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convolutional neural networks
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The standard method for identifying active Brown Adipose Tissue (BAT) is
[18F]-Fluorodeoxyglucose ([18F]-FDG) PET/CT imaging, which is costly and
exposes patients to radiation, making it impractical for population studies.
These issues can be addressed with computational methods that predict [18F]-
FDG uptake by BAT from CT; earlier population studies pave the way for
developing such methods by showing some correlation between the Houns-
field Unit (HU) of BAT in CT and the corresponding [18F]-FDG uptake in PET. In
this study, we propose training convolutional neural networks (CNNs) to
predict [18F]-FDG uptake by BAT from unenhanced CT scans in the restricted
regions that are likely to contain BAT. Using the Attention U-Net architecture,
we perform experiments on datasets from four different cohorts, the largest
study to date. We segment BAT regions using predicted [18F]-FDG uptake
values, achieving 23% to 40% better accuracy than conventional CT thresh-
olding. Additionally, BAT volumes computed from the segmentations distin-
guish the subjects with and without active BAT with an AUC of 0.8, compared
to 0.6 for CT thresholding. These findings suggest CNNs can facilitate large-
scale imaging studies more efficiently and cost-effectively using only CT.

Personalized medicine is commonly associated with the field of
oncology. However, it has already become clear from pre-clinical and
clinical studies that metabolic diseases are diverse and complex,
making them ideal targets for a personalized treatment approach,
especially given the fact that obesity and type 2 diabetes have complex
genetic backgrounds, which so far are only incompletely understood1.
Moreover, the response to modern drugs such as glucagon-like pep-
tide 1 (GLP-1) agonists for the treatment of diabetes2 or to Angiotensin-
converting enzyme (ACE) inhibitors for the treatment of hypertension3

is significantly different among different ethnic groups, pointing
towards clinically relevant consequences of the genetic background.

While thefield is evolving rapidly, concepts to targetmetabolic disease
on a personalized level are still uncommon.

Recent research on adipose tissue has yielded promising results
toward possible personalized strategies. Adipose tissue can be sub-
divided into two different types of adipocytes, namely, white and
brown adipocytes4. White adipose tissue (WAT) is specialized for
storing chemical energy in the form of triglycerides5. In contrast,
brown adipose tissue (BAT) dissipates energy in the form of heat in a
process called non-shivering thermogenesis through uncoupling pro-
tein 1 (Ucp1)6. In the past decade it has become obvious that white
adipocytes can transform into another distinct type of energy
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expending adipocytes which have been called beige adipocytes.
Moreover, energy expending adipose tissue depots usually consist of a
mixture of brown, beige and white adipocytes7. To improve read-
ability, we will use the term BAT for these depots throughout this
paper. Since BAT is an energy-dissipating organ, its activation or
deactivation could potentially be used to promote weight loss or gain
and improvemetabolic control. Over the last decade, researchers have
been working on understanding the connection between BAT activity
and metabolism, which may contribute to developing personalized
treatment strategies for various metabolic diseases8–11.

One central finding, which has been reported numerous times, is
the fact that the presence of BAT is extremely heterogeneous in the
population, ranging from undetectable levels (because it is absent or
inactive) to high levels (active BAT)12. Some studies suggest that active
BAT may be partially genetically determined13. Caret et al.14 showed
that dysfunction of BAT activity might be a critical factor in the
pathogenesis of obesity. Amore recent study reported that individuals
with activeBAThave a lower prevalence of cardio-metabolic diseases15.
Furthermore, recent insights in molecular oncology suggest that BAT-
deregulation in cancer patientsmay contribute substantially to cancer-
cachexia and its entailed reduction in quality of life and early death16.
One example of a personalized strategy is to activate BAT by the use of
oral intake of bile acids17 or selective β2

18 or β3-agonists
19 in the context

of obesity, or suppress it by propranolol, a non-selective β-blocker20 in
the context of cancer-cachexia. By gaining a deeper understanding of
BAT through large-scale population studies, itmaybecomepossible to
create stratified cohorts and develop further personalized treatment
strategies targeting BAT.

Despite existing works showing some evidence of the link
between BAT activity andmetabolic diseases, the studies are limited in
terms of the size and genetic diversity of the cohorts. These findings
need to be validated on larger cohorts with different genetic back-
grounds. However, since BAT activity in humans can currently be non-
invasively quantified only by measuring the uptake of [18F]-Fluor-
odeoxyglucose ([18F]-FDG) by BAT on Positron Emission Tomography
(PET) scans, the radiation exposure and the high cost preclude the
method’s use for large population analyses. There is a need for alter-
native non-invasive methods to assess [18F]-FDG uptake by BAT to
support the development of personalized treatment strategies in
clinical practice. One way towards this end could be through predict-
ing [18F]-FDG uptake by BAT from unenhanced computed tomography
(CT) scans. As the cost and the radiation exposure of CT are sig-
nificantly lower thanPET, predicting the uptake by BAT fromCTwould
facilitate imaging larger cohorts, allow patient stratification, and,
consequently, accelerate BAT research. Support to this end comes
from recent studies that analyzed cohorts with corresponding PET and
CT images and showed that BAT had higher tissue density than
WAT8,21,22, leading to higher CT intensity as measured by Hounsfield
Unit (HU). Furthermore, Baba et al.9 performed cold stimulation stu-
dies in rodents and cancer patients and showed a correlation (R =0.66)
between the average HU and [18F]-FDG uptake measured as Standar-
dized Uptake Value (SUV) in the supraclavicular BAT depot.

The existing population studies demonstrate statistical correla-
tions between the voxel-wise HU values to SUVs in the BAT depots and

provide motivation for developing more advanced computational
methods. Specifically, this direction can be investigated in a predictive
framework further to take into account more complex multi-voxel
feature dependencies to predict SUV of BAT from CT in the BAT
depots. To this end, CNNs have a greatpotential to predict BAT activity
from CT scans thanks to their ability to eliminate the need for feature
engineering by automatically learning useful features for a particular
task from a training set23–27.

In this study, we propose using CNNs to predict the SUV of BAT
from unenhanced CT scans in the restricted regions that are likely to
contain BAT. Specifically, we crop the CT scans to cover the supra-
clavicular region, one of the largest BAT depots in humans28. Then, we
train a CNN using a paired [18F]-FDG PET/CT dataset such that it takes
these cropped CT scans as input and predicts the [18F]-FDG uptake by
BAT measured by SUV. We extensively evaluated the performance of
CNNs on datasets from four different cohorts: two of them are inter-
ventional (research) cohorts collected after exposing cold on the
subjects before acquisition to ensure that BAT is activated if it exists,
and the other two are retrospective clinical cohorts with no controlled
cold stimulation applied, making 841 [18F]-FDG PET/CT scans from
n = 718 subjects in total. The results suggest that CNNs trained on the
cold exposure cohorts can be used to classify the subjects into high or
low-activity categories using the predicted SUV of BAT only from CT
scans. Accurately identifying these classes allows patient stratification
by creating cohorts with the desired number of subjects from each
category. Obtaining stratified cohorts is extremely useful for
researchers to tailor treatments and interventions to specific patient
subgroups.We show that CNNs can serve as a useful tool to this end by
preselecting cohorts with the desired number of subjects from each
BAT activity class, significantly reducing the number of subjects mis-
takenly included in the selected cohort. The preselected cohort can
then undergo actual [18F]-PET/CT scans for more accurate quantifica-
tion. Thus the actual [18F]-PET/CT scans are only obtained from sub-
jects most relevant to the cohort, substantially lowering the PET
acquisition cost for creating such a cohort.

Results
Overview of the experiments
We trained CNNs using the paired [18F]-FDG PET/CT scans from the
training set of each cohort such that they take CT scan of the supra-
clavicular region as input and predict [18F]-FDG uptake by BAT in this
region in the corresponding PET scan (see Sec. 4.3 for details). In order
to assess the accuracy of the predictions, we first segmented the active
BAT regions from the predicted and actual PET scans using SUV
thresholding as described in Section 4.4. We then calculated the
degree of overlap between these segmented regions using the Dice
score29. Dice scoremeasures the degree of overlap between two sets X
and Y as 2∣X ∩ Y∣/(∣X∣ + ∣Y∣) and takes a value between 0 and 1, where
higher scores indicate better segmentation performance. We con-
ducted a comparative analysis of the performance of CNNs and a HU
thresholding-based approach, another method commonly employed
for segmenting active BAT from CT scans (see Section 4.5). We used
commonly used HU thresholds of -180 and -10 in our experiments
following the recent literature30. Subsequently, we investigated if
CNNs’ predictions from CT could serve as a basis for classifying
patients into two groups, BAT+ and BAT-, based on the presence of
active BAT, thus enabling the identification of patients with (BAT+) or
without (BAT-) active BAT from a larger population solely from CT
without [18F]-FDG PET/CT imaging.

Quantitative results of BAT segmentation
Initially, we assessed the performanceof CNNswithin the samecohort,
which we refer to as intra-cohort experiments, where each CNN was
trained and evaluated on the same cohort. We present the results of
the intra-cohort experiments quantifying the quality of segmentations

Table 1 | Comparison of intra-cohort performance of CNNs
with different baselines in terms of Dice score for detecting
active BAT

Basel Granada Zurich MSKCC

HU thresholding
-180, -10

0.427 0.421 0.248† 0.115

CNN 0.745† 0.521† 0.189 0.130

† indicates a statistically significant difference between the results of CNN and the HU thresh-
olding method with p < < 1% and bold indicates the best results.
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using the Dice score in Table 1. We observe that CNNs achieve sig-
nificantly higher accuracies than HU thresholding-based method for
segmenting active BAT on the cold-exposure cohorts. The improve-
ment achieved by CNNs is ∼75% on the Basel cohort and ∼23% on the
Granada cohort. We performed permutation test31 and observed that
the improvement achieved by CNN is statistically significant with p
values << 1%. On the contrary, the Dice score results of the clinical
cohorts are very low for both CNNs and the HU thresholding-based
method. Additionally, we observed that training CNNs on the Zurich
and MSKCC cohorts was not stable. We argue that this is due to the
ambiguities when learning a mapping between HU values of BAT and
the corresponding SUVs in the cohorts obtained without controlled
cold exposure, which we discuss in detail in Sec. 3.

The lack of generalization ability of CNNs beyond the domains
they are trained on is a significant limitation in front of deploying them
in practical applications32. It has been reported numerous times in
medical imaging that a CNN trained on a dataset from one hospital
performs poorly on a dataset from another hospital due to changes in
imaging parameters,modality, population, and soon33. Thismotivated
us to measure the inter-cohort performance of the CNNs trained on
different cohorts to segment active BAT regions. In this experiment,
we only used the cold-exposure cohorts, Basel and Granada, since we
observed that CNNs trained on Zurich and MSKCC cohorts already
performed poorly in the intra-cohort experiments. In particular, we
evaluated the performance of the CNN trained on the Basel cohort on
thewholeGranada cohort and vice versa. TheCNN trainedon theBasel
cohort achieved a Dice score of 0.486 when tested on the whole
Granada cohort. Thismeans a performancedecrease of∼7% compared
to intra-cohort performance of the Granada model. However, the
results are still better than the HU thresholding-based method by
∼15%. The average Dice score achieved by the Granada model on the
whole Basel cohort is 0.538,meaning a performance decrease by∼27%
compared to intra-cohort performance of the Basel model. Despite
this significant decrease, the results are still higher than thresholding
CT scans at HU values -180 and -10 by ∼25%. Additionally, we con-
ducted statistical analysis to measure the generalization performance
of theBasel andGranadamodels. In particular,we appliedpermutation
test31 between the intra and inter-cohort performance of bothmodels.
Our analysis revealed no statistically significant difference in the
Granada model’s performance across cohorts, with a p-value of 0.77.
Conversely, we observed a significant difference in the Basel model’s
performance, with a p<< 1%. We discuss the generalization perfor-
mance of CNNs further in Sec. 3.

Quantitative results on classifying subjects with and without
BAT activity for stratification
We investigated whether we could use the BAT volumes calculated
from the SUV of BAT predicted by CNNs for classifying subjects into
two distinct classes based on the presence of active BAT, namely BAT+
and BAT−. The BAT+ class contains subjects with high BAT activity,
whereas the BAT− class includes those with low BAT activity. We
conducted the same experiment with the BAT volumes computed
using the HU thresholding-based method for comparison. To obtain
the ground truth labels, we set a threshold for BAT volumes obtained
from the actual [18F]-FDG PET scans and labeled the ones above the
threshold as BAT+ and the ones below the threshold as BAT−. Then, we
computed the area under the receiving operating characteristic curve
(AUC)34 using the ground truth samples and predicted BAT volumes to
determine the accuracy of classifying subjects as BAT+ and BAT−
based on the predicted BAT volumes. Note that the labels and the AUC
scores can change depending on the BAT volume thresholds we used
when obtaining ground truth labels. Therefore, we plotted the AUC
scores as a function of BAT volume threshold for both intra and inter-
cohort performance of the Granada model, the CNN trained with the
largest cold exposure cohort, in Fig. 1. The results demonstrate that the
Granada model can distinguish subjects with and without BAT activity
using the predicted BAT volume significantly better than the HU
thresholding-based method by improving AUC from ∼0.6 to ∼0.8 in
the intra-cohort experiments (Fig. 1a). Additionally, we observed that
CNN’s inter-cohort performance is comparable with the HU
thresholding-based method; both methods achieve high AUC at
almost all BAT volume thresholds (see Fig. 1b).

Accurately classifying subjects as either BAT+ or BAT− using
only CT scans allows for the creation of stratified cohorts of subjects
belonging to the class of interest. This approach can be highly ben-
eficial for researchers in several ways, including investigating the
impact of treatment strategies on a group, exploring the relationship
between BAT activity levels and specific genetic biomarkers, and
identifying subgroups of patients who are more likely to respond
positively to particular treatments. For instance, researchers inter-
ested in understanding the effects of a drug on patients with a spe-
cific genetic profile and high BAT activity would typically create a
cohort with the relevant genetic profile and then collect [18F]-FDG
PET/CT scans from all the patients in the cohort. Unfortunately, the
resulting [18F]-FDG PET/CT scans may show that many patients in the
cohort have very low BAT activity. This outcome generates a con-
siderable number of [18F]-FDG PET scans that do not serve the

Fig. 1 | AUC scores for classifying subjects as BAT+ and BAT- using the predicted BAT volume at various BAT volume thresholds. The plots show (a) intra and (b)
inter-cohort performance of the Granada model, the CNN trained with the largest cold exposure cohort in our experiments.
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intended purpose of the study, are expensive and potentially harmful
to patients due to unnecessary radiation exposure. In contrast,
researchers can obtain only CT scans from the patients in the cohort
and use CNNs to predict which subjects are likely to have high BAT
activity. Then, actual [18F]-FDG PET/CT scans are only obtained from
those identified by CNNs as BAT+. By doing so, researchers can
reduce the number of BAT− subjects mistakenly included in the
cohort and save on the associated costs of acquiring [18F]-FDG PET
scans that are unnecessary for the targeted study.

In the following experiment, we quantified the performance of
CNNs on creating stratified cohorts (cohorts consisting of only BAT+
or BAT− samples) only using CT scans. To achieve this, initially, we
classified subjects as BAT+ and BAT− by thresholding the predicted
BAT volumes with a BAT volume threshold as described in the pre-
vious experiment. Then, we randomly selected 50 samples among
the subjects classified as BAT+ by aiming to obtain a cohort with 50
BAT+ subjects using CT scans. The random selection step was repe-
ated 100 times, and we computed the average number of BAT−
samples mistakenly included in the selected cohort. The same
experiment was conducted to select 50 subjects among those clas-
sified as BAT− to obtain a stratified cohort with BAT− subjects, and
the average number of BAT+ samples mistakenly included in the
cohort was computed over 100 repeats. We performed these
experiments using the BAT volumes predicted by CNN trained on the
Granada cohort and the HU thresholding-based method. Addition-
ally, we compared both methods with the conventional, fully ran-
dom, setting where we randomly chose BAT+ and BAT− subjects
from the whole population without using any predicted BAT volume
information. In Fig. 2, we present the plots of the number of subjects
mistakenly included in a cohort when creating stratified cohorts
consisting of 50 BAT+ (Fig. 2a) and 50 BAT− (Fig. 2b) subjects. The
study’s results indicate that, compared to both methods, the use of a
CNN leads to a substantial reduction in the number of BAT+ subjects
mistakenly included in the BAT− cohort and vice versa at every BAT
volume threshold. For example, when we selected 50 subjects among
the ones classified by the CNN as BAT+, ∼17 BAT− subjects were
mistakenly included in this cohort. Whereas, the number of mis-
takenly included BAT− subjects increases to ∼27 when stratification
is done using the BAT volume predictions of the HU thresholding-
basedmethod, meaning an improvement ∼37% achieved by the CNN.

Qualitative results
This section presents the qualitative results to visually compare the
predicted [18F]-FDG uptake of BAT with the actual [18F]-FDG PET scans.
In Figs. 3 and 4, we present the intra-cohort results of the Granada and

the Basel models. Here, for the Granada cohort, we only present the
results where CNNs achieve high Dice scores since we present some
results when discussing the potential reasons for having low scores in
Sec. 3. Here, we only present some slices from the scans since we
cannot visualize the whole 3D [18F]-FDG PET/CT volumes. Visual results
of the whole volumes can be seen via the Gradio User Interface35 in the
following link: https://bat.ethz.ch/.

Discussion
Training issues with the retrospective clinical cohorts
Training CNNs for predicting SUV of BAT from CT aims to find a
mapping fromHUvalues ofCT to SUV values of PET in a restricted area
that corresponds to a BAT depot, the supraclavicular region in our
case. There might be ambiguities in learning such a mapping when
similar inputs are mapped to different values in the training set,
adversely affecting the performance of CNNs. Based on previous stu-
dies, we argue that the low performance of the Zurich and MSKCC
models may be attributed to such ambiguities that could arise when
data is collected without controlled cold stimulation.

Gifford et al.10 conducted an experiment to investigate the impact
of cold exposure on the HU and SUVs of supraclavicular BAT. The
study involved comparing [18F]-FDG PET/CT scans taken from 17 sub-
jects with BAT, both in thermoneutral conditions and after cold
exposure. The results of the study showed that HU values in supra-
clavicular BAT regions remained relatively stable after cold exposure,
whereas SUV values increased significantly. This suggests that there is
little difference in HU values between active and inactive BAT, but
significant differences in SUV values. As a result, mapping similar HU
values to different SUV values can create ambiguities that can lead to
unstable training and diminished performance of CNNs.

Such ambiguities are common in cohorts that are not obtained
with controlled cold exposure. In the Zurich and MSKCC cohorts, half
of the subjects have high PET activity of BAT, while the remaining half
showsvery low activity. In the secondhalf, somesubjectsmay still have
BAT, but it can be inactive. This can create uncertainties in training
data because HU levels of active and inactive BAT are similar based on
thefindings of Gifford et al.10; however, the former ismapped to higher
SUV values than the latter. Thus, CNNs trained on Zurich and MSKCC
cohorts cannot reliably learn a mapping from HU of BAT to the cor-
responding SUVs. We do not observe a similar problem in the cold-
stimulated cohorts because when there is BAT, it is most likely active,
and there is a low chance of having data with inactive BAT. Therefore,
HU values of active BAT are consistently mapped to high SUV values,
leading to better prediction performance, as observed by the superior
results on the cold-stimulated cohorts.

Fig. 2 | The results demonstrating the patient stratificationperformance ofdifferentmethods.The number of subjectsmistakenly included in a cohortwhen creating
stratified cohorts of (a) BAT+ and (b) BAT− subjects. Note that the dashed gray lines in the plots belong to the second y-axes.
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Segmentation accuracy increases in subjects with larger
BAT volume
In Fig. 5, we present the scatter plots of predicted BAT volume vs. Dice
score for each test subject in the intra-cohort experiments. The plots
show that CNNs achieve better BAT segmentation accuracies when the
target BAT activity measured by BAT volume is higher, which is espe-
ciallymore evident in theGranada cohort since it is larger. This trend in
the scatter plots can be extremely useful when finding an operating
point based on the BAT volume predicted by the network. If the
researchers are interested in a more accurate delineation of the BAT,
they can consider disregarding the predictions when the predicted
BAT volume is smaller than a threshold to obtain more reliable pre-
dictions. For example, supposewe set such anoperating point to 20ml
and only consider the samples above this threshold. In that case, the
average Dice score increases from 0.521 to 0.598 in the intra-cohort
experiments of the Granada cohort. Shifting the operating point to

40ml leads to even more reliable predictions and increases the Dice
score to 0.698.

Dataset bias
The cold exposure datasets, Basel and Granada, have some bias for
active BAT due to both the selection criteria of the subjects in the
cohorts (e.g., the Basel cohort is selected by REE, and the Granada
cohort is selected from healthy and young adults) and cold expo-
sure. As a result, the majority of the subjects in both cohorts have
active BAT, as can be observed from the BAT volume histograms in
Supplementary Fig. 1. Therefore, training CNNs on these cohorts
leads to models that tend to make over-predictions for the test
subjects having small BAT activity, leading to smaller Dice scores
for such samples as shown in the scatter plots in Figs. 5 and 6. We
present some visual results exemplifying over-predictions by CNNs
in Fig. 7.

Dice Score - 0.813 Predicted BAT Volume - 64.65 Target BAT Volume - 64.02

Dice Score - 0.746 Predicted BAT Volume - 41.93 Target BAT Volume - 57.92

Dice Score - 0.936 Predicted BAT Volume - 88.04 Target BAT Volume - 93.79

CT Predicted PET Target PET

Dice Score - 0.791 Predicted BAT Volume - 45.84 Target BAT Volume - 58.54

Dice Score - 0.739 Predicted BAT Volume - 20.46 Targett BAT Volume - 24.89

Fig. 3 | Visual results of the Granada model’s high-accuracy predictions on the
test set of the Granada cohort. Rough manual segmentation of the supraclavi-
cular region is delineated with white contour on CT scans. Note that each raw

corresponds to an axial slice of a different subject and the images are normalized
with respect to the max SUV value in the target PET scans for visualization
purposes.
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The Granada cohort has a greater diversity in BAT activity levels
compared to the Basel cohort, as indicated by Supplementary Fig. 1.
Consequently, the Granadamodel is less vulnerable to over-prediction
caused by dataset bias than the Basel model. This is evident from the
scatter plots of bothmodels’predictions on theGranada cohort shown
in Figs. 5 and 6. In the Basel model’s predicted BAT volume vs Dice
score plot, the samples with the same Dice score are notably shifted
towards the right compared to the target BAT volume vs Dice score
plot, indicating over-prediction. Conversely, the over-prediction is less
pronounced in the Granada model’s predictions.

Generalization
In the inter-cohort experiments, we noted that the Granadamodel has
better generalization performance on the Basel cohort than how Basel
model performs on the Granada cohort. This finding was predictable
because the Basel cohort is relatively small andpredominantly consists
of subjects with high BAT activity. Consequently, it ismore susceptible

to the dataset biasmentioned earlier compared to the Granada cohort.
Therefore, to mitigate dataset bias and generalization concerns, we
recommend that future studies construct more balanced training
cohorts that comprise an equal number of subjects across various BAT
activity levels.

Another potential problem that might affect the general-
ization performance of our models is the variation in some
characteristics of the populations in different cohorts. As men-
tioned before, the Granada cohort consisted of individuals from a
specific population with certain self-reported characteristics,
such as being sedentary, maintaining a stable body weight, and
not being regularly exposed to cold conditions. However, many
of these features were not taken into consideration in the Basel
cohort. Such discrepancies between cohorts can significantly
impact the CNNs’ ability to generalize new data. Conducting
generalization experiments without removing these differences
does not provide an accurate representation of the generalization

Dice Score - 0.619 Predicted BAT Volume - 17.61 Target BAT Volume - 14.11

Dice Score - 0.888 Predicted BAT Volume - 52.35 Target BAT Volume - 48.44

Dice Score - 0.810 Predicted BAT Volume - 32.81 Target BAT Volume - 25.68

CT Predicted PET Target PET

Dice Score - 0.683 Predicted BAT Volume - 6.32 Target BAT Volume - 3.86

Dice Score - 0.737 Predicted BAT Volume - 16.26 Target BAT Volume - 14.78

Fig. 4 |Visual resultsof theBaselmodel’spredictionsonthe test set of theBasel
cohort. Rough manual segmentation of the supraclavicular region is delineated
with white contour on CT scans. Note that each raw corresponds to an axial slice of

a different subject and the images are normalized with respect to the max SUV
value in the target PET scans for visualization purposes.
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(a)

(b)

Fig. 5 | Scatter plots of Target BAT volume (ml) vs. Dice score (unitless) and Predicted BAT volume (ml) vs. Dice score (unitless) for the intra-cohort experiments.
a CNN trained on Basel cohort. b CNN trained on Granada cohort.

(a)

(b)

Fig. 6 | Scatter plots of Target BAT volume (ml) vs. Dice score (unitless) and Predicted BAT volume (ml) vs. Dice score (unitless) for the inter-cohort experiments.
a CNN trained on Basel cohort evaluated on Granada cohort. b CNN trained on Granada cohort evaluated on Basel cohort.
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performance between cohorts. A more effective method of
quantifying the generalization performance between cohorts
would be to perform inter-cohort experiments after standardizing
these features between the cohorts. We acknowledge that creat-
ing such homogenized cohorts can be costly, and this is a lim-
itation of our study. Despite this limitation, we argue that the
generalization performance of the Granada model on the Basel
cohort would have improved further if these discrepancies
between the cohorts had been addressed.

Correlation between Dice score and BMI
In the assessment of the Dice score between the CNN-predicted
HU-derived indices (predicted BAT activity) and the actual SUV-
derived indices (ground truth BAT activity), an important con-
sideration is the potential influence of confounding factors, such
as adiposity, on the predictive accuracy of our model. Adiposity is
inversely related to BAT functionality, and increased adipocyte
size is associated with higher BMI levels. Thus, we investigated
whether the predictive accuracy of our model - as measured by
the Dice score - was influenced by the BMI of the subjects in our
cohorts. Our analysis revealed a Pearson’s correlation coefficient
of -0.131 and -0.076 between the Dice score and BMI for the
Granada and Basel cohorts, respectively - suggesting a negligible
inverse relationship. This finding is particularly significant as it
indicates that the predictive accuracy of our model is not con-
founded by variations in adiposity levels among subjects. The
absence of a significant correlation between BMI and the Dice
score substantiates the reliability of the observed agreement
between the predicted and actual BAT volumes, affirming that
this agreement is not a spurious correlation attributable to
adiposity. This result underlines the robustness of our CNN-based
predictive model, demonstrating its applicability across a diverse
population with varying BMI levels.

Using 2D CNNs
In our experiments, we utilized 2D CNNs and trained them with 2D
slices from the axial plane. This approach has been found to produce
higher accuracy results compared to 3D CNNs in many medical

applications, particularly when the number of 3D volumes is limited.
However, a major drawback of 2D CNNs is their inability to utilize 3D
information, which can be vital in accurately identifying active BAT
regions. In our current setup, each slice is separately predicted by the
CNNs without considering any information from neighboring slices.
Webelieve that training 3DCNNswith sufficiently large andwell-paired
cold-stimulated [18F]-FDG PET/CT datasets could lead to improved
predictions through the utilization of 3D information.

Predicting the PET activity of BAT in other BAT depots
In this paper, we primarily focus on predicting the PET activity of BAT
from CT scans in the supraclavicular region, as it is one of the largest
BAT depots in humans. We then extend our analysis to include mul-
tiple BAT regions, aiming to determine whether the capabilities of
CNNs can be generalized to predict BAT activity in additional depots,
such as the cervical, supraclavicular, and paraspinal areas. The results
show that CNNs can predict BAT activity in other BAT depots without
loss in accuracy; significantly improving the HU thresholding-based
method. The details of this experiment are provided in the Supple-
mentary Material Section A.

Can neural networks predict any functional activity in PET from
CT scans?
In this study, we utilize Convolutional Neural Networks (CNNs) to
predict PET activity in brown adipose tissue (BAT) from CT scans,
based on literature that suggests a correlation between CT’s Houns-
field Units (HU) and PET’s Standardized Uptake Values (SUV) within
BAT regions, as previously discussed. The question may arise regard-
ing the broader application of our method for predicting PET activity
from CT scans in tissues other than BAT, including tumors. It is
important to highlight the intrinsic differences between CT and PET
imaging techniques; CT scans offer detailed structural information
reflecting stable anatomical features, while PET images reveal dynamic
metabolic and biochemical activities that can fluctuate significantly
due to a range of factors, including health status and testing condi-
tions. We would like to emphasize that our findings do not imply that
our method is universally applicable across different tissues or con-
ditions, given the fundamental differences between the imaging

Fig. 7 | Visual examples of target and predicted PET scans for the samples with
low BAT activity where CNNs make over-predictions inmany slices, leading to
low quantitative results. Note that we present examples of two different subjects
from the Granada cohort where each row corresponds to a different axial slice of the

subjects. In such examples, we observed that CNNs consistently make over-
predictions in many slices, possibly due to the bias introduced by the dominance of
subjects with high BAT activity in the training set. Note that the images are normalized
with respect to the max SUV value in the target PET scans for visualization purposes.
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modalities. Our approach is specifically tailored to BAT, relying on
distinct CT signatures of BAT activity, which have empirical backing.
For the application of neural networks in predicting PET activity for
other tissues, like tumors, identifying and thoroughly investigating
comparable, specific CT signatures is essential.

Conclusion and future work
In this paper, we proposed using CNNs for predicting the SUV of BAT in
the supraclavicular region, one of the largest BAT depots in humans.We
used the predicted PET activity to segment the active BAT regions. We
performed extensive experiments using four different cohorts, two of
which are research cohorts obtained after cold stimulation, and the
remaining two are clinical cohorts with no cold stimulation applied. Our
results show that active BAT regions can be segmented with high
accuracy when the CNNs are trained on cold-stimulated paired [18F]-FDG
PET/CT datasets, demonstrating generalization ability to some extent to
the other cold exposure cohorts. We also empirically showed that [18F]-
FDG PET/CT datasets collected without cold stimulation are unsuitable
for training CNNs and discussed why it is the case. One of the most
interesting findings of our study is the ability of CNNs on distinguishing
subjects with and without active BAT solely fromCT scans. Additionally,
we demonstrated that this ability of CNNs can be used to create strati-
fied cohorts of BAT+ and/or BAT− subjects, thereby reducing the
number of subjects mistakenly assigned to a wrong cohort. This allows
researchers to conduct experiments on cohorts with desired char-
acteristics which is extremely useful, e.g., when investigating the effect
of a drug on a certain population with large BAT activity. This research
represents a significant step towards opportunistic screening for BAT
activity, which may be helpful in future research on personalized treat-
ment strategies for metabolism-related diseases by developing pre-
dictive models using neural networks with high-quality datasets from
sizeable cohorts. By enabling extensive population analyses with
reduced radiation exposure and cost, CNNs provide a promising path
toward more effective diagnoses and treatments in the future.

In this paper, we employed a CNN-based neural network archi-
tecture, specifically the Attention U-Net. Recently, transformer-based
models, such as Vision Transformers (ViTs)36, have achieved significant
improvements over CNNs in terms of accuracy and generalization
across a variety of image analysis tasks37. However, it’s important to
note that the superior performance of transformer-based networks
largely depends on the availability of extensive labeled datasets. In
contexts where only small or medium-sized datasets are available,
their performance tends to be less effective compared to that of
CNNs36. Given that our study relies on relatively small datasets, we
opted for CNNs. Nevertheless, should large cold-exposure [18F]-FDG
PET/CT datasets become available for future research, transformer-
based architectures have the potential to significantly enhance per-
formance over CNNs.

Methods
Datasets
This section provides information about the datasets from different
cohorts used in this study. We mainly group the cohorts used in our
experiments into two: 1) interventional (research) cohorts obtained
with cold exposure and 2) retrospective (clinical) cohorts obtained
without any controlled cold exposure.

The study protocols for each cohort were approved by the Insti-
tutional Review Board (IRB) of the centers, as detailed in the corre-
sponding sections for each cohort. These original approvals included
permission for the datasets to be used in future research. As a result,
specific approval for this study has been waived based on these prior
approvals.

Interventional (research) cohorts with cold-exposure. The regional
ethics committee at the University of Basel approved the study

protocol (approval number EKNZ 2016-01859), and the study was
registered at clinicaltrials.gov (NCT03269747) on 2017-09-01. All par-
ticipants provided written informed consent before being enrolled in
the study.

Primary goal of the cohort: The primary goal of this interven-
tional cohort was to see the effect of high-dose glucocorticoid (pre-
dnisone) treatment on human brown adipose tissue activity in healthy
men. The outcome of the primary study is published in ref. 38.

Participants in the primary study: Healthy male volunteers were
recruited between September 2017 and April 2019. The participants
underwent a screening visit during which cold-induced thermogenesis
(CIT) was measured, and n = 16 participants with a CIT above 5% of
resting energy expenditure (REE) were enrolled. [18F]-FDG PET/CT
scans were obtained from each participant pre and post-intervention
(prednisone or placebo). The subjects in this cohort are aged between
19 and 33 years, with an average age of 24.45 years and a standard
deviationof 4.38. Their BMI values range from 18.6 to 27.5,with amean
BMI of 22.5 and a standard deviation of 2.31.

Participants included to this study: We used pre and post-
intervention [18F]-FDG PET/CT scans obtained from all n = 16 partici-
pants in our experiments. We ensured that pre and post-intervention
scans of the same participant were in the same split (one of training,
validation, and test splits) during training CNNs.

Mild cold exposure: To activate BAT and assess CIT, participants
underwent a controlled mild cold exposure. They were placed on a
hospital bed in an air-conditioned study room with a stable ambient
temperature of 24∘C in a supine position. Subjects wore shorts and
T-shirts and were initially covered with a fleece blanket for measure-
ments under warm conditions. To expose study participants to mild
cold, thefleeceblanketwas removed, andwater-perfused coolingmats
were placed around the mid-section of the subjects. The cooling mats
were perfused with water at a controlled temperature (Hilotherm
clinic, HilothermGmbH, Argenbühl, Germany). Thewater temperature
was lowered from 25°C to 10°C at a rate of 1°C every 2 minutes.

[ 18F]-FDG PET/CT Imaging: The imaging procedures for assess-
ment of human supraclavicular BAT activity with a low radiation
exposure were developed during a previous trial39. After 120 minutes
of cold exposure study, participants received an intravenous bolus of
75MBqof [18F]-Fluorodeoxyglucose (FDG). Static PET/CT scanningwas
performed on a BiographmCT PET/CT scanner (SiemensHealthineers,
Erlangen, Germany) after an additional 30 minutes of rest. Low-dose
CT scanning was used and confined to the neck and upper thoracic
region to reduce exposure to ionizing radiation.

Granada: The study was approved by the Ethics Committee on
Human Research of the University of Granada (no. 924) and by the
Servicio Andaluz de Salud (Centro de Granada, CEI-Granada, Spain)
and was registered at clinicaltrials.gov (NCT02365129) on 2015-02-18.
All participants included in the study provided written consent.

Primary goal of the cohort: The interventional cohort was
obtained with the primary aim of investigating the supervised exercise
training on BAT volume and activity and the outcome of the study is
published in40.

Participants in the primary study: All data acquisition was done
at the University of Granada (Spain) during the months of October,
November, and December in 2015 and 2016. All subjects underwent a
comprehensive medical examination and reported themselves to be
sedentary ( < 20 min moderate-vigorous physical activity on < 3 days/
week), reported a stable body weight over the last 3 months ( < 3 kg
change), were not exposed to cold regularly, did not smoke, and did
not take any medication. The subjects did not suffer from cardiome-
tabolic disease.

The subjects in this cohort are aged between 18 and 27 years, with
an average age of 22.07 years and a standard deviation of 2.23. Their
BMI values range from 17.2 to 39.40, with a mean BMI of 24.91 and a
standard deviation of 4.62.
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In the Granada cohort, 145 participants were initially included in
the study. [18F]-FDG PET/CT scans were obtained pre and post-
intervention (supervised exercise training) for 107 of them. For the
remaining 38 participants, only pre-intervention [18F]-FDG PET/CT

scans were obtained since the participants did not continue the study
afterward.

Participants included in this study: We used both pre and post-
intervention [18F]-FDG PET/CT scans of 107 participants along with the
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Fig. 8 | Illustration of the flow for predicting PET activity of BAT fromCT scans
and segmenting the active BAT region. a Illustration of cropping to obtain a
region of interest (ROI) that contains the supraclavicular region. Note that C indi-
cates the number of slices in the axial dimension and can slightly change for

different subjects. After cropping, the slices are given as input to the CNN shown in
(b).b Schematic of the AttentionU-Net architecture. cDetecting active BAT regions
from a PET volume. Note that “AND" represents the logical and operator that we
used to mask out false positive regions obtained after thresholding.
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30 of the 38 pre-intervention scans in our experiments. Our experi-
ments could not include the remaining 8 pre-intervention scans since
they were not processed properly in the delivered institution where
the experiments in this study were conducted. In total, we used [18F]-
FDG PET/CT scans from n = 137 participants in our experiments. We
made sure that when training CNNs, the pre and post-intervention
scans of each participant were placed together in one of the training,
validation, or test sets.

Cold exposure: Cooling protocol was used to activate BAT where
the quantified activities were previously reported in41,42. During the
cooling period, subjects sat in a cool room (19.5-20°C) wearing awater-
perfused cooling vest (Polar Products Inc., Stow, OH, USA). The water
temperature was reduced from 16.6°C by ∼2. 2°C per 10 min until the
subjects began shivering. After 48-72h of initial cooling, the patients
went to theHospital Virgen de las Nieveswhere theywere again placed
in a cool room (19.5-20°C) bywearing the same cooling vest for 2hwith
the temperature set to ∼4°C above their earlier shivering threshold.

[18F]-FDGPET/CT Imaging:The subjectswere given an injection of
18F-FDG (∼185MBq) after first hour of the cooling period. Then, the
water temperature was increased by 1°C to avoid visually detectable
shivering. After another hour, PET/CT scans of the subjects were
obtained using a Siemens Biograph 16 PET/CT scanner (Siemens
Healthineers, Erlangen, Germany), scanning two BEDs from the atlas
vertebra to thoracic vertebra 6 (approximately).

Retrospective clinical cohorts without any controlled cold-
exposure. We used datasets from two retrospective clinical cohorts
collected in the University Hospital of Zurich (Zurich cohort) under
ethics approval number KEK ZH 2015-0282 and Memorial Sloan Ket-
tering Cancer Center (MSKCC cohort) under IRB approval 19-184.
Written consent was waived by the Zurich Cantonal Ethics Committee
for the Zurich cohort and by the IRB for the MSKCC cohort.

Primary goal of the cohorts: Both cohorts are retrospective
cohorts that were collected from patients at the corresponding hos-
pitals. Some aspects of the Zurich cohort have been investigated in43–46

whereas the MSKCC cohort was not published elsewhere.
Participants: The number of patients included in the Zurich

cohort is n = 480 and in the MSKCC cohort is n = 85. These cohorts
contain only a single [18F]-FDG PET/CT scan from each patient.

[18F]-FDG PET/CT Imaging: The patient preparation procedure
was comparable at both centers: Patients were instructed to arrive
fasted (4-6 h), including abstaining from drinking sweetened bev-
erages and chewing gum. Blood glucose was measured prior to the
[18F]-FDG injection and had to be below 7 g/l. Patients received ∼4MBq
[18F]-FDG per kilogram body weight (Zurich), or ∼400MBq (MSKCC),
followed by a 60 ± 5 min. uptake period. Afterward, a low-dose
attenuation correction CT scan was acquired (100 − 120kV, ∼80mA),
followed by the PET scan frommid-thigh to the vertex of the skull (GE
Healthcare ®).

Data pre-processing
We transformed all CT scans with the corresponding rescale and the
intercept found in the meta-data in the DICOM files. Voxel values in all
raw [18F]-FDG PET scans contain radioactivity amount in terms ofMBq/
mL. Radioactivity amount in [18F]-FDG PET scans depends on the
amount of radioactive material injected into the patient prior to the
acquisition, the half-time of the material, and the patient’s weight. We
removed the effect of these parameters by converting the voxel values
to Standardized Uptake Value (SUV)47.

We resampled all volumes, PET and CT, from all cohorts to voxel
size of 0.976 × 0.976 × 1.5mm3, the default voxel size of the Granada
cohort.We cropped 320 × 480 × C volumes around the supraclavicular
region, one of the largest BAT depots in human28, from the original
volumes where C denotes the number of slices in the axial plane (see
Fig. 8a). Note that C slightly varies from patient to patient which was

chosen by an expert by considering the slices where BAT may exist.
The crop size of 320 × 480 was determined such that the cropped
region encompasses the supraclavicular area and the cropped image’s
dimensions are divisible by 23 where 3 is the number of max pooling
operations used for downsampling the image size in our network
architecture as shown in Fig. 8b.

We applied volume-specificmin-max normalization ðx�xminÞ
ðx99�xminÞ to CT

scans, where x is an intensity, and xmin and x99 are the minimum and
the 99th percentile values computed over a volume, respectively.
Additionally, we normalized the PET scans in a cohort with the 99th

percentile SUV value computed over the cohort.

Network architecture and training details
We trained CNNs such that they take pre-processed (as described in the
previous section) CT scans of the supraclavicular region as input and
predict the corresponding SUV of BAT. We experimented with training
CNNs using the paired [18F]-FDG PET/CT datasets introduced in Section
4.1. We used the 2D Attention U-Net48 shown in Fig. 8b as a CNN
architecture in our experiments. The architecture has been successfully
applied to various medical imaging tasks in the literature49–51. Axial 2D
slices were extracted from the 3D volumes for CT and PET and used as
inputs and ground truths during training CNNs.We chose a 2D network
architecture instead of a 3D one because it has fewer parameters, and
has been shown that the former one may lead to better results in
various tasks especially when the number of 3D volumes is limited52.

For each dataset, we created 5 different random splits (folds)
for training, validation, and testing. In each random split, we split
20% of the 3D volumes for testing and validation and use the
remaining volumes for training. We show the number of volumes
in training, validation, and test splits for each dataset in Table 2.
Note that the scans in the final test, train, and validation splits do
not overlap. In our evaluations, we trained 5 different CNNs using
each random training and validation split of a dataset and pre-
sented the average results.

We trained the models for 1000 epochs with a learning rate of
0.003 by minimizing mean square error (MSE) loss between predicted
and ground truth PET scans. We used standard data augmentation
techniques of translation, rotation, random cropping, scaling, and hor-
izontal/vertical flipping. The models were evaluated during training on
the validation set and we picked the model with the lowest MSE loss as
the final model. We obtained the predictions for each 3D test volume by
giving it as input slice-by-slice to the trained 2Dmodels. Then, we formed
the predicted 3D PET volumes by stacking up the 2D predictions.

Segmentation of active BAT regions from PET
The standard procedure for the detection of active BAT regions from
PET volumes is applying thresholding to the whole volume and
manually eliminating the regions which do not correspond to BAT
depots. In our evaluations, we followed the same procedure for
detecting active BAT regions from predicted and ground truth BAT
volumes as shown in Fig. 8c. We segmented the active BAT regions
from PET using the threshold of 1.530. Then, we eliminate the regions
that do not correspond to a BAT depot by masking the threshold-
based segmentation with the rough manual segmentation of the
supraclavicular region delineated from CT by an expert and obtain the
final segmentation of active BAT.

HU thresholding-based method
We compared the performance of CNNs with a HU thresholding-based
method which enables us to compare the performance of CNNs with a
method that can segment active BAT regions without requiring PET
scans. We used commonly used HU thresholds of -180 and -10 in the
literature30. Note that the thresholding-based approach produces
many false positives that do not correspond to a BAT region. Finally,
we suppressed the false positives regions detected as active BAT
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outside of a BAT depot with the ground truth segmentation of the
supraclavicular region as shown in Fig. 8c.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information and from
the corresponding author upon request. The datasets used in the
current study are not publicly available due to privacy reasons. Image
datasets can be made available after deidentification for any
researcher who provides methodologically sound proposals. These
proposals should outline the intended use of the data and should be
directed to ertunc.erdil@vision.ee.ethz.ch. The proposals must be
submitted up to 60 months following the article’s publication. Pro-
posals will be reviewed by the group responsible for each dataset to
ensure that they are methodologically sound and ethically appro-
priate. Once a proposal is accepted, access to the data will be granted
after the requestors sign a data access agreement. Approved
researcherswill receivedata via a securedata-sharingplatform thatwill
be decided before data sharing, ensuring that all data transfer com-
plies with relevant data protection regulations. The data will be shared
for the purposes of replicating the study findings or for conducting
additional research related to the study topic and will be available for
one year with possible extension. The data will be provided for aca-
demic research only, and commercial use is not permitted. Figures 1, 2,
5, 6, and Supplementary Fig. 1 are available as source data. Source data
are provided with this paper.

Code availability
The training code is available at https://github.com/eerdil/BAT.
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