B). Similar trends were observed in CDS and UTR
regions (CDS in Fig. 3C, D; UTR in Supplementary Fig. 3A, B). These
data demonstrate that factors beyond the core motif impact RBP-RNA
interactions, as our data shows that UNK can switch UAG motif usage
between species. The fact that these preferences can be captured

in vitro indicates that cis sequence changes surrounding themotifs are
an important driver of binding.

Broadly, when examining sequence conservation effects on
in vitro enrichment differences, we observe that more sequence con-
served oligo pairs have more similar nsRBNS enrichments than less
sequence conserved oligo pairs, highlighting the robustness of
sequence evolution to binding sites (Supplementary Fig. 3C).
Interestingly, when we compare sequence conservation for all three
categories of oligo pairs—binding conserved, bound elsewhere, and
not bound—we observe a categorial breakdown in percent sequence
identity. The binding conserved oligo pairs are most conserved at the
sequence level followed by the not bound category and the bound
elsewhere group being the least conserved at the sequence level
(Supplementary Fig. 3D; p ≤0.001, Wilcoxon test). It should be noted
that both the not bound and bound elsewhere categories involve a
species-specific in vivo binding event, that is, binding is observed in
one species but not the other.
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plots was determined via two-sided pairedWilcoxon test (n = 1373 sequences in (B)
and 987 sequences in (C)). Significance marks are as follows: ****(p ≤0.0001).
Centre line denotesmedian (50th percentile) with bounds of box representing 25th
to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are
denoted as individual points. Inset heatmaps show significance values for all
comparisons via two-sided KS test and corrected for multiple comparisons via the
BH procedure for the cumulative distribution curves. Red denotes significant

(p≤0.05). Values are as follows: d (p ≤0.01), f (p ≤0.0001). D Cumulative dis-
tribution function of log2 fold nsRBNS enrichment change of in vivo bound over
in vivo not bound oligos separated by ΔUAG content. Inset shows significance
values for all comparisons via two-sided KS test and corrected for multiple com-
parisons via the BH procedure. Red denotes significant (p≤0.05). Values are as
follows: a (ns), c (p≤0.05), e (p≤0.001), f (p≤0.0001). E Cumulative distribution
function of RiboSeq fold change, log2 separated via iCLIP detection. nsRBNS
enrichment cutoffs defined as “less enrichment” <1 and “better enrichment” >1.
Insets show significance values for all comparisons via two-sided KS test and cor-
rected for multiple comparisons via the BH procedure. Grey denotes nearing sig-
nificance (p ≤0.1). Red denotes significant (p ≤0.05). Values are as follows: b
(p≤0.1), e (p≤0.001), f (p≤0.0001).
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To examine these inter-species sequence differences on a global
scale more specifically, we analyzed the 3mer enrichment across
human and mouse where the human oligo was bound better, despite
maintenance of a UAG. Looking across all possible 3mers upstream
and downstream of the central UAG, we observe that human bound
sequences aremore enriched inA andU-richmotifs centrally than their
unbound mouse counterparts (Supplementary Fig. 3E). We hypothe-
sized that these contextual sequence differences may drive UNK
binding due to the dual-RBD architecture of UNK where ZnF4-6 med-
iates primary UAG association while ZnF1-3 binds secondarily to U/A
rich motifs46.

To test this, we turned to fluorescence polarization (FP) to
understand to what extent the dual-RBD architecture aids in UNK
binding patterns. When comparing the binding preferences of ZnF1-3,

ZnF4-6, and ZnF1-6 to a UAG-containing oligo with downstream U-rich
content, we observe that ZnF1-3 binds weakly with a Kd of ~2 µM while
ZnF4-6bindsmore than5-foldbetter at ~420nM.However,whenZnF1-3
and ZnF4-6 bind in combination, binding is enhanced 10-fold to a
Kd ~ 40nM (Supplementary Fig. 3F). When comparing this to the bind-
ing patterns of ZnF1-6 with an RNA oligo with only a UAGmotif, the Kd

increases similar to that of ZnF4-6 (Supplementary Fig. 3F). These data
highlight the importance of UNK’s multiple domains for selecting tar-
gets and is supported by previous work on cooperativity and avidity for
other RBPs (reviewed by Achsel and Bagni21 and Corley et al.24).

Of note, binding sites perfectly conserved (100% identity)
between human and mouse were among the strongest bound. In fact,
of these regions we found that fewer than 3% were bound in only one
species in vivo, indicating that a high degree of conservation within

Fig. 3 | Analysis of species-specific syntenic motif level binding patterns.
A Definition of binding conserved, bound elsewhere, and not bound oligo classes
used for species-specific transcript regional binding analysis. B Conservation and
binding of GGPS1 orthologous pairs. (left) Log2 nsRBNS enrichment values from
nsRBNS for human bound (purple triangle), mouse not bound (light green circle),
mouse bound (green open triangle), and human not bound (light purple open
circle) (n = 2). (right) Alignment of human bound (purple triangle) to mouse not
bound (light green circle) and mouse bound (green open triangle) to human not
bound (purple open circle). Note: full oligos were used for alignment, but only the
central region is shown. C, D Cumulative distribution function of log2 nsRBNS
enrichment of control (light grey; dotted), not bound (teal), bound elsewhere
(purple), binding conserved (blue), and perfectly conserved (orange) C all CDS and
Dmotif conserved CDS oligos. Insets show significance values for all comparisons

via two-sidedKS test and corrected formultiple comparisons via the BHprocedure.
Red denotes significant (p ≤0.05). Values are as follows: a (ns), c (p≤0.05),
d (p≤0.01), e (p≤0.001), f (p ≤0.0001). E Cumulative distribution function of
RiboSeq fold change, log2 separated via iCLIP detection and sequence conserva-
tion. Inset shows significance values for all comparisons via two-sided KS test and
corrected for multiple comparisons via the BH procedure. Red denotes significant
(p ≤0.05). Values are as follows: a (ns), d (p≤0.01), e (p≤0.001), f (p≤0.0001).
F Log2 fold change of mean base pair probability of the central region of perfectly
conserved (n= 221 sequences), binding conserved (n = 155 sequences), bound
elsewhere (n = 574 sequences), and not bound (n = 1395 sequences) oligos nor-
malized toUAG-containingCDS controls (see “Methods”). Error bars showstandard
error of the mean.
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larger sequence regions is associated with conserved binding. To
associate this degree of conservation with in vivo regulation, we again
turned to ribosome profiling after UNK induction and found that
transcripts with perfectly conserved binding sites were more transla-
tionally suppressed than other bound transcripts (Fig. 3E).

We hypothesized that these high-affinity binding sites may be
more accessible (i.e., have reduced levels of RNA secondary structure).
To this end, we aligned sequences by their central UAG, performed in
silico folding55, and compared each of the above categories. Indeed,
perfectly conserved binding sites were themost accessible (with lower
base pair probabilities (BPP)) at and downstreamof themotif (Fig. 3F).
Consistent with the preferences of UNK and many other RBPs for
single-stranded RNA26, accessibility appears to drive evolutionary
changes in RNA binding. Simply put, conservation of context is a cri-
tically important mediator of conserved RNA-protein interactions.

Intra-species binding patterns are dependent on cellular factors
To compare these binding preferences to intra-species changes, we
examined available iCLIP data from HeLa cells overexpressing UNK
from the same study27. Only genes with greater than 5 TPM expres-
sion in both cell lines and one-to-one orthologs across species were
included.When looking at transcript-level conservation, we observed
that approximately 51% of UNK transcripts were bound in both cell
types (Supplementary Fig. 3G; p = 2.3e-202, hypergeometric test),
similar to that observed in human vs. mouse comparisons. Looking
further at the binding site level, only 41% occurred at the same motif
(Supplementary Fig. 3H), again similar to the cross-species compar-
isons. However, when we turned to in vitro nsRBNS, sites that were
bound in both cell types versus only bound in one had no bio-
chemical difference in binding as enrichments were largely similar
(Supplementary Fig. 3I). These data suggest that differing cellular
environments (likely including presence of different complements of
RBPs) can influence binding locations to a substantial degree.

To compare these patterns more generally to a larger group of
RBPs across cell types within humans, we assessed binding of 14 RBPs
(withwell-definedmotifs) fromavailable enhancedCLIP (eCLIP) data in
HepG2 and K562 cells60,61 (Supplementary Fig. 3J). Although eCLIP
differs from iCLIP61,62 (reviewed by Hafner et al.63), we reasoned that
both types of experiments should yield similar information. Using
these data, accounting for only genes with similar expression across
samples, we found that RBP binding sites—although variable from RBP
to RBP—arewell-conserved at the transcript level across cell types with
~64% conservation on average for exonic binding and ~53% conserva-
tion on average for non-exonic binding (e.g., introns) between HepG2
and K562 cells. At the binding site level, approximately 54% of exonic
peaks and 41% of non-exonic peaks are bound at the samemotif across
cell types (Supplementary Fig. 3K). As expected, peaks with well-
definedmotifs displayed a greater degree of overlap between cell lines
(Supplementary Fig. 3L, M). These observations are similar to what we
observed for UNK between SH-SY5Y versus HeLa cells with iCLIP (Fig
S3G, H). Thus, although limited to a small cohort of RBPs, these data
suggest that whereas inter-species differences can be largely influ-
enced by cis changes that can be captured biochemically (as discussed
above), intra-species differences may be dictated by changing cellular
environment across tissues (i.e., RNA/RBP expression levels, levels of
other RBPs, etc.).

Sequence contextual changes impact species-specific binding
When binding is species-specific, is it possible to identify the
sequences that drive binding in one species but not the other? In the
simplest scenario this would be a region harboring a UAG motif that
is found in only one species. To test whether introduction of
sequences from an in vivo-bound species to the orthologous region
that displayed no in vivo binding could restore binding, we designed
chimeric mutants. Starting with the unbound mouse sequence, we

substituted 10 nucleotide segments of the bound sequence into the
unbound sequence to test which parts, if any, of the human sequence
could confer binding (Fig. 4A).

Within these chimeric oligos we included two classes: UAG
Change,where the centralUAGwas present in the bound sequencebut
not in the unbound mouse sequence; and Context Change, where the
UAG was conserved in both. On average, 18 chimeras for UAG Change
and 24 chimeras for Context Change were considered per position.
As expected, in a UAG Change example, substitution of the central 10
bases which include the UAG motif (58–67) significantly enhanced
binding (Fig. 4B; p ≤0.001; one-sided, paired Wilcoxon test).
Supporting the importance of contextual features, other positions not
harboring the central UAG could also confer enhanced binding but no
single chimerized position contributed as significantly as position
58–67 which harbored the UAG (Fig. 4B).

Of particular interest were the not bound cases where amotif was
conserved across species yet binding was lost (Fig. 3A). In Context
Change chimeras, we noted a boost in binding upon changing of
positions 58–67 (that harbor the central UAG) despite the motif being
present in both species, suggesting contextual differences. Impor-
tantly, we also found swapping the segment just downstream (68-77)
appeared to enhance binding (Fig. 4C), though statistical significance
was not reached after correcting for multiple tests in this small cohort
of binding sites tested. Enhancing chimeric sequences—mostly down-
streamof the coremotif—tend to beU/A rich (Supplementary Fig. 4A),
likely leading to increased avidity and further engagement of UNK’s
secondary RBD46. We used all natural (i.e. non-mutated, non-chimeric)
sequences to create a linear model (Supplementary Fig. 4B–D) and
found that UAG has the strongest positive correlation with enrich-
ment, with a coefficient of 0.55. Additionally, U/A rich 3mers also had
positive and significant contributions, highlighting the importances of
downstream motifs in binding. Further, GC had a strong negative
correlation with enrichment, highlighting the importance of structure
(or lack thereof) to binding.

RNA binding is complicated and multi-factorial. Therefore, we
hypothesized that chimerization of 10 nucleotides might not be suffi-
cient to recover binding across species and that longer-range effects
could be at play. Thus, we also included double chimeras where every
possible combination of single chimeras was tested for binding
(Fig. 4A). As we expected, double chimerization of both UAG Change
(Fig. 4D) and Context Change (Fig. 4F) cases improved binding inmany
cases where single substitutions did not. Interestingly, almost all com-
binations with position 58–67 for UAG Change chimeras significantly
enhanced binding (Supplementary Fig. 4E–G). Double chimerization
enhanced binding for 70% of UAG Change chimeras whereas single
chimerization only achieved 21% restoration (Fig. 4E). Likewise, for
Context Change double chimerization enhanced binding up to 52%
from 24% with single chimeras (Fig. 4G). For approximately 50% of
double chimeras, double chimerization not only restores binding but
also led to binding at the level of the bound human sequence (Supple-
mentary Fig. 4H,I; p ≤0.01, one-sided, paired Wilcoxon test).

In one example, UNK bound human GTPB4 approximately 500-
fold better thanmouseGtpb4. Single chimerization of the central UAG-
containing region (58–67) restored binding ~30-fold (Fig. 4H), while
double chimerization with positions 68–77 improved binding an
additional 3.5-fold (Fig. 4H). We validated these binding patterns for
GTPB4 via FPwith a 6-FAM-taggedRNA and fit a Kd for humanGTPB4 at
262.6 nM,mouseGtbp4 at >5 µM, and chi58-Gtpb4 at 304.8 nM (Fig. 4I).
Thus, evolution of UNK-RNA binding involves substantial contribu-
tions of both primary motif level and contextual changes.

Sequence differences across 100 vertebrates affect UNK-RNA
interactions in vitro
To expand our phylogenetic scope beyond human/mouse, we inves-
tigated binding patterns across 100 vertebrates. Selecting the top 250
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boundhuman sequences fromouroriginal nsRBNSassay, we sought to
identify orthologous regions from 100 vertebrates64,65, keeping only
those where 25 or more species were aligned (Fig. 5A and S5A; see
Methods). Within this set of sequences, we also included total motif
mutants for each humanoligo where everyUAGwasmutated to a CCG

to define cutoffs for null binding (Methods). We performed nsRBNS
as described above and found robust and reproducible binding (Sup-
plementary Fig. 5B; R =0.97, Pearson’s correlation). As an initial ana-
lysis, we measured the decrease in binding between wild-type regions
and total motif mutant regions in human. As expected, we found that

Fig. 4 | Analysis of regional impacts on binding. A Design of single and double
chimera oligos. B Design and box and whisker plot of normalized log2 nsRBNS
enrichment (chimera/wt) for UAG Change single chimeras. Significance was
determined via paired, one-sided Wilcoxon test and corrected for multiple com-
parisons via the BH procedure. Chimerization at positions 58–67 was found to be
significant (p =0.0005). Centre line denotes median (50th percentile) with bounds
of box representing 25th to 75th percentiles and the whiskers denoting 5th to 95th
percentiles. Outliers are denoted as individual points. C Design and box and
whisker plot of normalized log2 nsRBNS enrichment (chimera/wt) for Context
Change single chimeras. Significance was determined via paired, one-sided Wil-
coxon test and corrected formultiple comparisons via theBHprocedure. Following
multiple comparison correction, no positions were determined to be significant.
Centre line denotesmedian (50th percentile) with bounds of box representing 25th

to 75th percentiles and the whiskers denoting 5th to 95th percentiles. Outliers are
denoted as individual points. D Heat map of median normalized log2 nsRBNS
enrichment (chimera/wt) forUAGChange single anddouble chimeras.E Fractionof
UAG Change chimeras enhanced with binding after single (red) or double (grey,
striped) chimerization. FHeatmap of median normalized log2 nsRBNS enrichment
(chimera/wt) for “Context Change” single and double chimeras. G Fraction of
Context Change chimeras enhancedwith binding after single (red) or double (grey,
striped) chimerization. H Log2 nsRBNS enrichment values (n = 2) for human,
mouse, single chimera, and double chimeraGTPB4 at 5, 50, and 500nM UNK. Data
are presented as mean values ± SD. I Fluorescence polarization binding curves
(n = 3) for human GTPB4 (purple circle), mouse gtpb4 (green square), and chi58-67
gtpb4 (blue triangle) RNA oligos incubated with UNK. Data are presented as mean
values ± SD.
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Fig. 5 | Evolutionary conservation of binding. A Simplified tree schematic of
vertebrates used for natural sequence RBNS (not all species shown). B Delta log2
100vertRBNS enrichment, percent RNA sequence identity, percent UNK similarity
(full length-grey and RBDs-green), and evolutionary distance in millions of years
against 100 vertebrates for the aligned sequences from the top human bound
oligos. Red dotted line shows average for total motif mutant. Red solid line shows
average for human binding. Error bars show standard error of the mean (SEM).
C Mean percent RNA sequence identity (Y axis) versus mean delta log2
100vertRBNS enrichment (X axis) for each aligned oligo. Pearson’s correlation
coefficient and pval included. Line is presented as mean fit ± SEM. D Evolutionary
distance in millions of years (Y axis) versus mean delta log2 100vertRBNS enrich-
ment (X axis) for each aligned oligo. Pearson’s correlation coefficient and pval
included. Line is presented asmean fit ± SEM. E (left) Multiple sequence alignment

for ATP1B1 for Homo sapiens, Mus musculus, Sus scrofa, Vicugna pacos, Tetradon
nigroviridis, and Danio rerio with normalized 100vertRBNS enrichment by species
(n = 3). Significance determined via one-sided, paired Wilcoxon tests. Significance
marks are as follows: * (p ≤0.05). Centre line denotesmedian (50th percentile) with
bounds of box representing 25th to 75th percentiles and the whiskers denoting 5th
to 95th percentiles. All data included as individual points. (right) Percent RNA
sequence identity (Y axis) versus normalized delta log2 100vertRBNS enrichment
(X axis). Pearson’s correlation coefficient and pval included. F Scatter plot of log2
normalized 100vertRBNS enrichment by evolutionary distance. X axis plotted on
log10 scale. Error bars show SEM. Data were separated by regulation as determined
via RiboSeq where blue reflects UNK repression of translation [higher than average
log2 fold change (>−0.9)] and red reflects lack of UNK repression [less than average
log2 fold change (<−0.9)]. Significance was determined via a two-sided KS test.
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wild-type human sequences are better bound across the assay than
mutant counterparts (Supplementary Fig. 5C; p ≤0.0001, one-sided,
paired Wilcoxon test).

To understand how binding diverges along the evolutionary
timeline, we set the difference between each wild-type region and its
UAG-mutant as the dynamic range of max binding to no binding
(Methods). As we progress to more distant species from human, we
observed that binding enrichment decreases (Fig. 5B). To understand
the driving force behind loss ormaintenance of binding, we computed
RNA sequence identity between human and all other vertebrates tes-
ted for every binding site (Fig. 5B, center). Some species and families
along the tree have RNA sequence identity more similar to human
which is mirrored by an increase in binding enrichment (Fig. 5B, cen-
ter). These changes are reflected with a high degree of correlation
between mean percent identity to human and binding enrichments
(Fig. 5C; R =0.92, Pearson’s correlation). Similarly, evolutionary dis-
tances are also well-correlated with binding (Fig. 5D; R =0.86, Pear-
son’s correlation). As expected evolutionary distance and RNA percent
identity are also veryhighly correlated (Fig. 5SD;R = −0.94), suggesting
a strong relationship between the three (Supplementary Fig. 5E). A
large drop-off in binding with increased variance was observed in fish
(class Actinopterygii) (Fig. 5B, left), suggesting a loss ofhumanUNKand
RNA target compatibility and species-specific RNA-protein interac-
tions. Not surprisingly, however, while the RNA sequences evolve
rapidly, with percent identity dropping quickly, UNK protein is highly
conserved across species anddoes not reach60% similarity (compared
to human) until pufferfish (Tetraodon nigroviridis; 431 million years
divergence), while the RBDs never drop below 70% similarity in
vertebrates48,49 (Fig. 5B, center right). To examine UNK sequence
conservation more closely, we aligned UNK ZnF1-6 amino acid
sequences across 100 vertebrates (Supplementary Fig. 5F). For all but
one RNA-contacting residue46, the amino acid sequence is highly
conserved, with only slight divergence to similar amino acids as
annotated by BLAST48 (Supplementary Fig. 5G, H).

In one example, ATP1B1, the central UAG motif is well-conserved
through pufferfish; however, binding begins to drop off around Cape
golden mole (Chrysochloris asiatica). Similar to the trend for all bind-
ing sites tested, the percent identity of ATP1B1 orthologs to human
positively correlated with UNK binding (Fig. 5E and Supplementary
Fig. 5I, J). While this binding dropoff is not mirrored by any apparent
changes inUAGcontent, a subtle shift in downstreamsequencemaybe
responsible for this binding difference. This can be observed through
wild boar (Sus scrofa) Atp1b1 which still maintains a central UAG motif
but has a decrease in A/U content just downstream. Interestingly,
alpaca (Vicugna pacos) Atp1b1 binds with similar enrichment to wild

boar Atp1b1 even though it has completely lost its central UAG motif,
perhaps indicating that thedownstreamchanges in A/Ucontent inwild
boar are as important as loss of the UAG. At further evolutionary dis-
tances, zebrafish (Danio rerio)has completely lost theUAG that confers
binding in human but has gained a UAG motif upstream and down-
stream which is mirrored through an increase in binding enrichment.
Similarly complex binding trajectories are observed for NFATC3
orthologs (Supplementary Fig. 5K–M). While many primate sequences
were perfectly identical, we observed with PPP2R5C that even across
short evolutionary distances, largemotif changes can occur, leading to
drastic changes in binding (Supplementary Fig. 5N, O).

To examine how binding changes across 100 vertebrates corre-
lates with RNA regulation, we once again turned to ribosome profiling
data47. As discussed above, we found correlations between UNK
binding and evolutionary distance and sequence conservation
(Fig. 5F). Interestingly, binding sites within mRNAs that UNK transla-
tionally suppressed displayed a higher degree of UNK binding con-
servation across vertebrates (Fig. 5F; p ≤0.001, KS test), spanning large
evolutionary distances. This effect can be explained by the fact that
translational targets were modestly more conserved than those that
are not translational targets (Supplementary Fig. 5P).

Thesedata support amodelwherein both subtle (often difficult to
discern) and large changes greatly influence RNA-protein interactions
and therefore RNA regulation (Fig. 6). Often adjacent sequences and
RNA structure change—sometimes driven by single substitutions—
resulted in loss of binding in vitro. These subtle sequence differences
can seemingly have impacts akin to total motif loss, implicating these
differences in loss of in vivo binding. Future work will expand these
studies beyond UNK, however, given the prototypical nature of UNK-
RNA interactions and the high degree of conservation at the protein
level, we expect that other RBPs behave similarly.

Limitations of this study. Our approach relies on assessing howwell in
vivo data is reflected using high-throughput in vitro approaches. This
strategy is well-suited for understanding direct protein-RNA interac-
tions influenced by changes in RNA sequence and local RNA structure;
however, it does not include the complex cellular environment
including factors that can impact binding in vivo: (i) Individual mRNA
and RBP concentrations can vary drastically in cells, across cell types,
and across species. The concentration of the RNA, the RBP, other
components of mRNPs, and ribosomal interactions (as UNK is pri-
marily involved in translational control27) can all be anticipated to
affect UNK-RNA interactions and accessibility (see Supp. Note 1). (ii)
Our work has been guided by in vivo binding data, which—while
incredibly informative—have limitations (discussed above) which

Moderate Binding Model:
Multiple RNA binding domains
Multiple motifs
Use: secondary motif impact

Complex Binding Model:
Multiple RNA binding domains
Multiple motifs
Use: secondary structure impact

A Simple Binding Model:
1 RNA binding protein
1 motif
Use: primary motif impact
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Fig. 6 |Models of RNA binding. A Simple bindingmodel: considers only primarymotifs. BModerate bindingmodel: considers primary and secondarymotifs. CComplex
binding model: considers primary and secondary motifs as well as RNA secondary structure.
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ultimately prompted us to reconstitute the UNK-RNA interactome
in vitro. Because these iCLIP experiments partially guided our experi-
mental designs, technical biases present in iCLIP may have impacted
our choice of sequences to study (see Supplementary Note 1). (iii) Due
to difficulties in purifying full-length UNK protein, we have performed
our experiments on the RBDs alone, which exhibit tight and specific
binding to known UNK motifs (as shown above and previously26);
additional components of UNK, such as its disordered domain, may
impact binding in unexpected ways47. (iv) For practical reasons we
have used human UNK protein for these studies. For smaller evolu-
tionary distances such as human versus mouse, this is unlikely to
impact binding. However, for larger distances where UNK protein
RBDs may be more different, one might expect to see co-evolution of
the cis-elements with changes in RNA-binding properties of UNK (see
Supplementary Note 1). (v) RBNS is in nature a zero-sum experiment in
that all RNA molecules compete with each other for protein binding.
Thus, in pools that contain mostly high affinity RNA targets, some
targetswill appear enriched andothers depleteddespite all beinghigh-
affinity binders. This effect is most evident in our assays using binding
sites derived from 100 vertebrates (Supplementary Fig. 5B; see Sup-
plementary Note 2). (vi) The nature of oligo pool design removed
sequences with poor alignments. Therefore, the percent identity ana-
lyses shown is reflective of only those binding sites that had aminimal
level of alignment (Methods), while those not having sufficient align-
ments were excluded. The above should be considered when inter-
preting enrichments presented in this study.

Discussion
How differences in RNA sequence impact RNA-protein interactions
and downstream regulation remains poorly understood. Until
recently, studies focused primarily on TFs and their binding sites;
however, recent work has begun to incorporate studies on
RNA31,32,40–45,66. Here, we examine species-specific and conserved RNA
binding using the neuronal RBP, UNK, as a model. We find that
roughly 45% of UNK binding sites have been maintained between
human and mouse, and far fewer maintain these binding sites down
to the motif level (Fig. 1A). Using a high-throughput in vitro assay to
test binding, we found that species-specific binding patterns and
regulation can be partially explained by biochemically measurable
RNA-protein interactions (Figs. 2 and 3). Although more limited in
scope, binding changes across cell types within species appear to be
driven cellular context (e.g., the trans environment) (Supplementary
Fig. 3). Evolutionarily, while RBPs are highly conserved, binding dif-
ferences occur across species and are driven primarily by cis RNA
evolution (Fig. 5B). These differences can emerge through evolution
of primary motifs; however, substitutions within secondary binding
sites can also lead to drastic binding differences across species
(Fig. 5E and Supplementary Fig. 5I–O).

RBP binding appears to be more complex than one might expect.
While primary motifs can serve as “on/off” switches, the full mechan-
ism is often more elaborate. For UNK specifically, the primary motif
reported previously (UAGNNUUU) is only bound by UNK in 23% of all
occurrences within the CDS, highlighting that other factors influence
binding27. As has been reported before53,54, secondary motifs and local
structure have evolved to modulate binding and regulation of indivi-
dual transcripts. Given that many RBPs bind similar motifs, evolution
of high-affinity binding sites presents an interesting balancing act.
While enhanced accessibility and context may enhance individual
RNA-RBP interactions, it may make these regions more accessible to
other RBPs and thus enable RBP-RBP competition for binding.

While it’s difficult to look at the effects of single nucleotide var-
iants (SNVs) on a global scale, the framework presented here should be
broadly applicable for such studies. Indeed, previous work has shown
that SNVs themselves can impact direct RBP-RNA interactions. When
examining a “simple binding model,” SNVs within primary motifs can

be understood to totally abrogate binding (Fig. 6A). When we look at a
more “moderate binding model” and begin to consider secondary
motif contributions and increased valency, we can see how UNK’s
secondarymotifmay contribute to differential binding patterns across
evolution (Fig. 6B). Finally, the most “complex binding model,” con-
siders RNA secondary structure as well, global structural rearrange-
ments may affect motif access and unlike sequence structures may be
dynamically regulated in specific context (Fig. 6C). All three of these
models—taking into account primary motifs, secondary motifs, and
RNA structure—likely apply in different situations. Understanding
selection foror against these complex features that impactbindingwill
help explain how regulation is conserved or species-specific.

These binding differences have been observed throughout sev-
eral previous studies, where RBP binding appears to be dynamic and
cell-type specific21,67–69. Our findings support that genomic evolution of
regulatory sites most frequently occurs in cis, rather than trans6,7,
at least on shorter time frames (as shown with TFs39). However cis
evolution can also result in trans changes as regulatory elements like
TFs andRBPs also have self-regulatory features70. This is especially true
for RBPs genes that produce multiple mRNA isoforms via alternative
splicing that result in proteins with different functions. Splicing itself is
species-specific and under the control of cis regulatory elements71,72.
Additionally, the cellular environment is also changing. Thus, genomic
evolution relies on a delicate balanceof binding sitemutations, protein
conservation and expression, and cellular context.

UNK is a translational inhibitor that binds primarily in the CDS but
can also bind in the 3’ UTR of its target mRNAs27. In vitro, UNK bound
UTR sequences more tightly than CDS (Figs. 2 and 3), driven by the
presence of more UNK motifs in UTRs (Supplementary Fig. 2A).
However, in cells,UNKbindsprimarily toCDS27; this preferencemaybe
driven by increased local concentration of UNK in the CDS, resulting
from its association with ribosomes46. UNK is not unique in exhibiting
gene region preference73 and the mechanisms driving these pre-
ferences are not well understood. One recent study has demonstrated
that UNK can associated with CCR4-NOT on some targets47, thus
additional cellular factors like these may impact target selection.

Thework presented here parallels studies performedon a handful
of transcription factors6,7,38,74–76. For example, Schmidt and coworkers6

examined the binding profiles of two TFs in human, mouse, dog,
opossum, and chicken and found that binding tends to be species-
specific even when the proteins are highly conserved. Additionally,
they observed that these species-specific binding preferences are lar-
gely due to cis sequence element changes across species6. For a more
direct comparison, Odom et al.7 examined the binding profiles of four
highly conserved TFs between human andmouse and found that while
the TFs themselves are not readily changing, their DNA-interactome
changes readily (up to 60%) often due to changes inmotif content. Our
work also highlights the complexity of translating defined regulatory
elements from one species to another as the precise location of these
sitesmay frequently change evenwhenmotifs appear to be conserved.

Methods
Expression and purification of recombinant UNK
Plasmids pGEX-GST-SBP-UNK-ZnF1-3 and pGEX-GST-SBP-UNK-ZnF4-6
were cloned frompGEX-GST-SBP-UNK (30–357)26withprimers listed in
Supplementary Table 1. All plasmids are available through Addgene.
UNK_6xZNF_pGEX is associated with Dominguez et al.26. UNK_ZNF1-
3_pGEX and UNK_ZNF4-6_pGEX have been deposited under this
manuscript. Plasmids were transformed into Rosetta E. coli competent
cells (Novagen). Cultures were grown to an OD of ~0.8 in LB media,
adjusted to 16 °C, and induced with 0.5mM IPTG (Thermo Scientific)
for 24 hours. Cells were collected via centrifugation at 4000× g for
15minutes and lysed in lysis buffer (200mM NaCl, 5mM DTT, 50mM
HEPES, 3mM MgCl2, 2mM PMSF, 1 PierceTM protease inhibitor mini
tablet/2 L; Thermo Scientific). The lysate was sonicated then incubated
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with 500 units/1 L culture Benzonase Nuclease (Sigma-Aldrich) for
30minutes then with 5 units/1 L RQ1 RNase-free DNase (Promega) for
10minutes at room temperature. NaCl concentration was adjusted to
1M and the lysate was clarified by centrifugation at 17,800 × g for
30minutes. 0.05% polyethyleneimine (PEI) was added to precipitate
excess nucleotides and was centrifuged at 17,800 × g for 10minutes.

Supernatant was passed over a 0.45-micron filter. Recombinant
protein was purified via GST-trap FF column (GE). The column was
washed in low salt buffer (300mM NaCl, 50mM HEPES), ATP buffer
(300mM NaCl, 50mM HEPES, 5mM ATP, 500mM MgCl2), and high
salt buffer (1M NaCl, 50mM HEPES). For SBP-UNK ZnF1-3, SBP-UNK
ZnF4-6, and 100vertRBNS only, 1:50 PreScission Protease (Cytiva)
was loaded on column in cleavage buffer (20mM HEPES, 100mM
NaCl, 5mMDTT, 10% glycerol, 0.01% triton X-100) to cleave the GST-
tag. Protein was incubated at 4 °C overnight on-column. Cleaved
SBP-tagged protein was eluted in cleavage buffer. For nsRBNS, pro-
teins were eluted off column in glutathione buffer (50mM Tris pH
8.0, 20mM reduced glutathione, final pH = 7). Purity for SBP-UNK
ZnF1-3 (22.1 kDa) and SBP-UNK ZnF4-6 (20.0 kDa) was assessed fol-
lowing GST-cleavage via SDS-PAGE (4–12% gradient) and Coomassie
staining.

GST-SBP-UNK (30–357) and SBP-UNK (30–357) were con-
centrated via centrifugation to 500 µL before further purification via
size exclusion chromatography [Superdex 200 Increase 10/300 GL
(Cytiva)] in size exclusion buffer (20mM HEPES, 1M NaCl, 10mM
DTT, 0.01% triton X-100). 0.5-mL fractions were collected. Purity was
assessed via SDS-PAGE (4–12% gradient) and Coomassie staining.
Fractions corresponding to SBP-UNK (42.3 kDa) were pooled. All
constructs were dialyzed into 20mM HEPES, 100mM NaCl, and 5%
glycerol. Concentration was determined via Pierce 660 nm assay
(Thermo Scientific).

iCLIP data analysis and oligo design
UNK iCLIP-seq data was obtained from E-MTAB-227927. Mouse coor-
dinates were converted from mm9 to mm10 and human coordinates
were converted from hg19 to hg38 using liftOver77 (version 1.24.0) in
RStudio78 (version 2023.03.0) with R platform79 (version 4.2.2). Peaks
were selected such that only the maximum scoring peak within 20
nucleotides of other peaks would be recorded. This was done in a
rolling fashion such that if several peaks were back-to-back, each
within 20 nucleotides of each other, only the maximum scoring peak
would be recorded. Peaks were mapped back to their respective
genes/transcripts using RStudio package ‘AnnotationHub80’ (version
3.8.0) with ‘BSGenome.Hsapiens.NCBI.GRCh3881’ and ‘BSGenome.
Mmusculus.UCSC.mm1082’. Only peaks mapping to exons were inclu-
ded for subsequent analysis.

For overlap analysis, peaks were expanded to 101 nucleotides and
sequences were obtained using ‘getSeq’ using BSgenomes mentioned
above. TAG-containing regions were identified. Previously reported
RNAseq data for SH-SY5Y cells (Murn et al.27: E-MATB-227783) mouse
brain tissue (ENCODE60,84: ENCSR000BZJ), and HeLa cells
(ENCODE60,84: ENCSR552EGO) was mapped to the mm10 or hg38
genomesusingSTAR85 (version 2.7.10b)withdefault parameters.RSEM
was used to calculate gene level expression values. Tximport was used
to read RSEM output and TPM was used for comparison. Peaks were
filtered to genes with ≥ 5 TPM in the respective cell lines. Gene level
intersecting peaks (SH-SY5Y) were converted from hg38 to mm10
using the liftOver utility from UCSC86 then intersected with mouse
iCLIP peaks using BEDtools87 (version 2.31.0). RStudio package
‘VennDiagram88’ was used to produce Venn diagrams.

For final oligo pool, sequences were expanded to 170 nucleotides.
Using previously reported RBNS data for UNK26, sequences were
recentered around the highest ranking kmer closest to the center. Final
sequences were trimmed down to 120 nucleotides (Supplementary
Fig. 1A). A subset of oligos were selected from the bound and unbound

human and mouse orthologs where the central UAG motifs were
mutated to a CCG. Additionally, single and double chimeras were
designed such that 10 (single) or 20 (double) nucleotides of the bound
ortholog were placed into the unbound sequence. Due to the differ-
ences between human and mouse, the chimerization was not always
perfect, meaning that placing 10 nt of human into the same exact
syntenic mouse region was not always perfect. This should be con-
sidered when interpreting the chimera data.

Natural sequence RNA bind-n-seq (nsRBNS)
Target RNAs were identified from iCLIP experiments performed in
human and mouse neuronal cells27 (see above). An array of 24,254
natural sequence oligos was synthesized by Twist Biosciences and
transcribed to RNA with T7 polymerase. RBNS was performed as pre-
viously described26,52. Briefly, MyOne Streptavidin T1 Dynabeads were
washed inRBNSbinding buffer I (25mMTris pH 7.5, 150mMKCl, 3mM
MgCl2, 0.01% tween, 500 µg/mLBSA, 1mMDTT) and incubatedwith 0,
5, 50, or 500nM recombinant GST-SBP-UNK. After 30-minute incuba-
tion, 1 µM RNA was added to the reaction. After 1 hour, UNK-RNA
complexes were isolated and unbound RNA was washed away in
RBNS wash buffer I (25mM Tris pH 7.5, 150mM KCl, 0.01% tween).
Complexes were eluted in 4mM biotin. The eluted RNA was reverse
transcribed with Superscript III (Invitrogen) with RBNS RT primer
(IDT; Supplementary Table 2), amplified by PCR with Phusion DNA
polymerase (NEB) with RBNS index primers and RBNS reverse primer I
(Supplementary Table 2), and sequenced on an Illumina HiSeq 2000
instrument.

nsRBNS mapping and enrichment analysis
Reads were trimmed using fastx_toolkit89 (version 0.0.14) as needed.
Mapping was performed with STAR85 (version 2.7.10b). STAR
mapping parameters were set to –outFilterMultimapNMax 1 and
–outFilterMismatchNmax 1 to generate counts files. Fasta file for
reference was trimmed for adapters using seqtk90 (version 2.3.0) as
needed. SAMtools91 (version 1.16) was used for processing alignment
files as needed. Enrichmentwas calculated as frequency of an oligo in
the protein bound sample divided by the frequency in the input.

nsRBNS data analysis
Data was compiled and analyzed in RStudio78 (version 2023.03.0) with
R platform79 (version 4.2.2). R packages ggplot292 (version 3.4.1),
‘ggpattern93’ (version 1.0.1), ‘ggpubr94’ (version 0.6.0), and ‘ggrepel95’
(version 0.9.3) were used to make publication figures. Other RStudio
packages—including ‘cowplot96’ (version 1.1.1), ‘dplyr97’ (version 1.1.0),
‘flextable98’ (version 0.9.6), ‘grid78’ (version 4.3.1), ‘Hmisc99’ (version
4.8.0), ‘lsr100’ (version 0.5.2), ‘magick101’ (version 2.8.3), ‘msa102’ (version
1.30.1), ‘org.Hs.eg.db103’ (version 3.17.0), ‘reshape2104’ (version 1.4.4),
‘rstatix105’ (version 0.7.2), and ‘stringr106’ (version 1.4.4)—were used for
data analysis as needed. GraphPad Prism (version 10) was also used to
make publication quality figures as needed. Data tables used for all
analyses with sequences, relevant iCLIP information, enrichment
values, relevant sequence information, and relevant oligo information
can be found in Supplementary Data 1.

Linear modeling
To predict the nsRBNS enrichment value of UNK binding, we used a
linear model based on selected 3mer frequencies and the GC content.
Due to previously reported RBNS data for UNK26, only A/U-rich 3mers
were considered in the model. The GC content was incorporated to
account for structural information that may influence binding. Mod-
eling was performed in RStudio78 with the built-in ‘lm’ function to
predict the log-scale r value, excluding the intercept. This approach
allowed us to directly assess how the selected 3mers and GC content
contribute to the enrichment of UNK binding against natural sequen-
ces (i.e. motif mutants and chimeras were excluded).
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Random RBNS
RBNSwasperformedaspreviouslydescribedwith slightmodifications26.
SBP-UNK ZnF1-3 or SBP-UNK ZnF4-6 were incubated with beads and
20mer random RNA in RBNS binding buffer II (25mM Tris, pH 7.5,
150mMKCl, 3mMMgCl2, 0.01% triton X-100, 500 µg/mL BSA, 20 units/
mL SUPERase·In (Thermo Fisher)) then washed in RBNS wash buffer II
(25mM Tris pH 7.5, 150mM KCl, 0.01% triton X-100, 20 units/mL
SUPERase·In). Proteins were incubated at 250, 500, or 1000nM. Bound
RNA was eluted in 0.1% SDS and 0.3mg/mL proteinase K (Thermo
Fisher) at 60 °C for 30minutes. Elution was performed twice and
the elutions were pooled. Following elution, reverse transcription was
performed with Superscript IV (Invitrogen) with RBNS RT primer
(see above) and amplified as described above. Sequencing was per-
formed on an Illumina NextSeq 500.

Enrichmentswere calculated asdetailed inDominguez et al.26. The
top 20 6mers were used to generate logos. Each 6mer was aligned to
the top enriched, allowing for one mismatch and/or one offset, or two
mismatches. A PositionWeightMatrix (PWM)wasconstructedwith the
aligned 6mers, where the enrichment values were used to add weight
to each position. Logos were trimmed if the edges of the PWM had
minimal aligned sequences. Final logos were plotted in RStudio78

(version 2023.03.0) with R package ‘ggseqlogo107‘ (version 0.2).

Ribosome profiling data analysis
Ribosome profiling data was obtained from Shah et al.47. Genes bound
in both human and mouse, human only, or mouse only (human not
bound) were identified via iCLIP as described above. For genes with
multiple peaks, nsRBNS enrichment values were summed. Only human
nsRBNS enrichments and RiboSeq log2 fold changes were used as
RiboSeq data for mouse is not currently available.

Mean base pair probability analysis
DNA sequences for all hg38 genes were obtained from Ensembl108.
Genes not bound in human neuronal cells as identified by iCLIP27 were
selected for subsequent analysis. For genes with multiple isoform
sequences, only one was kept: This was done randomly with RStudio
function “sample.” 120 control nucleotide sequences were selected
and centered around the downstream TAG motif just upstream of the
stop codon to match the binding pattern of UNK which increases near
the stop codon but does not bind the stop codon itself. Individual base
pair probabilities were calculated with Vienna RNAfold55 --partfunc to
calculate the partition function and base pairing probability matrix
for both the CDS controls as well as “perfectly conserved,” “binding
conserved,” “bound elsewhere,” and “not bound” sequences aligned
perfectly at the central UAG. Mean base pair probability (bpp) was
calculated for each category positionally and divided by CDS controls
positionally to normalize. Mean bpp was further averaged across the
central motif (UAG), five nucleotides upstream, and five nucleotides
downstream.

100 vertebrate DNA pool assembly
The top 250 human in vivo and in vitrobound sequenceswere selected
from the nsRBNS experiment. UCSC’s BLAT109 was used to determine
the chromosome as well as the start and stop position for each
sequence. The start and stop positions were expanded out 65
nucleotides each such that the region was 250 nucleotides in total
to account for insertions and deletions across species. Multiple
alignment blocks were selected using maf_parse in PHAST module110

(version 1.5) against UCSC’s MAFs for 100 vertebrates. Sequences with
less than 25 alignments were filtered out, and the remaining sequences
were collapsed down with gaps removed. Sequences were aligned
centrally in RStudio with package ‘msa’111,112 (version 1.30.1) and
trimmedback to 120nucleotides. RStudiopackages ‘stringr’106 (version
1.5.0) and ‘data.table’113 (version 1.14.8) were also used for string
manipulation and data table formation as needed. Finally, total motif

mutants were included where all TAG motifs in human oligos were
mutated to CCG to define a null cut-off for binding. This resulted in a
total of 5753 oligos aligning to 112 human sequences.

100 vertebrate RNA bind-n-seq
RBNS was performed similarly as described above and previously26,52.
An array of 5753 oligos corresponding to 112 human sequences and
their 100 vertebrate alignments was ordered from Twist Biosciences.
In vitro transcription was performed with T7 RiboMAX Express Large
Scale RNA Production System (Promega) according to manufacturer
protocols. RNA was purified via denaturing gel electrophoresis, eluted
via RNA crush-n-soak into H2O, and concentrated with phenol
chloroform extraction.

Binding reactions were performed as detailed above (see Random
RBNS) for individual domain constructs with slight modifications.
100 nM recombinant SBP-UNK was used. Sequencing was performed
on an Illumina NextSeq 500.

100 vertebrate nsRBNS mapping and enrichment analysis
Mappingwasperformed asdetailed above for nsRBNS. Inputswith less
than 25 counts mapped were excluded from analysis. Enrichment
analysis was performed as detailed for nsRBNS.

100 vertebrate nsRBNS data analysis
Data was analyzed similarly to nsRBNS data as discussed above with a
few additions. RStudio package ‘ape’114 (version 5.7) was used to
assemble 100 vertebrate phylogenic tree according to available data
from UCSC64,115. Additionally, RStudio package ‘msa’111,112 (version
1.30.1) was used for sequence alignment and percent identity analysis.
RStudio packages ‘ggmsa’116 (version 1.3.4), ‘ggprism117’ (version 1.0.4),
and ‘scales118’ (version 1.2.1) were used tomake alignment figures. Data
tables used for all analyses with sequences, relevant species informa-
tion, enrichment values, relevant sequence information, and relevant
oligo information can be found in Supplementary Data 2. For protein
percent similarity analysis, humanprotein sequenceswere pulled from
UniProt50 and BLAST48 was used for all species alignments. The RBDs
were annotated as amino acids 31 to 335 based on previous work by
Murn et al.46. All enrichments were normalized to their respective total
motif mutant enrichment. Where indicated, delta enrichments were
used for analysis and represent the divergence from the normalized
human enrichment (log2[norm species/norm human]).

eCLIP peak overlap analysis
RNAseq data for HepG2 and K562 normal cell lines were downloaded
from ENCODE60,84 (Supplementary Table 3) and mapped to hg38 with
STAR85 (version 2.7.10b) using default parameters. Expression values
were quantified using RSEM119 (version 1.3.1) and differential analysis
was conducted using RStudio package ‘DESeq2’120 (version 1.40.1).
Genes with no significant differences in expression between K562 and
HepG2 cell lines were filtered usingmean expression >10 and absolute
log2 fold change (L2FC) <=1.

14 RBPswhichhave eCLIP peaks61 in HepG2 andK562 and anRBNS
motif26 were selected. The peaks were downloaded from ENCODE
(Supplementary Table 4) and filtered for enrichment of log2 fold
change > 1 and p-value of <0.001. Each peak was extended by 50 base
pairs upstream to account for experimental limitations of eCLIP61.
Replicates for each cell line were combined and filtered for the ones
that fell within the genes that did not have significantly differential
expression between HepG2 and K562. BEDtools87 (version 2.31.0) was
used to collapse the overlapping peaks that were within 20 base pairs
into a single peak spanning the region. Fold change was summed for
collapsed peaks. Sequences under the combined peaks were taken
from RStudio package ‘BSgenome.Hsapiens.NCBI.GRCh38’81 (version
1.3.1). Peaks were grouped into two groups based on presence or
absence of RBNS motif within the peak26.
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Peaks were further grouped based on whether they overlapped
exons or not. Exon annotations for hg38 (v109) genomewereobtained
from RStudio package ‘AnnotationHub’80 (version 3.8.0) and a peak
was assigned as an exonic peak if it had at least 20 base pair overlap
with an exon. Thus, peaks for anRBP ineach cell linewere grouped into
four following groups: peaks within an exon and had an RBNS motif,
peakswithin an exon anddid not have anRBNSmotif, peaks notwithin
an exon and had an RBNSmotif, and peaks not within an exon and did
not have an RBNS motif. For each of these groups, we calculated the
number of overlapping peaks between K562 and HepG2. Since the
proportion of overlapping peaks between two cell lines is relative to
total peaks identified in each cell line, we took the maximum after
calculating the proportion using both cell lines, respectively. Addi-
tionally, similar analysis was conducted for overlaps between parent
genes of the peaks as well (Supplementary Fig. 3F).

Fluorescence polarization (FP)
Synthetic UAG oligos. RNA oligos were synthesized by Integrated
DNATechnologies (IDT) with a 3’ 6-FAM label (Supplementary Table 5)
and incubated at 5 nM with serially diluted recombinant SBP-UNK
ZnF1-3, SBP-UNK ZnF4-6, or SBP-UNK (30–357) (16.9, 50.8 pM, 1.5, 4.6,
13.7, 41.2, 123, 370 nM, 1.11 3.33, 10 µM) or for tri-UAG FP RNA with
serially diluted recombinant SBP-UNK (30–357) (2.5, 7.6, 22.9, 68.6 pM,
6.17, 18.5, 55.6, 167, 500, or 1500 nM) in FP binding buffer (20mM
HEPES, 5mM DTT, 137.5mM NaCl, 0.01% triton X-100, 10 ng/µL BSA,
2 units/mL SUPERase•In™; Thermo Scientific) for 15min at 4 °C. Plates
were centrifuged at 1000× g for 1min and fluorescence polarization
was measured with a PHERAstar plate reader (BMG Labtech) at 25 °C.
FP values were normalized within sample to account forminimum and
maximum FP, resulting in ΔFP. Data were fit to a single site binding
model and a KD was determined.

GTPB4 chimeras. FP was performed as above with slight modifica-
tions. SBP-UNK (30–357) was serial diluted as follows: 10.9, 50.8, 152,
457 pM, 1.37, 4.12, 12.3 37.0, 111, 333, or 1000 nM. FP values were
considered, notΔFP. Oligo sequences are available in Supplementary
Table 6.

In vitro transcription of RNA for qPCR binding assay
DNA fragments for wild-type andmutantGARTwere ordered from IDT
and PCR amplified with Phusion DNA polymerase (New England Bio-
labs), resulting in full-length DNA oligos for in vitro transcription. DNA
was purified via agarose gel extraction and transcribed with a T7
RiboMAXExpress Large Scale RNAProduction System (Promega). RNA
was purified with RNA crush-n-soak and concentrated with phenol
chloroform isolation (Supplementary Table 7).

qPCR binding assay
We performed our qPCR-based binding assay as previously described121

with a few modifications. Dynabeads MyOne Streptavidin T1 magnetic
beads (Thermo Fisher) were washed in blocking buffer (25mM Tris pH
8.0, 150mM KCl, 3mM MgCl2, 1mg/mL BSA, 2 units/1 µL SUPERase-In
(Invitrogen), and 1mg/mL yeast tRNA (Fisher Scientific)), and then in
qPCR binding buffer (25mM Tris pH 8.0, 150mM KCl, 3mM MgCl2,
1mg/mL BSA, 2 units/1mL SUPERase-In, and 50nM random sequence
RNA). Beads were incubated with two concentrations of SBP-UNK (167
and 1500nM) at 25 °C for 10minutes. Bead-protein complexes were
separated on the magnetic and resuspended in 0.1 nM RNA. Beads,
protein, and RNAwere incubated at 25 °C for 30minutes. UnboundRNA
was removed, andboundRNAwaseluted in4mMbiotin and25mMTris,
pH 8.0 at 37 °C for 30minutes. Reverse transcription was performed on
unbound and bound RNA with iScript Reverse Transcription Supermix
(Bio-Rad) following manufacturer’s protocols with qPCR_REV primer
(see below). An RNA calibration curve was assembled at RT with the
following amounts of RNA: 45.7 fM, 0.137, 0.412, 1.23, 3.70, 11.1, 33.3, and

100 pM. RT reactions were diluted 2-fold and qPCR was performed in
duplicate with SsoAdvanced SYBR Green Supermix (Bio-Rad) according
to manufacturer’s protocols with qPCR_FWD and qPCR_REV primers
from IDT (Supplementary Table 8). The threshold cycle (Ct) was deter-
mined using Bio-Rad’s CFX Maestro software, and fraction bound was
determined against the RNA calibration curve.

Statistical analyses
Individual statistical analyses are detailed in figure legends. For iCLIP
geneoverlaps, hypergeometric testswereusedwhere the universewas
defined as only one-to-one orthologous genes expressed in both cell
lines at greater than 5 TPM. For correlation plots, Pearson’s correlation
was used and p vals shown are for the correlation. For wild type versus
mutant group and chimerized comparisons, paired, one-sided Wil-
coxon tests were used as previous data for motif mutants have
demonstrated diminished binding27 and recovery was expected for
chimerization. For orthologous group comparisons, paired Wilcoxon
tests were used. For orthologous and wild type versus mutant single
transcript comparisons, one-sided Wilcoxon tests were used. For all
other population comparisons, KS tests were used. Where multiple
comparisons were done, p vals were corrected via the BH procedure
based on number of comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The enrichments for RBNS, nsRBNS, and 100vertRBNS generated in
this study have been deposited in Gene Expression Omnibus under
accession code GSE262560. The raw fastqs are also available under
accession code GSE262560. Previously published data used in this
study have been accessed through the following sources: UNK iCLIP-
seq data27: E-MTAB-2279 [https://www.ebi.ac.uk/biosamples/samples/
SAMEA2341158], ENCODE K562 RNAseq61: ENCFF267RKD,
ENCFF455VYN, ENCFF606ZTR, ENCFF444KCV, ENCODE HepG2
RNAseq61: ENCFF713MNU, ENCFF478DZZ, ENCFF936SLY,
ENCFF446UEC, ENCODE K562 eCLIP61: ENCFF077OSY, ENCFF121XCN,
ENCFF127WMZ, ENCFF150ZOO, ENCFF185IDD, ENCFF241AOZ,
ENCFF348TPU, ENCFF374XQF, ENCFF401YRZ, ENCFF402AIE,
ENCFF409DPS, ENCFF443KJS, ENCFF526OQL, ENCFF565ILV,
ENCFF606RXB, ENCFF613UUR, ENCFF618ZPP, ENCFF664RLU,
ENCFF669TNM, ENCFF674TKN, ENCFF766DUS, ENCFF779OIO,
ENCFF824IDO, ENCFF853FGC, ENCFF860QZG, ENCFF899HGF,
ENCFF910WLP, ENCFF996BXS, ENCODE HepG2 eCLIP61:
ENCFF073PCD, ENCFF082QGS, ENCFF103PRM, ENCFF105GZJ,
ENCFF145YYK, ENCFF230QOU, ENCFF253ZSN, ENCFF288MWL,
ENCFF327JJE, ENCFF378HWC, ENCFF383ZAQ, ENCFF390PJW,
ENCFF421FJD, ENCFF432ASF, ENCFF502OYV, ENCFF534YQS,
ENCFF545NBF, ENCFF611AHG, ENCFF626XAA, ENCFF685MZA,
ENCFF705SDK, ENCFF754XAQ, ENCFF856EHA, ENCFF899ZEH,
ENCFF914VUW, ENCFF951IBI, ENCFF966KQG, ENCFF988MWD.

Code availability
All scripts for nsRBNS and 100vertRBNS table assembly, data proces-
sing, and figure generation are available at https://github.com/
DominguezRNAGroup/Binding_Site_Evolution.
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