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Unsolved Mendelian cases often lack obvious pathogenic coding variants,
suggesting potential non-coding etiologies. Here, we present a single cell
multi-omic framework integrating embryonic mouse chromatin accessibility,
histone modification, and gene expression assays to discover cranial motor
neuron (cMN) cis-regulatory elements and subsequently nominate candidate
non-coding variants in the congenital cranial dysinnervation disorders
(CCDDs), a set of Mendelian disorders altering cMN development. We gen-
erate single cell epigenomic profiles for ~86,000 cMNs and related cell types,
identifying ~250,000 accessible regulatory elements with cognate gene pre-
dictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59
elements using an in vivo transgenic assay and validate 44 (75%), demon-
strating that single cell accessibility can be a strong predictor of enhancer
activity. Applying our cMN atlas to 899 whole genome sequences from 270
genetically unsolved CCDD pedigrees, we achieve significant reduction in our
variant search space and nominate candidate variants predicted to regulate
known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 – as well as can-
didates in recurrently mutated enhancers through peak- and gene-centric
allelic aggregation. This work delivers non-coding variant discoveries of rele-
vance to CCDDs and a generalizable framework for nominating non-coding
variants of potentially high functional impact in other Mendelian disorders.

While the great majority of genetic variants associated with complex
disease are common in the population and localize to non-coding
sequences, less than 5% of the knownMendelian phenotype entries in
OMIM have been attributed to non-coding mutations1–4. However, it
remains unsettled the extent to which this disparity in coding:non-

coding causal Mendelian variants is explained by the relative effect
sizes of coding vs. non-coding variation, difficulty in deciphering the
functional impact of non-coding variation, and/or ascertainment due
to greater number and size of exome- versus genome-sequenced dis-
ease cohorts1,5–8. Nominating pathogenic non-coding variants in
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Mendelian disease remains amajor challenge due to a vastly increased
search space (98% of the genome) relative to coding variants. Com-
pounding this challenge is the lack of a generalizable rubric for
nominating non-coding pathogenic variants relative to the more
readily interpretablemolecular andbiochemical constraints governing
protein-coding variant effects.

In recognition of these challenges, large-scale functional geno-
mics projects such as ENCODE and Roadmap Epigenomics have pro-
vided valuable and expansive genome-wide functional information
across a growing array of potentially disease-relevant tissues and cell
types9,10. Such efforts reveal that the non-coding genome is abundant
with cis-regulatory elements (cREs) - segments of non-codingDNA that
regulate gene expression through transcription factor binding and
three-dimensional physical interactions with their cognate genes.
Biologically active cREs are associated with accessible chromatin, and
combinations of accessible cREs varydramatically amongdifferent cell
types11. Therefore, understanding the chromatin accessibility land-
scape of cell types affected by disease is critical to identifying and
interpreting disease-causing variation in the non-coding genome.

Disease-relevant developmental processes are disproportionately
driven by regulation of gene expression12,13, making congenital genetic
disorders attractive candidates for non-coding etiologies. However,
sampling developing human cell types remains particularly challen-
ging, as samples are often restricted by cell location, assayable cells,
invasiveness of sampling, and/or narrow windows of biologically
relevant regulation of gene expression and development14. Thus, while
fetal epigenomic reference sets are emerging for humans, samples are
generally assayed at the whole-organ/tissue level and/or at later stages
of development, making appropriate sampling and identification of
early-born and rare cell types difficult15. By contrast, sample collection
and marker-based enrichment in model organisms can achieve sub-
stantial representation of disease-relevant cell types at early stages of
development16–18.

The congenital cranial dysinnervation disorders (CCDDs) are
Mendelian disorders in whichmovement of extraocular and/or cranial
musculature are limited secondary to errors in the development of
cranial motor neurons (cMNs) or the growth and guidance of their
axons (Fig. 1a). Although a known subset of the CCDDs are caused by
Mendelian protein-coding variants19–28, a substantial proportion of
cases remain unsolved by whole exome sequencing, including pedi-
grees with Mendelian inheritance patterns and cases with classic
phenotypic presentations lacking corresponding mutations in the
expected genes (representing potential locus heterogeneity)29. More-
over, most CCDD cases are sporadic or segregated in small dominant
families for which non-coding variant prioritization is challenging.

The CCDDs represent an attractive test case for dissecting cell
type-specific disorders, as defects in specific cMN populations are
highly stereotyped with predictable corresponding human
phenotypes30. By contrast, many complexes and even someMendelian
diseases are not immediately attributable to an unambiguous, singular
cell type of interest, making assaying appropriate cell types a major
challenge31–33. Moreover, while sampling and identification of devel-
oping cMNs atdisease-relevant timepoints is challenging indeveloping
human embryos, cMN birth, migration, axon growth/guidance, and
mature anatomy/nerve branches are exquisitely conserved between
humans and mice30 (Fig. 1a). Motor neuron reporter mice permit
sample collection and marker-based enrichment of cMNs at these key
stages of development. Importantly, we previously demonstrated that
such mouse models helped to characterize non-coding pathogenic
variants that alter gene expression in hereditary congenital facial
paresis type 1 (HCFP1), a disorder of facial weakness secondary to facial
nerve (cMN7) maldevelopment34. Here, to comprehensively discover
the repertoire of cREs underlying proper cMN development, we have
generated a chromatin accessibility atlas of developing mouse cMNs
and adjacent cell types. We subsequently use this atlas to reduce our

candidate variant search space (i.e., the total number of eligible var-
iants) and ultimately interpret and nominate non-coding variants
among 270 unsolved CCDD pedigrees (Fig. 1b and Supplementary
Table 1).

Results
Defining disease-relevant cREs in the developing cMNs
To discover disease-relevant cREs and ultimately reduce our non-
coding search space for nominating candidate pathogenic CCDD var-
iants, we generated a single-cell atlas of embryonic mouse cMN chro-
matin accessibility. Using transgenic mice expressing GFP under the
Isl1MN:GFP or Hb9:GFP motor neuron reporters35,36 (Fig. 1bi), we per-
formed fluorescence-assisted microdissection and FACS-based
enrichment of GFP-positive primary mouse embryonic oculomotor
(cMN3), trochlear (cMN4), abducens (cMN6), facial (cMN7), hypo-
glossal (cMN12), spinal motor neurons (sMNs), and surrounding GFP-
negative non-motor neuron cells (-neg), followed by droplet-based
single-cell ATAC-seq (scATAC). cMN birth and development occur
continuously over a period of weeks in early human embryos and days
in mice34,37. More specifically, birthdating studies show that cMN3, 4,
and 7 overlap mouse/mouse-equivalent stages e9.25 through
e12.034,38–41. In addition, their axons have extended into the periphery
and are forming nerve branches at timepoints overlapping e10.5 and
e11.542–47. Finally, for the known CCDD genes,mRNA expression and/or
observed cellular defects typically overlap key developmental time-
points e10.5 and e11.5 in mice—both for cellular identity-related tran-
scription factor42,48–51 and axon guidance-related22,52,53 variants.
Therefore, we captured e10.5 and e11.5 embryonic timepoints for each
cMN sample, reasoning that a major proportion of both relevant cel-
lular birth and initial axonal growth and guidance would be repre-
sented at one or both of these ages34,37. At these stages, these cranial
nuclei contain only hundreds (cMN3, 4, 6) to thousands (cMN7, 12) of
motor neurons per nucleus, per embryo43,52,53.

Wegenerated scATACdata across 20unique sample types (cMN3/
4, 6, 7, 12, and sMN for GFP-positive and -negative cells, each at e10.5
and e11.5), nine with biological replicates and two with technical
replicates for 32 samples in total and sequenced them tohigh coverage
(mean coverage = 48,772 reads per cell). We included GFP-negative
cells to reduce uncertainty in peak calling, further increase repre-
sentation from rare cell types, and capture regional-specific cell types
that couldharbor elements conferringnon-cell-autonomous effects on
cMN development. To generate a high-quality set of non-coding ele-
ments, we performed stringent quality control (Supplementary
Fig. 1a–h, Methods). Altogether, we generated high-quality single-cell
accessibility profiles for 86,089 (49,708 GFP-positive and 36,381 GFP-
negative) cells, in some cases achieving substantial oversampling of
cranial motor neurons in the developingmouse embryo (up to 23-fold
cellular coverage). Our final dataset revealed prominent signals of
expected nucleosome banding, a high fraction of reads in peaks
(x̄frip = 0.66), transcription start site enrichment, and strong con-
cordance between biological replicates (Fig. 1c, Supplementary
Fig. 1d–h, and Supplementary Data 1). In addition to evaluating per-
sample and per-cell metrics, we estimated a decrease in global acces-
sibility over developmental time, consistent with observations in other
developing cell types (βtime = 0.049, p value <1 × 10−15, linear regres-
sion, Supplementary Note 1)54,55.

We performed bulk ATAC on a subset of microdissected and
fluorescence-activated cell sorting (FACS)-purified cMN samples to
evaluate the concordance between bulk and single-cell peak repre-
sentation. As expected, bulk and single-cell cMNATACpeaksare highly
correlated in their matching dissected cell types (Supplementary
Fig. 2a, b). scATAC peaks were enriched for intronic/distal annotations
(relative to exonic/promoter annotations, OR = 1.9, p value <2.2 × 10−16,
Fisher’s exact test) compared tobulkATAC intronic/distal annotations,
thus better-capturing regions that harbor the overwhelming majority
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of regulatory elements (Supplementary Fig. 2c)56. Next, to test the
cellular resolution of our scATAC data, we leveraged differences in the
strategies used for bulk (cMN3 without cMN4) vs. scATAC dissection
(cMN3 and cMN4 combined) and performed cluster analysis on cMN3/
4 samples only (ad hoc clusters C1–C20, Supplementary Fig. 2a, d, e).
We identified a significant overlap between ad hoc clusters C18 and
C20 scATACpeakswith bulk cMN3peaks.Moreover, we confirmed the

accessibility of known cMN3 markers in C18 and C20, and cMN4
markers in C1957,58 (Supplementary Fig. 2e). When comparing the
scATAC peaks to bulk ATAC peaks in ENCODE9 sampled from major
developing brain regions (forebrain, midbrain, hindbrain) at compar-
able timepoints, we observed diminished overlap for GFP-positive
cMN samples relative to GFP-negative samples (Supplementary
Fig. 3a). Further stratifying scATAC peaks based on cell type specificity
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Fig. 1 | Integrating Mendelian pedigrees with single-cell epigenomic data.
a Schematic depicting a subset of human (top) and mouse (bottom) cMNs and
their targeted muscles. cMN3 (blue) = oculomotor nucleus which innervates the
inferior rectus, medial rectus, superior rectus, inferior oblique, and levator pal-
pebrae superior muscles; cMN4 (purple) = trochlear nucleus which innervates the
superior oblique muscle; cMN6 (green) = abducens nucleus which innervates the
lateral rectus muscle (bisected); cMN7 (pink) = facial nucleus which innervates
muscles of facial expression; cMN12 (black) = hypoglossal nucleus which inner-
vates tongue muscles. Corresponding CCDDs for each cMN are listed under the
diagram and color coded. CFEOM congenital fibrosis of the extraocular muscles,
CP congenital ptosis, FNP fourth nerve palsy. b Overview of the experimental and
computational approach. (i) Generating cell type-specific chromatin accessibility
profiles. Brightfield and fluorescent images of e10.5 Isl1MN:GFP embryo (left) from
which cMNs are microdissected (yellow dotted lines, dissociated, FACS-purified
(middle), followed by scATAC and data processing. (ii) WGS of 270 CCDD pedi-
grees (left; 899 individuals; sporadic and inherited cases) followed by joint variant

calling, QC, and Mendelian variant filtering (right). (iii) Integrating genome-wide
non-coding variant callswith epigenomic annotations for variant nomination (top).
To inform variant interpretation, we identify cognate genes (second row), aggre-
gate candidate variants, generate functional variant effect predictions (third row),
and validate top predictions in vivo (bottom). c UMAP embedding of single-cell
chromatin accessibility profiles from 86,089 GFP-positive cMNs, sMNs, and their
surrounding GFP-negative neuronal tissue colored by GFP reporter status (left,
GFP-positive green, GFP-negative gray), sample (middle) and cluster (right). Grid-
lines in middle UMAP apply to left and right UMAPs as well. The inset shows the
relative proximity of Cluster 2 cells dissected from the same cell type (cMN7 e10.5)
from different technical and biological replicates. d Heatmap depicting propor-
tions of dissected cells within each of the 23 major clusters. Homogeneity/com-
pleteness metrics are shown for GFP-positive versus -negative clusters. Figure 1b
was created with BioRender.com and released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license.
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scores59 revealed that highly specific scATAC peaks had consistently
lower bulk coverage than peaks with low specificity (Supplementary
Fig. 3b, c), in keeping with findings that cell-type specific regulatory
elements often act within small populations of cells and may be more
difficult to capture and annotate with bulk methods60,61.

To further distinguish between rare, distinct cell types, we adop-
ted an iterative clustering strategy (Methods)59. We first identified 23
major clusters that correspond with ground truth dissected cell types
based on known anatomy (Fig. 1c, d and Supplementary Data 2).
Overall, GFP-positive clusters demonstrated much more uniform
sample membership than GFP-negative clusters, as reflected by their
differences in cluster homogeneity62 (hgfp-positive = 0.84 vs.
hgfp-negative = 0.16) and purity metrics (Fig. 1d, Supplementary Fig. 4a,
and Supplementary Table 2, Methods). Upon examining differentially
accessible genes and elements throughmanual curation, review of the
literature, and gene ontology analysis, we assigned provisional cell
identities to the 23major clusters, ofwhich ten clusters are cranial, and
five are spinal motor neurons based on dissection origin, and nine are
cranial, and four are spinal motor neurons based on putative annota-
tion (Supplementary Data 2). To further resolve the heterogeneity
within clusters and to identify functionally and anatomically coherent
subpopulations, we performed iterative clustering59 on each major
cluster and identified 132 unique subclusters (Supplementary
Fig. 4bi, ii). Of these, 59 have GFP-positive membership >90%, repre-
senting highly pure motor neuron populations (Supplementary
Fig. 4c). We observe even more distinct anatomic/temporal member-
ship at the subcluster level, particularly for GFP-negative samples
(subcluster homogeneity hgfp-positive = 0.87 vs. hgfp-negative = 0.43).
These findings are consistent with highly dynamic and proliferative
neurodevelopmental processes during this time period12. Neither
major cluster nor subcluster membership was well-explained by the
experimental batch (Supplementary Fig. 4d, Methods).

cMN cRE functional conservation between mouse and human
Common disease risk loci tend to overlap non-coding accessible
chromatin in their corresponding cell types - including accessible
chromatin that is more readily ascertained in mouse versus human
tissues15,59. However, with the exception of a few exemplary elements
(e.g., refs. 63–65), the extent of overlap between human/mouse ele-
ments underlying Mendelian traits is largely unknown. Therefore, to
evaluate the functional conservation of cREs in our cranial motor
neuron atlas, we performed in vivo humanized enhancer assays on a
curated subset (n = 26) of our candidate scATAC peaks (n = 255,804
total) that were absent from the VISTA enhancer database (n = 3384)66

and had peak accessibility/specificity in cMNs (n = 45,813)59 and gen-
eral signatures of enhancer function (i.e., evolutionary conservation
and non-cMN-specific histone modification data67, Supplementary
Table 3, Methods). Importantly, these peaks and features were not
randomly selected and, therefore, do not necessarily reflect overall
patterns across the genome (see refs. 68,69). We detected positive
enhancer activity (any reporter expression) in 65% (17/26) of candi-
dates. Moreover, 11 of the 17 validated enhancers (65%, 42% overall)
recapitulate the anatomic expression patterns (motor neuron
expression) predicted from the scATAC accessibility profiles to the
resolution of individual nuclei/nerves. For these curated examples, we
find that high-quality single-cell accessibility profiles are highly pre-
dictive of cell type-specific regulatory activity.

Motif enrichment and footprinting reveal putative cMN
regulators
To identify transcription factors/motifs responsible for cell type
identity, we performedmotif enrichment and aggregated footprinting
analysis across all 23major clusters and identified lineage-specific cMN
transcription factor/motif relationships (Fig. 2a, b). For example, we
identified significant motif and footprinting enrichment of midbrain

transcription factorOTX1 in populations corresponding to developing
oculomotor/trochlear motor neurons (cluster cMN3/4.10) and the
midbrain-hindbrain boundary (cluster MHB.7)70. We also identified
notable footprints for ONECUT2 in multiple motor neuron popula-
tions, including cMN3/4, cMN7, and putative pre-enteric neural crest-
derived cells (clusters cMN3/4.19, cMN7.11, enteric.17; Fig. 2b).
Importantly, we detected positive footprint signals for known lineage-
specific regulators such as JunD footprints in the spinal and lymphoid
lineages71,72 (clusters sMN.15, WBC.18) and GATA1 footprints in the
erythroid lineage73 (cluster RBC.20; Fig. 2b). Due to the relatively high
homogeneity across the motor neuron clusters, we also compared
motif enrichment across broader anatomic/functional classes of
motor neurons and brain regions (Fig. 2c). We identified strong
enrichment of regional markers such as DMBX174 in midbrain samples
(i.e., cMN3/4 and cMN3/4neg). We also found motifs enriched among
the ocular motor neurons (i.e., cMN3/4 and cMN6) such as PAX5,
providing potential avenues for comparative studies.

Assigning cell type-specific cREs to their cognate genes
A chief barrier to interpreting non-coding regulatory elements is
identifying their cis-target genes. While enhancers often regulate
adjacent genes, many important regulatory links also occur overmuch
longer distances, including known disease-causing events63,65,75–79.
Therefore, we generated scRNA data from GFP-positive and -negative
cMN3/4, 6, and 7 at e10.5 and e11.5 (Methods) using reporter con-
structs, microdissection, and collection strategies analogous to those
used togenerate the scATACdatasets.We then integrated these scRNA
data with the cMN chromatin accessibility data to generate peak-to-
gene links connecting cREs to target genes at the single cell level for
putative cREs within ±500 kb of a given gene (see Methods80–82). In
total, we identified 145,073 known and putative enhancers with peak-
to-gene links across the 23 clusters (median = 2 genes per enhancer,
range = 1–37; Supplementary Data 3).

Because the accuracy of peak-to-gene links inferred from separate
assays of ATAC and RNA data (diagonal integration, see ref. 83)
depends heavily on cell pairings, we performed multiple analyses to
ensure that both our ATAC-RNA pairings and gene expression esti-
mates werewell calibrated.We compared our imputed single-cell gene
expression estimates to independently collected in-house bulk RNA-
seq experiments from cMN3, 4, 6, and 7 at e10.5 and e11.5 annotated
with ground truth dissection labels (Methods). We identified strong
positive concordance between imputed gene expression and mea-
sured bulk RNAseq signal in the appropriate cell types (Fig. 3a, b). We
also found that our ATAC-RNA pairings and peak-to-gene links were
sensitive to the cellular composition of our scRNA integration data. If
the identical master peakset was compared to published scRNA data
from e10.5 to e11.5 mouse brain (MOCA neuro) or e9.5 to e13.5 mouse
heart (MOCA cardiac)84 in place of our cMN-enriched scRNA data, we
found fewer significant peak-to-gene links and fewer concordant
cognate genes (Fig. 3c–f; Methods).

Next, we performed a joint ATAC-RNA coassay (scMultiome) on a
subset of e11.5 GFP-positive cells represented in our main scATAC
dataset (cMN3/4, cMN7, cMN12, and sMN), thereby allowing us to
benchmark our inferred ATAC-RNA pairings against direct experi-
mental measurements (vertical integration; Supplementary Fig. 5a–e).
We found that scMultiome peak-to-gene links were highly concordant
with our original scATAC peak-to-gene links (Fig. 3g–i). We then
examined the single-cell accessibility profiles of four highly character-
ized cMN enhancers with known connection to the Isl1 gene—a cMN
master regulator embedded in a gene desert (Fig. 4a–c)66,85. Strikingly,
both by diagonal and vertical integration, we found that for these four
enhancers (mm933, CREST1/hs1419, CREST3/hs215, and hs1321), chro-
matin accessibility alone was a significant predictor of in vivo Isl1
expression patterns in the anatomically appropriate cMN (Fig. 4d, e and
Supplementary Fig. 5d; Wald test p value =0.011; Methods).
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Lastly, we integrated histone modification signatures into our
enhancer predictions by performing H3K27Ac scCUT&Tag on e11.5
GFP-positive cMN3/4, cMN6, and cMN7 and e10.5 cMN7 (seven
replicates total) and generated activity-by-contact (ABC) enhancer
predictions for each cell type (Methods86,87). Of 6072 total ABC
enhancers, 4925 (81%) directly overlapped our peak-to-gene links,
including multiple in vivo ground truth enhancers (Supplementary
Fig. 6a, Figs. 3i, 4a, and Supplementary Data 4). Because the avail-
ability of cell type-specific experimental data can be a limiting factor
in accurate enhancer prediction, we assessed the relative contribu-
tion of cell type-specific chromatin accessibility versus histone
modification data to ABC prediction accuracy. Specifically, among 67

annotated cMN enhancers in the VISTA enhancer database (visua-
lized at e11.5 by the presence of beta-galactosidase in the nucleus
and/or nerve), 49 had some evidence of expression in cranial nerve
(CN)7. Among these, we identified seven that had both visible CN7
expression and ABC cMN7 enhancer predictions at e11.5. For all seven
enhancers (100%), ABC cognate gene predictions were concordant
with peak-to-gene predictions. We then reran our ABC predictions,
replacing either our cMN7 ATAC data with mouse embryonic limb
e11.5 ATAC data (ENCODE ENCSR377YDY; Limb ATAC) or our cMN7
histonemodification data withmouse limb histonemodification data
(ENCODE ENCSR897WBY; Limb H3K27Ac) and compared predic-
tions. Substituting limb ATAC for cMN7 ATAC data resulted in only
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14% (1/7) concordance, while substituting limb H3K27Ac for cMN7
H3K27Ac data resulted in 57% (4/7) concordance (Supplementary
Fig. 6b). Thus, for this curated set of data, we find that cell type-
specific ATAC signal is a better predictor of reproducible cognate
gene predictions than cell type-specific histone modification signal
or non-cell-type-specific ATAC signal.

Embryonic mouse chromatin accessibility atlas
In summary, we generated a chromatin accessibility atlas of the
developing cMNs and surrounding cell types. We combined GFP-
positive (n = 49,708) and -negative (n = 36,381) cells to improve joint
peak calling performance and to capture potential regional hetero-
geneity of non-motor neuron cell types as well as motor neuron
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progenitors88. Cluster analysis revealed nine putative cMN, four puta-
tive sMN, and multiple non-MN/non-neuronal clusters (of 23 total).
Although sMNs are not directly implicated inCCDDs, theymay provide
value for comparative studies with cMNs89,90. We also performed
iterative clustering to identify 132 subclusters, of which 58 are highly
pure groups of motor neurons. Although we are currently unable to
annotate subclusters, more detailed spatial and developmental pro-
filing of the cMN subnuclei may help to identify functionally relevant
groups of cells and/or cell states. Finally, a high quality and cell type-
specific catalog of cMN elements and their cognate genes can be used
to interpret and prioritize CCDD variants, as we describe below.

Human phenotypes and genome sequencing
We enrolled and phenotyped 899 individuals (356 affected, 543 family
members) across 270 pedigrees with CCDDs. About 202 probands
were sporadic (simplex) cases enrolled as trios, while 42 and 19 pedi-
grees displayed clear dominant or recessive inheritance patterns,
respectively (Supplementary Data 5). Of note, the dominant pedigrees
included three with congenital facial weakness that we have reported
to harbor pathogenic SNVs in a non-coding peak, cRE2, within the
HCFP1 locus on chromosome 334. The CCDDs included congenital
fibrosis of the extraocular muscles (CFEOM), congenital ptosis (CP),
Marcus Gunn jaw winking (MGJW), fourth nerve palsy (FNP), Duane
retraction syndrome (DRS), congenital facial palsy (CFP), andMoebius
syndrome (MBS) (Supplementary Data 5). Importantly, these CCDD
phenotypes can be connected to themaldevelopment of their disease-
relevant cMNs: CFEOM to cMN3/4, CP to the superior branch of cMN3,
FNP to cMN4, DRS to cMN6, CFP to cMN7, and MBS to cMNs 6 and 7
(Fig. 1a and Supplementary Table 1).

We performed whole genome sequencing (WGS) and variant
calling of the 899 individuals (Methods). First, to generate a compre-
hensive and unbiased set of genetically plausible candidates, we per-
formed joint single nucleotide variant (SNV) and insertion/deletion
(indel) genotyping, quality control, and variant frequency estimation
from >15,000 WGS reference samples in the Genome Aggregation
Database (gnomAD)91,92. We identified 54,804,014 SNV/indels across
the cohort. Of these, 1,150,021 (2.1%) were annotated as exonic,
18,761,202 (34.2%) intronic, 34,512,518 (63.0%) intergenic, and 364,300
(0.7%) within promoters. We next performed initial SNV/indel variant
filtering based on established and custom criteria, including genotype
quality, allele frequency, and conservation (Methods)93,94. We incor-
porated family structures to include or exclude genetically plausible
candidates that are consistent with known modes of Mendelian
inheritance. Applying this approach to the 54,804,014 SNVs/indels
across our cohort, we identified 26,000 plausible candidates (mean=
101 variants per pedigree). We also performed short-read structural
variant (SV) discovery using an ensemble SV algorithm (GATK-SV) that
was comparable to SVs generated in gnomAD and the 1000 Genomes

Project91,95 and identified 221,857 total SVs (including transposable
elements and other complex events). These WGS from deeply phe-
notyped CCDD pedigrees present a rich catalog of otherwise unan-
notated candidate Mendelian disease variants.

Integrating epigenomic filters with human WGS variants
To further refine the 26,000 CCDD candidate SNVs/indels, we elimi-
nated from further analysis 37 pedigrees definitively solved by coding
variants and reported separately96, and then applied cell type-specific
filters from our scATAC peakset to each CCDD phenotype (Methods).
We identified 5353 unique segregating SNVs/indels (3163 de novo/
dominant, 1173 homozygous recessive, and 1017 compound hetero-
zygous) that overlapped cMN-relevant peaks of accessible chromatin
(23.6 and 13.6 candidates per monoallelic and biallelic pedigree,
respectively). We only considered compound heterozygous variants
observed in the same peak. Applying an analogous cell type-aware
framework for SVs, we identified 115 candidates (72 deletions, 27
duplications, 1 inversion, 13 mobile element insertions, and 2 complex
rearrangements encompassing multiple classes of SVs). There was
substantial overlap between candidate variants and CCDD-relevant
cMN peaks when compared to size-matched randomized peaks
(median de novo Z-score = 0.9, median dominant inherited Z-score =
30.1, p value <2.0 × 10−4, permutation test; Supplementary Table 4).
Using these 5468 cell type-aware non-coding CCDD candidate SNVs/
indels/SVs and ATAC-based cMN enhancers, we next identified strong
candidate variants using peak-centric or gene-centric approaches that
aggregate variants in the same peak or in peaks with a shared target
gene, respectively (Supplementary Fig. 7).

We adopted a gene-centric aggregation approach by first identi-
fying non-coding candidate variants connected to a restricted set of 17
genes with prior associationwith CCDDs19,21–26,28,42,44,97–103. We identified
non-coding variants connected to four: MAFB, PHOX2A, CHN1, and
EBF3 (Table 1). We also identified compound heterozygous variants
connected to ISL1 in a proband with CFP; ISL1 is not a known disease
gene but is a master cMN regulator (Supplementary Fig. 8a, b).
Extending this approach to the entire genome, we identified 559 genes
with multiple connected peaks containing dominant candidate var-
iants (multi-hit genes, range of connected variants per gene = 2–6,
Supplementary Data 6).

EBF3 is an example of both a CCDD gene and a multi-hit gene.
Monoallelic EBF3 loss-of-function (LoF) coding mutations cause
Hypotonia, Ataxia, and Delayed Development Syndrome (HADDS)104,
and two individuals are reported with HADDS and DRS, one with a
coding missense variant and one with a splice site variant103,105. We
identified a series of coding and noncoding EBF3 variants (Supple-
mentary Data 7). Two probands with DRS have large de novo multi-
gene deletions, and one probandwith fourth nerve palsy has a de novo
stop-gain coding variant (Fig. 5a, b). These three individuals also have

Fig. 3 | Effects of RNA input data on peak-to-gene accuracy. a Imputed gene
expression values projectedonto scATAC clusters cMN3/4.10, cMN6.6, and cMN7.2
versus measured gene expression values from bulk RNA-seq samples. Error bands
represent 95% confidence intervals for each fittedmodel. b Feature plots depicting
imputed gene expression for cMNmarker genes Phox2a, Mnx1, and Hoxb1. c Total
number of unique and shared peak-to-gene links using different scRNA integration
datasets (cMN,MOCANeuronal,MOCACardiac) against the common scATACcMN
peakset. d Distribution of peak-to-gene effect sizes using different scRNA integra-
tion datasets. Estimated effect sizes are significantly stronger for cMN scRNA
integration relative to MOCA neuro (βMOCA_neuro = −0.077, p < 2 × 10−16, linear
regression) and cardiac (βMOCA_cardiac = −0.025, p < 2 × 10−16, linear regression)
integrations. e Barplot depicting peak-to-gene elements from different scRNA
integrations overlapping experimentally validated cMN enhancers (vista cMN). (i)
Matched peak indicates intersect overlapping peaks irrespective of predicted
cognate gene. (ii) The matched gene indicates distinct overlapping peaks and
identical cognate genes. f In vivo enhancer assay for VISTA enhancer hs2081 (n = 4

embryos) overlapping a predicted peak-to-gene link using cMN versus MOCA
cardiac scRNA input. Enhancer activity is positive in cranial nerves 3, 7, and 12
(arrows); negative in heart (dotted lines). g Comparing scATAC versus scMultiome
peak-to-gene effect sizes for marker genes Nkx6-1, Isl1, Phox2a, and Phox2b. Linear
regression coefficients and nominal p values are shown. h scATAC and scMultiome
accessibility profiles with peak-to-gene connections for a 100 kb window centered
around Phox2a. hs2678 (n = 5 embryos) is accessible in cMN3/4 and cMN7 and is
predicted to enhance Phox2a by scATAC (r =0.84) and scMultiome (r =0.69).
i (Top) hs2678 is 70.3 kb distal to human PHOX2A and is embedded in the coding
and intronic sequence of CLPB. (Bottom) In vivo enhancer assay using human
hs2678 (n = 5 embryos) sequence is positive in cMN3 and cMN7 (arrows). Reporter
expression views are shown as lateral (left) and dorsal through the fourth ventricle
(right). Scale bars in f and i = 500μmand are approximatemeasurements based on
E11.5 embryo average crown-rump length of 6mm. Source data are provided as a
Source Data file.
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phenotypes consistent with HADDS. We also identified three inherited
non-coding candidate variants with peak-to-gene connections to EBF3
(Fig. 5b), which were cosegregated in an autosomal dominant fashion.
Pedigrees S63 (distal indel), S176 (intronic SNV), andS95 (intronic SNV)
segregate non-coding candidate variants with syndromic ptosis, iso-
lated MGJW, and isolated ptosis, respectively. The multiple ocular

CCDD phenotypes we observed potentially reflect pleiotropic con-
sequences of EBF3 variants, a phenomenon previously observed for
codingmutations in other CCDDgenes106.Moreover, the differences in
syndromic versus isolated phenotypes may reflect more cell type-
specific effects of non-coding variants. Indeed, multiple Mendelian
disorders with non-coding etiologies are restricted to isolated cell
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types or organ systems65,75,107–110. Notably, EBF3 is broadly expressed
across cMNs (Fig. 5c) and is one of the most constrained genes in the
human genome as measured by depletion of coding LoF variants in
gnomAD and SV dosage sensitivity (loeuf = 0.1500 and pHaplo =
0.9996, respectively; Fig. 5d)92,111,112. We observed exceptional con-
servation of non-coding elements within EBF3 introns, comparable to
or exceeding exonic conservation. This includes the ultraconserved
element UCE318 (Fig. 5b, e) located in intron 6with a peak-to-gene link
to EBF3 (r =0.69, FDR = 6.2 × 10−69). We also detected a peak-to-gene
link fromVISTA enhancer hs737 to EBF3 (r =0.60, FDR = 4.8 × 10−49), an
element located >1.2Mb upstream of the gene that was previously
reported to be linked to EBF3 and to harbor de novo variants asso-
ciated with autism with hypotonia and/or motor delay113. We did not
observe any candidate variants inUCE318, consistent with depletion of
both disease-causing andpolymorphic variationwithin ultraconserved
elements114, nor in hs737, consistent with its non-CCDD phenotype.

Second, we took a peak-centric approach by examining all 5468
(5353 SNV/indels, 115 SVs) cell type aware non-coding variants, irre-
spective of cognate gene. When aggregating variants within disease-
relevant cMN peaks, we identified 28 peaks harboring variants in more
than one pedigree (multi-hit peaks). Fourteen multi-hit peaks con-
tained variants obeying a dominant mode of inheritance (28 unique
dominant/de novo variants with one variant present in two unrelated
families, including the threepathogenic chromosome3 cRE2 SNVs that
cause CFP34), and 14 multi-hit peaks contained variants obeying a
recessive mode of inheritance (35 unique recessive variants; Supple-
mentary Data 8). Moreover, ten of these multi-hit peaks were also
linked to multi-hit genes. Because enhancers confer cell type-specific
function, we reasoned that true functional non-coding SNV/indels are
less likely than coding variants to cause syndromic, multi-system birth
defects. Interestingly, when stratifying pedigrees by isolated/syn-
dromic status, we found a significant overrepresentation of isolated
CCDD phenotypes for our dominant multi-hit peaks (OR = 5.9,
p value = 2.3 × 10−3, Fisher’s exact test), but not for our recessivemulti-
hit peaks (OR = 0.8, p value = 0.64).

Among themulti-hit peaks, we identified 3.6 kb homozygous non-
coding deletions centered over peak hs2757 in two probands with DRS
(Table 1; one with segregation of sensorineural hearing loss as a
dominant trait); in each case, the consanguineous parents were het-
erozygous for the deletion. The probands had extended runs of
homozygosity with a shared 16 kb haplotype surrounding the deletion,
consistent with a founder mutation (Fig. 6a–c). hs2757 is broadly
accessible in multiple cMN populations, including cMN6, and is loca-
ted 307 kb upstream of its nearest gene, MN1; MN1 imputed gene
expression estimates revealed widespread expression across all sam-
pled cell types, including cMN6 (Fig. 6d)100,115. Monoallelic LoF coding
mutations in MN1 cause CEBALID syndrome, a disorder affecting
multiple organ systems. A subset of individuals with coding variants in
MN1 are reported to have CEBALID syndrome with DRS100. MN1 is
constrained against LoF variation and dosage changes (loeuf = 0.087;

pHaplo =0.9901, Fig. 6e)92,111. We performed in vivo enhancer testing
on hs2757 which revealed reporter expression in a subset of tissues
with known Mn1 expression115, including expression in the hindbrain
overlapping the anatomic territory of cMN6 (Fig. 6f). Surprisingly, in
this case, we did not observe a peak-to-gene link between hs2757 and
Mn1 and did observe links with genesC130026L21Rik (whose sequence
maps to a different chromosome in human) and Pitpnb (Supplemen-
tary Data 8). Multiple scenarios may explain this result, such as active
Mn1 enhancement occurring prior to the mouse e10.5-e11.5 window
investigated here. Alternatively, our regression-based peak-to-gene
estimatesmaybe less sensitive at detecting enhancers for ubiquitously
expressed genes, a phenomenon previously observed for other
enhancer prediction methods86.

Mechanistic insights of non-coding disease variants
Mendelian disease variant interpretation often relies on variant-level
predictions of pathogenicity116,117. However, suchprediction algorithms
are typically agnostic to cell type- or disease-specific information.
More recent approaches have incorporated cell type-specific epige-
nomicdata to annotate non-coding variants in commondiseases61,118,119.
To leverage our cell type-specific accessibility profiles for variant-level
functional interpretation, we trained a convolutional neural network120

to generate cell type-specific predictions of chromatin accessibility for
each cranial motor neuron population. When evaluating held-out test
data, we consistently observed high concordance between our acces-
sibility predictions and true scATAC coverage for each cell type
(median Pearson’s r =0.84; range = 0.81 to 0.95; Fig. 7a and Supple-
mentary Fig. 9a–c). Thus, to predict the effects of participant variants
on element accessibility, we used our trained model to generate cell-
type specific SNP accessibility difference (SAD)120 scores.

Our peak-centric approach successfully re-identified the HCFP1
cRE2 SNVs that we reported to be pathogenic for CFP34, and scATAC
data revealed that cRE2 was accessible in cMN7 atmouse e10.5 but not
e11.5 (Fig. 7a). Examining cRE2 SNV SAD scores, we found that all four
Cluster A LoF variants were predicted to close the chromatin (SAD Z-
scores of −4.88, −3.60, −6.29, and −3.93). Moreover, these predicted
variant effects were specific to cMN7 at e10.5 (but not e11.5, Fig. 7b),
further underscoring the importance of accurately parsing both cell
type and developmental cell state. We then experimentally corrobo-
rated the predicted variant effect on chromatin accessibility by per-
forming scATAC on two CRISPR-mutagenized mouse lines harboring
HCFP1 cRE2 Cluster A SNVs (cRE2Fam5/Fam5 and cRE2Fam4/Fam4 mouse
models)34. Consistent with our machine-learning predictions, we
observed subtle yet consistent reductions in cis chromatin accessibility
for bothmutant lines when compared to wildtype (4/4 replicates total;
mean normalized mutant/wildtype coverage =0.59; Fig. 7c). We also
found positive evidence for site-specific footprinting overlapping the
cRE2 NR2F1 binding site in wildtype, but not in the two mutant lines
(Fig. 7b, d), consistent with results from targeted antibody-based
assays34. Finally, to circumvent batch and normalization effects across

Fig. 4 | Exceptional gene regulation of cranial motor neuron master regulator
Isl1. a Pseudobulked chromatin accessibility profiles for all annotated clusters over
a 1.5Mb window centered about Isl1. Imputed gene expression profiles for each
cluster are shown to the right. Isl1 is located within a gene desert with the nearest
up- and downstreamflanking genes 1.2 and0.7Mb away, respectively. Peak-to-gene
predictions match known Isl1 enhancers CREST1 and CREST3 (https://doi.org/10.
1016/j.ydbio.2004.11.031); mm933 in multiple cranial motor nerves, dorsal root
ganglion, and nose; hs1321 in multiple cranial motor nerves and forebrain) and
identify additional putative enhancers surrounding Isl1. b The number of normal-
ized regulatory connections for each rank-ordered gene. Isl1 ranks in the top 1% of
all geneswith at least one regulatory connection. The inflection point of the plotted
function is demarcated with a dotted line. c Per-cell domain of regulatory chro-
matin (DORC) scores for Isl1 gene. DORC scores are significantly higher for cells
from motor neuron clusters relative to non-motor neuron clusters (p value

<1 × 10−15, ANOVA). d (Left) Lateral whole mount In vivo reporter assay testing
CREST1 (VISTA enhancer hs1419; n = 7 embryos) enhancer activity. CREST1 drives
expression in cranial nerves 3, 4, and 7 (black lines). (Right) Single-cell ATAC pro-
files and imputed gene expression for a subset of corresponding clusters. CREST1
accessibility and Isl1 gene expression are positively correlated with in vivo
expression patterns. e Boxplot depicting normalized accessibility levels for
enhancers CREST1, CREST3, mm933, and hs1321 within nine scATAC clusters cor-
responding to distinct anatomic regions. Manually scored enhancer activity is
significantly correlated with normalized accessibility (p value = 0.011, Wald test,
two-sided). Center line: median; box limits: upper and lower quartiles; whiskers –
1.5 × interquartile range. Scale bar in d = 500 μm and are approximate measure-
ments based on E11.5 embryo average crown-rump length of 6mm. Source data are
provided as a Source Data file.
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separate experiments, we performed scATAC on embryos from
wildtype-by-mutant crosses from cRE2Fam5/Fam5 and directly measured
the resultant heterozygous mutant allele fraction in cis (binomial
ATAC, Fig. 7e). This approach generates an internally calibrated esti-
mate of effect size and is sufficiently powered to detect true differ-
ences at relatively low sequencing coverage (i.e., chromatin
accessibility profiles of rare or transiently developing cell types). We
found a significant depletion of Fam5 mutant alleles across multiple
replicates, again consistent with a LoF mode of pathogenicity

(wildtype/mutant counts = 4.2;mean probability of success = 0.81; 95%
CI[0.73–0.87]; p value = 2.4 × 10−14; binomial test). These multiple lines
of evidence, both at the epigenome-wide level and at a well-
characterized individual locus, provide support that our machine-
learning model is well-calibrated and not overfitted.

We next examined the predictions of the neural net at the
epigenome-wide level, and among our 5353 cell type-aware candidate
SNVs/indels, we identified 114 additional variants with normalized
absolute SAD Z-scores >2; that is, variants predicted to significantly
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Fig. 5 | An integrated coding/non-coding candidate allelic series for EBF3.
a Window depicting the terminal arm of chr10q (top). Large de novo deletions in
two trios (middle, bottom) with simplex syndromic DRS (S233 and S131) overlap
multiple coding genes including EBF3 (boxed), an exceptionally conserved gene at
the coding and non-coding level. b Nominated coding and non-coding SNVs and
indels connected to EBF3. For each variant, the subject’s WGS ID code, CCDD
phenotype, and the variant coordinate in NG_030038.1 (and if coding or non-
coding and if familial or de novo) is indicated. Variants 5 and 8 are reported pre-
viously in DECIPHER and elsewhere (https://doi.org/10.1016/j.ajhg.2016.11.020).
Peak-to-gene links containing variants connected to EBF3 are depicted by curved
lines. EBF3 contains highly conserved non-coding intronic elements, including
ultraconserved element UCE318 in intron 6, whose sequence drives strong
expression in the embryonic hindbrain. c Imputed gene expression profiles for

Ebf3. d EBF3 is exceptionally intolerant to loss-of-function, gene dosage, and mis-
sense variation. Density plots depict the genome-wide distribution of loss-of-
function constraint (loeuf, pLI) (https://doi.org/10.1038/s41586-020-2308-7;
https://doi.org/10.1038/nature19057), probability of haploinsufficiency (pHaplo)
(https://doi.org/10.1016/j.cell.2022.06.036), and missense constraint (z-score)
(https://doi.org/10.1038/ng.3050). Respective scores exceeding thresholds of
0.35, 0.9, 0.84, and 2.0 are colored red. EBF3 (dotted lines) ranks as the 563rd,
861st, 3rd, and 508th most constrained gene in the genome, respectively. Dis-
tributions are rescaled for consistent signs and ease of visualization. e Lateral view
of in vivo reporter assay testing UCE318 (VISTA enhancer hs232; n = 7 embryos), a
putative EBF3 enhancer (peak-to-gene r =0.42, FDR = 6.72 × 10−22). Strong reporter
expression is observed in the embryonic hindbrain (arrow). Scale bar in e = 500μm
and is approximate based on E11.5 embryo average crown-rump length of 6mm.
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increase or decrease accessibility in cis within their disease-relevant
cellular context, including seven variants linked to multi-hit genes
(Supplementary Data 9). When incorporating these SAD scores, we
identified several cell type-aware candidate variants and peaks with
convergent lines of evidence. Several of the non-coding variants con-
nected to knownCCDDgenes had significant SAD scores (Table 1). The
variant connected to CHN1 segregated in a parent and child with a
mixed CFEOM-DRS phenotype was predicted to increase accessibility
(SAD Z-score = +2.29). This is notable because CHN1 coding variants
result in atypical DRS through a gain-of-function mechanism23,52,121.
The EBF3 non-coding variants chr10:129794079 TTGAG>T,
chr10:129884231 C >A, and chr10:129944464G>C had SAD scores of
−11.77, +0.11, and +0.98, respectively. In addition, compound hetero-
zygous variants in two DRS probands in the multi-hit promoter region
of CRK, a gene which has known roles in sMN axon growth and neu-
romuscular junction formation but no known link to humanMendelian

phenotypes, had significant negative scores consistent with LoF (SAD
Z-scores = −13.69, −2.06; Supplementary Data 8). Such highly anno-
tated non-coding variants are attractive candidates for downstream
functional validation, as they deliver distinct, refutable predictions for
gene targets, cell types, and effects on accessibility.

Nominated cell type-specific variants alter expression in vivo
Although we show that single-cell chromatin accessibility is a strong
predictor of cMN enhancer activity, even highly conserved and pre-
sumably functional enhancers can be surprisingly robust to
mutagenesis8,122–124. Therefore, to evaluate the functional con-
sequences of our nominated CCDD variants, we selected 33 elements
harboring cell type-aware candidate SNVs for in vivo humanized
enhancer assays. For testing, we prioritized these variants based on
multiple annotations from our framework, including conservation,
significant SAD scores, multi-hit peaks/genes, and cognate gene
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Fig. 6 | MN1 enhancer deletions across multiple CCDD pedigrees. a IGV
screenshot depicting 3.6 kb non-coding deletions in two probands with DRS from
separate consanguineous pedigrees (S190, S238).b ddPCR copynumber estimates
of deletions. For each pedigree, the affected proband is homozygous recessive for
the deletion with one heterozygous allele inherited from each parent. Error bars
denote 95% confidence intervals about the mean value estimated from two tech-
nical replicates per data point. cGenomic context of the non-coding deletions. The
deletions (red bar below chr22 ideogram) fall within extended runs of homo-
zygosity (gray bars above ideogram, 19.5Mb, 18.8Mb, respectively, of which 16 kb
surrounding the deletion is shared between the probands) and eliminate putative
enhancer hs2757 (green bar below ideogram) located 307 kb from nearest gene
MN1. d hs2757 chromatin accessibility (left) and Mn1 imputed gene expression
(right) profiles in the cMNs and surrounding cell types. Mn1 is widely expressed
across multiple midbrain/hindbrain cell types, and hs2757 is accessible across
multiple cell types, including cMN6. e Density plots depicting genome-wide

distribution of loss-of-function constraint (loeuf, pLI) (https://doi.org/10.1038/
s41586-020-2308-7; https://doi.org/10.1038/nature19057), and probability of hap-
loinsufficiency (pHaplo) (https://doi.org/10.1016/j.cell.2022.06.036) metrics.
Respective scores exceeding thresholds of 0.35, 0.9, 0.84, and 2.0 are colored red.
MN1 (dotted lines) ranks as the 131st, 605th, and 402nd most constrained gene in
the genome, respectively. Distributions are rescaled for consistent signs and ease
of visualization. f In vivo reporter assay testing hs2757 enhancer activity (huma-
nized sequence, n = 6 embryos). Lateral (left) and dorsal (right) whole mount lacZ
staining reveals that hs2757 consistently drives expression in midbrain and hind-
brain tissue, including the anatomic territory of cMN6. Scale bar = 500μm and are
approximatemeasurements based on E11.5 embryo average crown-rump length of
6mm. Scale bars in f = 500μm and are approximate measurements based on E11.5
embryo average crown-rump length of 6mm.Source data are provided as a Source
Data file.
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chromosome 6 in three cell types (cMN7 e10.5, cMN7 e11.5, and cMN12 e11.5). The
gray box highlights a transient 678 bp peak (cRE2) that is accessible in cMN7 e10.5,
but not cMN7 e11.5 or cMN12 e11.5. SNVs within the human orthologous peak cRE2
cause congenital facial weakness, a disorder of cMN7. bNeural net-trained in silico
saturationmutagenesis predictions for specific nucleotide changes in human cRE2
for cMN7 e10.5, cMN7 e11.5, and cMN12 e11.5. Predicted loss-of-function nucleotide
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silico saturation mutagenesis predictions. Each pseudobulk profile represents
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specific footprinting evidence overlapping cRE2. A 792 bp window showing
sequencing coverage for cMN7 e10.5 after correcting for Tn5 insertion bias. The
NR2F1 transcription factor binding site is mutated in individuals with HCFP1-CFP
and overlaps a local minimum in scATAC coverage. TOBIAS footprinting scores
for cRE2 wildtype, cRE2Fam4/Fam4, and cRE2 Fam5/Fam5 are depicted in solid, dashed,
and dotted lines, respectively. e. Stacked barplot depicting wildtype (gray)
versus mutant (blue) scATAC read counts over a 7.7 kb window for cMN7 e10.5
in cRE2WT/Fam5 heterozygote embryos. cRE2 mutant alleles are consistently
depleted across two biological replicates (countsWT / countsMUTANT = 4.21;
p value = 2.4 × 10−14, binomial test). The mean expected value under the null is
depicted by a solid black line for each experiment. Scale bars in f and i = 500 μm
and are approximate measurements based on E11.5 embryo average crown-rump
length of 6mm. Source data are provided as a Source Data file.
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predictions (Supplementary Fig. 10 and Supplementary Data 10). We
first screened the wildtype human enhancer sequences and detected
positive enhancer activity in 82% (27/33) of candidates (210 embryos
total, Methods). Combining these with the 26 previously tested, we
found enhancer activity in 44/59 total (75%; 366 embryos total).
Importantly, we note that these elements were not selected randomly
and, therefore, not intended to reflect generalizable patterns across
the genome.

Next, we tested 4 of the 27 positive elements by introducing the
nominated CCDD SNVs into the wildtype sequence. Remarkably, one
mutant enhancer harboring multiple candidate variants for DRS and
MBS (hs2777-mut; 15 embryos total) showed a visible gain of expression
compared to wildtype (hs2777; 11 embryos total), including in midbrain,
hindbrain, and neural tube (Supplementary Fig. 11a, b).Wild-type hs2777
is accessible across multiple cell types and has peak-to-gene links to
seven genes (Cdk5rap3, Nfe2l1, Sp2, Tbx21, Npepps, Socs7, and Snx11), and
ABC enhancer prediction for Cdk5rap3, specifically to cMN7 at e10.5.
hs2777-mut contains four SNVs (1 DRS, 2 MBS, 1 off-target, mutating
0.21% of original wildtype base pairs; Supplementary Fig. 11c, d). To
better decompose the individual effects of these variants, we performed
in silico saturation mutagenesis across the entire hs2777 sequence
(Supplementary Fig. 11e). We observed notable gain-of-function effects
for two of the three on-target SNVs (DRS Variant C, and MBS Variant D;
hg38 chr17:48003826C>T and chr17:48003752A>C, respectively)
within the affected cell types, with corresponding SAD Z-scores ranging
from +1.12 to +4.34.

Discussion
We have developed a publicly available atlas of developing cranial
motor neuron chromatin accessibility and have combined it with cell
type-specific histone modification and in vivo transgenesis informa-
tion to generate a reference set of enhancers with cognate gene pre-
dictions in a set of rare, transiently developing cell types. Such a
resource can be used to discover highly specific cREs and target genes
underlying the molecular regulatory logic of cMN development. Fur-
thermore, we can leverage known properties of the cMNs to inform
comparative studies across diverse cell types. For example, the ocular
cMNs are known to be selectively resistant to degeneration (compared
to sMNs) in diseases such as ALS. Therefore, understanding the dif-
ferentially accessible cREs that underlie differences between cMNs/
sMNs could render important clues to the mechanisms of selective
resistance/vulnerability and ultimately open potential therapeutic
avenues90. Finally, a deeply sampled, highly specific chromatin acces-
sibility atlas may help to learn generalizable features that predict
enhancer activity in additional cell types. Importantly, cranial nerve
expression is a core readout for tested cREs in the VISTA enhancer
database, thereby providing invaluable ground truth data at an over-
lapping developmental timepoint (e11.5)66.

We used this reference to nominate and prioritize non-coding
variants in the CCDDs, a set of Mendelian disorders altering cMN
development, and demonstrate that principled prioritization approa-
ches can select appropriate candidates for downstream functional
validation (e.g., transgenic reporter assays, non-coding in vivo disease
models, etc.),whichare otherwise often costly and labor-intensivewith
high rates of failure. Toaid in interpretation,we connected non-coding
variants to their cognate genes using imputed gene expression values
from separate assays (diagonal integration). This approach allowed us
to leverage existing information on cognate coding genes, including
known disease associations and coding constraints92. Moreover, such
integrated cell type-aware datasets provide important context to cell
type-agnostic estimates of non-coding constraints (discussed in
ref. 125). When applying this framework to our CCDD cohort, we
achieved a search space reduction of four orders of magnitude (i.e.,
5.5 × 107 reduced to 5.4 × 103 searchable variants) making non-coding
candidate sets human-readable and tractable for functional and

mechanistic studies (23.6 candidates per monoallelic pedigree; 13.6
per biallelic pedigree). Furthermore, we incorporatedmultiple lines of
evidence such as allelic aggregation, cognate gene identification,
mutational constraint, and functional prediction. This approach suc-
cessfully re-identified the pathogenic variants in our cohort at the
GATA2 cRE2 locus34 and led us to nominate additional disease variants
(Table 1). We also identified compelling individual candidate variants
and peaks without multiple hits. Such candidates will be easier to
resolve with larger cohort sizes and larger families. Indeed, our ability
to reduce candidate variant numbers was limited by the large pro-
portionof unsolved small dominant pedigrees in our cohort, which are
notoriously difficult to analyze.Moreover, while de novo and recessive
mutations are clearly an important source of causal pathogenic var-
iation in sporadic cases, such cases are alsomore likely to involve non-
genetic etiologies.

Although a given peak can harbor hundreds of predicted tran-
scription factor bindingmotifs, wedemonstrate in principle that locus-
specific footprinting can implicitly reduce a ~1 kb peak to a ~10 bp
individual transcription factor binding site of interest. Given sufficient
sequencing coverage126 and data quality, such approaches could
immediately be applied to other rare diseases and cell types. Alter-
natively for common diseases where causal non-coding variants are
more abundant, locus-specific footprinting (in concert with careful
demarcation of element boundaries, chromatin accessibility QTL
analysis127, and statistical fine-mapping128) may further resolve causal
common variants and identify affected transcription factor binding
sites across the genome—all inferred from a single assay. Proof of
feasibility of suchapproaches in rare diseases could also influence data
collection strategies for common diseases129.

Through our analysis, we also encountered potential limitations
affecting non-coding variant interpretation. We, in part, leveraged
sequence conservation and constraint to prioritize pathogenic var-
iants. However, while the known genes and cREs underlying cMN
development are highly conserved, a conservation-based strategymay
not identify pathogenic variants in human-specific and/or rapidly
evolving sequences124,130,131. Strikingly, we also found that even rela-
tively subtle differences in cellular composition and ATAC/RNA col-
lection strategies can distort cognate gene estimates. These findings
should inform appropriate sampling strategies in the future, such as
single-cell multiomic assays. Unbiased genetic strategies such as par-
titioned LD score regression can be useful for definingdisease-relevant
cell types, though such approaches are effectively restricted to com-
mon diseases132. Moreover, we find that even when sampling the
appropriate cell type, subtle differences in cell state can profoundly
influence variant interpretation. We provide a concrete example at the
well-characterized non-coding GATA2 locus34, where pathogenic var-
iant effects are no longer detectable in the same cell typewithin amere
24 hours of development (i.e., embryonic day 10.5 versus 11.5). More-
over, we sampled cMNs at e10.5 and e11.5 based on developmental
patterns of previously described protein-coding mutations, but we do
not exclude the possibility that diseasemutationsmay also be relevant
at different timepoints. Therefore, while our genetic framework can
generalize to other disorders, we suspect that appropriate prospective
or retrospective epigenomic cell sampling will benefit from highly
detailed biological knowledge of each specific disease process.

Finally, the interpretation of non-coding variants can benefit from
our knowledge of coding variants as they share challenges in common
—namely, practical limitations in allelic expansion and functional vali-
dation. Here, we present generalizable approaches that aggregate
plausible alleles based on physical (peak-centric) and biological (gene-
centric) proximity to facilitate allelic expansion in a principledmanner.
These challenges may be further alleviated by expanding rare disease
data-sharing platforms133 to more comprehensively incorporate non-
coding variation. Finally, the development of functional perturbation
assays that balance both scalability123 and specificity134 will
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disproportionately benefit the validation of non-coding variants,
which are naturally more abundant and cell type-specific than coding
variants. The outputs of such assays would also iteratively provide
training material for further refined functional prediction algorithms.

Rapid advances in next-generation sequencing technologies have
led to a renaissance in Mendelian gene discovery. As access to WGS
and functional genomics data becomes less limiting, alternative ana-
lytical and experimental frameworks will be needed to finally resolve
Mendelian cases and disorders that are otherwise recalcitrant to tra-
ditional exome-based approaches.

Methods
Research participants were enrolled in the long-term genetic study of
CCDDs at Boston Children’s Hospital (BCH; clinicaltrials.gov identifier
NCT03059420). The Institutional Review Board at BCH approved the
study (protocol 05-03036R, 02-05-070R, 99-05-085). Informed con-
sent was obtained from each participant or legal guardian. Individual-
level data were de-identified, and studies were performed in com-
pliance with US 45.CFR.46 and the Declaration of Helsinki.

Mouse husbandry, dissection, dissociation, FACS
Mice were maintained in pathogen-free environments and fed ad libi-
tum with a sterile standard diet and water in temperature, humidity,
and light-controlled rooms (22 °C set-point ±l.3 °C, RH35-70% ±5%, 12/
12 light/dark cycle, 10–15 air changes per hour). We performed hus-
bandry, dissection, dissociation, and FACS135 in accordance with the
Institutional Animal Care and Use Committees of Boston Children’s
Hospital with IRB approval (BCH Institutional Care andUseCommittee
Protocol #00001852). Embryo sex was not determined. We crossed
C57BL/6J (JAX # 000664) female mice with either 129S1/C57BL/6J
IslMN:GFP (JAX # 01795235) or Hb9:GFP (JAX # 00502936) male mice and
separated them following one night of breeding. Pregnant females
were sacrificed at 10.5 or 11.5 days post-conception, and whole
embryos were grossly dissected in chilled 1x PBS (Thermo Fisher) and
then immediately placed in 1x B27 supplement (Gibco 17504044) in
Hibernate E (Fisher NC0285514). Next, GFP-positive cranial motor
neurons, GFP-positive spinal motor neurons, and GFP-negative sur-
rounding cells were microdissected in pre-chilled HBSS (Thermo
Fisher) and placed in 1x B27 supplement, 1x Glutamax (Thermo Fisher
35050061), and 100U/mL Penicillin-Streptomycin (PenStrep, Thermo
Fisher 15140122) in Hibernate E (medium 2). Microdissected tissues
were dissociated using papain and ovomucoid solutions prepared
from the Papain Dissociation System (Worthington Biochemical
LK003150). Tissues were resuspended in papain solution. Samples
were then incubated at 37 °C for 30min and agitated every 10min to
ensure complete dissociation. Following incubation, samples were
spun down at 300×g for 5min, the supernatant was removed, and
dissociated tissueswere resuspended in 500uLof ovomucoid solution
(plus or minus 100μL depending on the quantity of tissue). Tissues
were again spun down at 300×g for 5min and resuspended in 500μL
of medium 2 (plus or minus 100μL depending on the quantity of
tissue) and transferred to a 5mL polystyrene round bottom tube on
ice. Live GFP-positive singlets were separated from GFP-negative cells
(GFP-negative limb buds from embryos used as a negative control to
set FACS gates) using an ARIA-561 FACS machine at the Immunology
Research Core atHarvardMedical School (for ATAC-seq samples), and
a BD FACS Aria II at the Jimmy Fund Core at the Dana-Farber Cancer
Institute (for bulk and single-cell RNA-seq samples). GFP-positive cells
were collected either into 200 uL of media containing 1x Glutamax,
100U/mL PenStrep, and 2% 2-Mercaptoethanol (Gibco 21985023) in
Neurobasal-A Medium (Thermo Fisher 10888022) for ATAC-seq, or
into 96 well fully-skirted Eppendorf plates containing a starting
volume of 5 ul/well of Hibernate E for single cell RNAseq, or directly
into 1.5ml tubes containing Qiagen RNeasy Lysis buffer/Buffer RLT
(Qiagen 79216) for the bulk RNAseq. Embryos were not selected based

on sex. Embryos were excluded if they did not match the expected
developmental stage as estimated from morphological features. All
biological replicates represent distinct samples except when noted
(“technical replicate”).

Single-cell ATAC-seq: nuclei isolation, tagmentation, and
sequencing
We performed fluorescence-assisted microdissection to collect sam-
ples cMN3/4, cMN7, and sMN from Isl1MN:GFP mice and likewise to
collect samples of cMN6, cMN12, and sMN fromHb9:GFPmice, each at
both e10.5 and e11.5. We performed FACS-purification as described
above to collect GFP-positive motor neurons, as well as GFP-negative
cells surrounding the motor neurons, to better distinguish between
motor neuron versus non-motor neuron regulatory elements (for a
total of 20 sample types, nine with biological replicates and two with
technical replicates for 32 samples in all). Nuclei were isolated in
accordancewith LowCell InputNuclei Isolationguidelines providedby
Demonstrated Protocol–Nuclei Isolation for Single Cell ATAC
Sequencing Rev A (Protocol #CG000169) from 10x Genomics. Cell
suspensions were spun down at 300×g for 5min at 4 °C in a fixed angle
centrifuge, the supernatant was removed, and the pellet was resus-
pended in 50uL of 0.04% BSA in PBS. The cell solution was then
transferred to a 0.2mL tube and centrifuged at 300×g for 5min at 4 °C
in a swinging bucket centrifuge. Without contacting the bottom of the
tube, 45 uL of supernatant was removed, and the cell pellet was
resuspended in 45 uL of chilled Lysis buffer (10mM Tris-HCl (pH 7.4),
10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 Sub-
stitute, 0.01% Digitonin, 1% BSA, in nuclease-free water). Nuclei sus-
pensions were incubated on ice for 3min and 50 uL of wash buffer
(10mM Tris-HCl (pH 7.4), 10mM NaCl, 3mM MgCl2, 1% BSA, 0.1%
Tween-20, in nuclease-free water) was added to the suspensions
without mixing. Nuclei suspensions were then spun down in a
swinging bucket centrifuge at 500×g for 5min at 4 °C, 95 uL of
supernatant was removed, and 45 uL of nuclei buffer was added.
Samples were again spun down in a swinging bucket centrifuge at
500×g for 5min at 4 °C, all supernatant was removed without con-
tacting the bottom of the tube, and nuclei were resuspended in 7 uL
of nuclei buffer. About 2 uL of this final nuclei suspension was added
to 3 uL of nuclease-free water, and 5 uL of trypan blue, and cell via-
bility was inspected using the Countess II FL Automated Cell Counter
(Thermo Fisher Scientific AMQAF1000). We performed scATAC
transposition, droplet formation, and library construction from
protocol CG000168 using v1 reagents (10x Genomics). scATAC
libraries were sequenced on the Illumina NextSeq 500 system using
standard Illumina chemistry. Paired inserts were a minimum of
2 × 34 bp in length excluding indices, and libraries were distributed
to achieve an estimated coverage of ≥25,000 read pairs per cell in
accordance with 10x Genomics guidelines (actual mean coveragewas
48,772 reads per cell). Samples failing quality control were excluded
(e.g., failed TapeStation output).

scATAC preprocessing, peak calling, dimensionality reduction,
and cluster analysis
Preprocessing. We performed a modified workflow based on ref. 59.
Briefly, we generated fastq files from bcl using cellrangermkfastq. We
initially included all single-cell ATAC barcodes perfectly matching an
allowlist provided by 10xGenomics.We also included fixed barcodes if
they hadamaximumHammingdistanceof 1 and if theywere present in
the top 2% of barcode counts. As a final check, we manually inspected
the distribution of fixed barcodes in reduced dimension space to
ensure a roughly even distribution across all cells. We aligned indivi-
dual samples to the mm10 reference genome using Bowtie2136, gen-
erated sample level.bam files, filtered reads with MAPQ <10, and
performed PCR deduplication. We established heuristic coverage per
cell thresholds for each sample separately. To generate cell counts, we
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performed hard filtering based on log10[nfrags/barcode] for each
sample separately.

LSI clustering. We performed LSI-based clustering to generate
sample-level clades59. In order to enrich peak representation from rare
neuronal populations, wemanually assigned between 3 and 7 clades to
each sample and then performed peak calling on each clade using
MACS2137. We first performed cell QC based on heuristic filters (low
FRiP and accessible peaks-per-cell outliers), then peak QC (filtering
peaks in a low proportion of remaining cells per clade). All post-QC
cells and peaks were then combined to generate a master peak-by-cell
callset. Samples failing any stage ofQCwere excluded (e.g., inadequate
read coverage).

Dimensionality reduction. We performed LSI-based dimensionality
reduction (log-scaledTF-IDF transformation followedby singular value
decomposition) on our binarized peak-by-cell matrix59. We used
umap() (https://github.com/lmcinnes/umap) to further reduce the
dimensionality of our data to three-dimensional UMAP coordinates.
We then performed cluster analysis using Seurat’s SNN-graph
approach. Once the major clusters were defined, we repeated our
dimensionality reduction and cluster analysis on each major cluster to
generate subclusters. Finally, we calculated peak specificity scores59

across all 23 major clusters, identifying 45,813 peaks.

Cluster homogeneity, completeness, and purity
In order to formalize the agreement between our dissection/FACS
labels (class) and our cluster/subcluster labels (cluster), we calculated
homogeneity h, completeness c, and Vmeasure Vβ, using the sabre
package62:
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WhereC is the set of dissection/FACS class labels;K is the set of clusters
or subclusters;ack is the number of single cells belonging to class c and
cluster or subcluster k;N is the total number of single cells; and β is the
ratio of weights attributed to c and h (Vβ is the weighted harmonic
meanof c and h). As β becomes very large or very small, Vβ approaches
c and h, respectively. Here we set β to 1. To compare across different
biological categories (e.g., GFP-positive, GFP-negative, etc.), we gen-
erated homogeneity/completeness measurements across different

subsets of cells (N) and different definitions of k (e.g., cluster, sub-
cluster) and c (e.g., sample and time), summarized in Supplementary
Table 2.

To quantify the maximum cellular representation of each cluster/
subcluster, we also generated a per-cluster purity metric, p:

pk =
maxðack ÞPK

k =0ak
ð8Þ

Finally, because biological replicates were taken from different
batches, we used the distribution of cluster/subcluster membership of
cells from each replicate as an instrument to test for batch effects. We
assigned every cell within a cluster or subcluster to its experiment of
origin and calculated pairwise correlation estimates between all com-
binations of biological replicates. As expected, cluster/subcluster
membershipwasmost strongly correlated among biological replicates
and was not driven by individual replicates.

Motif enrichment and aggregated footprinting analysis
We used the mouse motifs from the cis-BP database from the chrom-
VARmotifs database to compute cluster and sample-specific motif
footprinting and enrichments (mouse_pwms_v2). For each motif, we
identified all sites in peaks where a motif was present. Clusters 3, 4, 5,
and 9 were excluded from footprint analysis. We next identified dif-
ferentially accessible peaks for each group of interest using ArchR’s
getMarkerFeatures() function, normalizing for differences across
groups with transcriptional start site (TSS) Enrichment and log10(n-
Frags).We selected peaks for each group thatmet an FDR threshold of
below 0.01 and a LogF2C of ≥1. Aggregated footprint plots were gen-
erated for select motifs using plotFootprints(), by first normalizing the
Tn5-bias by subtracting it from the footprinting signal. For site-specific
footprints, we used TOBIAS to generate Tn5-bias-corrected bigwigs
and footprint scores across the genome for each cell type138. For bias
estimation and correction we excluded ENCODE denylist regions from
mm10-blacklist.v2.bed (https://github.com/Boyle-Lab/).

In vivo lacZ enhancer validation
We selected 26 putative wild-type enhancers for downstream experi-
mental validation based on the following criteria. First, we selected
elements with significant cell type specificity scores59. Next, we
excluded any elements that did not lift over to the human genome
(hg19). We then identified elements with evidence of H3K27Ac marks
in any cell type from the ENCODEportal67 andnoexisting experimental
data in the VISTA enhancer browser66 (freeze September 2019). Finally,
we performed manual curation in order to select elements with high
conservation, against elements in repetitive regions, and ensured the
representation of elements from cMNs 3, 4, 6, 7, 12, and sMNs.

We performed in vivo enhancer testing using enSERT
transgenesis139. Briefly, the orthologous human sequence of each
candidate enhancer was cloned into a pCR4-Shh::lacZ-H11 vector
(Addgene plasmid # 139098) containing the mouse Shh minimal pro-
moter, lacZ reporter gene, and H11 safe harbor locus homology arms.
The cloned construct, Cas9 protein, and H11-sgRNAs (Alt-R CRISPR-
Cas9 tracrRNA, IDT, 1072532 and Alt-R CRISPR-Cas9 locus targeting
crRNA, gctgatggaacaggtaacaa) were delivered via mouse embryonic
pronuclear injection (mouse FVB/NJ JAX #001800) and transferred to
female hosts. Embryos were collected at e11.5, stained with X-gal, and
evaluated for reporter activity.

For candidate variant testing in 33 enhancers, we generated
cloned elements bearing the human reference or variant allele as
described above. In the case of compound heterozygous variants, we
cloned both variants into the same construct in cis. In the case of full
enhancer deletion candidates, we cloned only the wild-type enhancer.
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Bulk ATAC-seq
We performed bulk ATAC-seq140 for FACS-purified cells from six ana-
tomic/temporal regions: IslMN:GFP-positive cMN3 at e10.5 and e11.5,
cMN7 at e10.5, sMN e10.5 and e11.5, and IslMN:GFP-negative hindbrain at
e11.5. We processed the bulk ATAC sequencing data by running the
fastq files through the Encode ATAC-seq pipeline (https://github.com/
ENCODE-DCC/atac-seq-pipeline) using default parameters. To analyze
peaks for each bulk sample, we used irreproducible discovery rate
(IDR) optimal peaks, generated between pseudoreplicates or biologi-
cal replicates when appropriate. After generating peaksets for each
bulk sample, we created a bulkmaster peakset by concatenating all the
individual peaksets and merging with bedtools merge. We further
generated bulk peaksets specific to each sample using bedtools sub-
tract, allowing for ≤50% overlap between peaks.

Single-cell RNA-seq
The husbandry and collection strategy was identical to the scATAC
strategy described above, except that we combined GFP-positive and
-negative cells from the same dissections. We performed single-cell
RNA-seq for FACS-purified eGFP-positive motor neurons from 6 ana-
tomic/temporal regions: cMN3+4 and cMN7 from Isl1MN:GFP mice and
cMN6 from Hb9:GFP mice, all at both e10.5 and e11.5 (for total of ten
samples). In most samples, we spiked in 10% surrounding eGFP-
negative hindbrain cells as an internal control for comparison to nearby
cells that are not motor neurons. Samples were submitted to the Klar-
man Cell Observatory/Regev Lab at the Broad Institute of MIT and
Harvard for processing on a 10X Genomics Chromium platform. The
10X Genomics Chromium Single Cell 3’ Reagent Kit (using v2 single
index chemistry, CG00052) was used for mRNA capture and library
preparation. Samples weremultiplexed for a read-depth goal of 50,000
reads/cell (actual mean coverage was 94,829 reads/cell). Sequencing
was performed on a HiSeq 4000 by Broad Genomic Services using
standard Illumina chemistry. Thedatawere then aligned in the Engle lab
using Cell Ranger v2.1.1 against the ENSEMBL Mus musculus genomic
reference build GRCm38.87 (modified to include eGFP and tdTomato
sequences). Quality control was performed in Seurat to remove doub-
lets and low-read cells. Analysis was done in Seurat where samples were
integrated with canonical correlation analysis (CCA)141. Motor neurons
were identified from the expression of eGFP, Isl1, and other motor
neuron markers (eGFP was regressed out to avoid affecting clusters).

Bulk RNA-seq
We performed bulk RNA-seq for FACS-purified eGFP+ cells from seven
anatomic/temporal regions: cMN3, cMN4, cMN6, cMN7 at each cor-
responding brainstem level, at both e10.5 and e11.5 (except for cMN6
that was only collected at e11.5 due to cell number limitations at e10.5;
with two biological replicates from all times/regions and one addi-
tional technical replicate of cMN6, for a total of 15 samples). Samples
from multiple litters were merged to reach a threshold for the
appropriate cell number and sent to Rutgers RUCDR for library pre-
paration and sequencing. For the e11.5 samples, 200ng/sample of RNA
was isolated with Oligo-dT beads, enriching for mRNA. Depletion of
beta-globin mRNA and ribosomal RNA was performed. For the
e10.5 samples and the e11.5 cMN6 samples, due to the lower total RNA
from fewer starting cells in these nuclei at these ages, whole-
transcriptome Nugen Amplification was performed. Samples were
sequenced with a 100 bp paired-end strategy to sequence full-length
transcripts on an Illumina HiSeq2500 for an approximate read-depth
of 60million paired-end reads/sample. This generated R1 and R2 reads
for each of the two lanes of data/sample that were subsequently con-
catenated. STAR (Spliced Transcripts Alignment to a Reference)142, a
splice-aware tool, was used to align reads to ENSEMBL Mus musculus
genomic reference build GRCm38.87, and RSEM (RNA-Seq by Expec-
tation Maximization)143 was used to generate the count files. We then
used DESeq2144 to make comparisons.

Generating peak-to-gene links
RNA integration. For our original RNA inputs for peak-to-gene links,
we performed scRNA-seq on cMN3 + 4, cMN6, and cMN7 dissections
(GFP-positive and -negative) at e10.5 and e11.5. Our husbandry and
collection strategy was identical to the scATAC strategy described
above, except that we combined GFP-positive and -negative cells from
the same dissections. We performed scRNA-seq protocol CG000168
using v2 single index chemistry and sequenced on the Illumina HiSeq
4000. To benchmark our scRNA-seq results, we also performed bulk
RNAseq on cMN3, cMN6, and cMN7.

We integratedmultiple scRNA-seq datasets fromGFP-positive and
-negative cells from cMN3/4, 6, and 7 dissections at e10.5 and e11.5 into
a single Seurat object using Seurat’s integration framework141. We
excluded cells with more than 5% of reads aligning with the mito-
chondrial genome. After examining the distribution of the number of
unique features and the number of unique reads per cell for each
sample, we manually filtered cells with low feature counts. Finally, we
normalized each sample using the NormalizeData() function, identi-
fied the top 10,000 variable features per sample, and scaled each
sample using the ScaleData() function.

Next, we excluded scATAC clusters (clusters 3, 4, 5, and 9) with
high proportions of GFP-positive sMN and cMN12 dissected cells, as
those samples are not represented in our scRNA dataset. We then
performed unconstrained scATAC-RNA integration on all remaining
cells using addGeneIntegrationMatrix() in ArchR80.

Benchmarking imputed gene expression. We then evaluated the
projected gene expression values from our scATAC-RNA integration
for three high-confidence scATAC clusters (cMN3/4.10, cMN6.6, and
cMN7.2). We selected these clusters due to unambiguous sample
membership based on microdissection origin (purity), FACS labels
(corresponding to cMN7, cMN6, and cMN3/4, respectively), and
known marker locus accessibility/expression. We compared imputed
gene expression from these clusters to corresponding bulk RNAseq
samples that were independently dissected and FACS-purified. Speci-
fically, we performed differential expression analysis on bulk RNAseq
data (DEseq v1.34.0144) and on imputed gene expression on scATAC-
seq data (using getMarkerFeatures() function in ArchR). We fit a linear
model of the log2[fold-change] expression for all combinations of bulk
samples and single-cell clusters, and confirmed a significant positive
correlation between projected gene expression for marker genes in
each cluster against its corresponding bulk counterpart.

Peak-to-gene parameters and benchmarking. We calculated peak-
to-gene correlations using ArchR’s addPeak2GeneLinks() function,
with reducedDims = IterativeLSI_ArchR. We included all high-
confidence links (FDR <0.0001) with a minimum correlation coeffi-
cient of ≥0.1, within ±500 kb of a given gene, whichwe reasonedwould
include the vast majority of putative enhancers86,145, including those
active in only a subset of cells.

We then benchmarked this cMN peak-to-gene set against two
alternative scATAC-RNA integrations using subsetted scRNA-seq data
from theMouse Organogenesis Cell Atlas (MOCA)84. First we created a
neuronal dataset set by integrating our oversampled cMN scATAC
profiles with more uniformly sampled sci-RNA neuronal clusters from
MOCA (annotated as cholinergic neurons, excitatory neurons, inhibi-
tory neurons, neural progenitor cells, postmitotic premature neurons,
primitive erythroid lineage, and stromal cells). We removed any cells
that were not collected at e10.5 and e11.5 to age-match our scATAC set.
We also performed an scATAC-RNA integration using a more distantly
related cell type with minimal sampling overlap, (sci-RNA MOCA
Cluster 34 annotated as cardiacmuscle lineage) and included non-age-
matched cells for this integration. We then generated peak-to-gene
links as described above and quantified the total number of links
across different RNA integrations.
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To quantify and compare the distribution of peak-to-gene links
across different genes, we tabulated significant peak-to-gene links
(r >0.1 and FDR <10−4) ±50 kb of each gene’s TSS. In the case of peaks
connected to multiple genes, we selected the link with the lowest FDR
value. Next, we generated modified Domain of Regulatory Chromatin
(DORC) scores146 by normalizing all reads in our peak-by-cell matrix by
unique fragment count. We then summed these normalized values for
all peak-to-gene connections within ±500 kb of each gene TSS for
every cell.

Single-cell multiome (scMultiome)
We performed timed matings, microdissections, dissociation, and
FACS to collect GFP-positive cMN3/4, cMN7, cMN12, and sMN cells at
e11.5 as described above. Because we did not collect GFP-negative cells
at e11.5 or any cells at e10.5, the cellular representation in the scMul-
tiome dataset represents a subset of that in the scATAC-RNA dataset.
In addition, instead of generating separate reactions for each cell type,
we pooled these cells prior to dissociation, selected GFP-positive cells
via FACS, and performed low cell input nuclei isolation (10x Genomics
CG000365) and single-cell multiome ATAC+ gene expression assay
(10x Genomics CG000338) on a total of two pooled replicates. We
performed sequencingonaNextSeq 500 forMultiomeATACandGene
Expression libraries separately, using a custom sequencing recipe for
ATAC provided by Illumina. We performed QC, dimensionality
reduction, and generated peak-to-gene links as described above using
functionality in Signac and ArchR80,147. In order to facilitate direct
comparison across modalities, we calculated scMultiome fragment
depth against our high-confidence scATAC peakset. We calculated
multimodal weights for each cell using a weighted nearest neighbor
approach148 and performed ab initio graph-based clustering on our
scMultiome cell set. In order to annotate these clusters, we generated
cell-cell anchors by defining scMultiome clusters as the query set and
our well-annotated scATAC clusters as the reference set. Because each
multiome cluster was typically dominated by a single predicted scA-
TAC cluster, we annotated each multiome cluster based on its max-
imumpredicted scATACmembership. As aQCcheck,weevaluated the
concordance of cognate genes and effect sizes of scMultiome versus
scATAC-RNA peak-to-gene links, both globally and for established
motor neuron markers (Supplementary Data 8, Supplementary Fig. 5,
and Fig. 3).

Single-cell CUT&Tag
We collected cranial motor neurons (GFP-positive cMN3 + cMN4 e11.5,
cMN6 e11.5, cMN7 e10.5, and cMN7 e11.5) as described above and
performed a modified scCUT&Tag protocol87. Briefly, we collected
GFP-positive cells directly into fresh antibody buffer (20mM HEPES
pH7.5, 150mMNaCl, 0.5mM spermidine, 1x protease inhibitor (Sigma
11873580001), 2mM EDTA, 0.05% digitonin, 0.01% NP-40, 1× protease
inhibitors and 2% filtered BSA). We centrifuged samples at 450×g for
5min, washed in 200uL antibody buffer, centrifuged at 600×g for
3min, resuspended in 1:50 H3K27Ac primary antibody (monoclonal
Rabbit anti-mouse, Abcam ab177178), and incubated overnight at 4 °C
with gentle rotation. Nuclei were centrifuged at 600×g for 3min,
washed in 200 uL Dig-Wash-BSA buffer (20mMHEPES pH 7.5, 150mM
NaCl, 0.5mMspermidine, 1x protease inhibitor, 0.05%digitonin, 0.01%
NP-40, 1x protease inhibitor, and 2% filtered BSA), centrifuged at
600×g for 3min, resuspended in 1:50 IgG secondary antibody (guinea
pig anti-rabbit Novus Biologicals, NBP1-72763), and incubated 1 h at
room temperature with gentle rotation. Nuclei were then centrifuged
at 600×g for 3min, washed 3x in Dig300-Wash-BSA (20mM HEPES
pH7.5, 300mMNaCl, 0.5mMspermidine, 1x protease inhibitor, 0.05%
digitonin, 0.01% NP-40, 1x protease inhibitors, and 2% filtered BSA),
resuspended in 1:20 pAG-Tn5 (EpiCypher 15-1017), and incubated 1 h at
room temperature with gentle rotation. Nuclei were centrifuged at
450×g for 3min, washed 3x in Dig300-Wash-BSA, resuspended in

200uL tagmentation buffer (20mM HEPES pH 7.5, 300mM NaCl,
0.5mM spermidine, 1x protease inhibitor, 0.05% digitonin, 0.01% NP-
40, 1x protease inhibitor, 2% filtered BSA, and 10mM MgCl2), incu-
bated 1 h at 37 °Cwith agitation every 15min. Tagmentationwas halted
with Stop buffer (20mM HEPES pH7.5, 300mM NaCl, 0.5mM sper-
midine, 1x protease inhibitor, 0.05% digitonin, 0.01% NP-40, 1x pro-
tease inhibitors, 2% filtered BSA, and 25mM EDTA), centrifuged at
450×g for 3min,washed indiluted nuclei buffer (1xATACNuclei Buffer
(10x Genomics, PN-2000207) and 2% filtered BSA), centrifuged at
450×g for 3min, and resuspended in diluted nuclei buffer. Intact nuclei
were stained with DAPI and were visualized and counted under fluor-
escent microscopy. About 70 uL of ATACmaster mix (8μL tagmented
nuclei, 7μL ATAC Buffer B (10x Genomics, PN-2000193), 56.5μL Bar-
coding Reagent B (10x Genomics, PN-2000194), 1.5μL Reducing Agent
B (10x Genomics, PN-2000087), 2μL Barcoding Enzyme (10x Geno-
mics, PN-2000139) was loaded for GEM generation according to the
10x Genomics scATAC v1.1 protocol. Nuclei were diluted if necessary
(up to a maximum of 25,000 total nuclei per reaction). Subsequent
GEM generation and cleanup steps were performed according to the
10x Genomics scATAC v1.1 protocol. Library prep was also performed
using the standard protocol, except that total PCR cycles were
increased to 16. All centrifugation steps were performed using a swing-
bucket rotor.

Activity-by-contact (ABC) enhancer predictions
We generated enhancer predictions for four cell types, GFP-positive
cMN3 + 4 e11.5, cMN6 e11.5, cMN7 e10.5, and cMN7 at e11.5, adapting
the activity-by-contact (ABC) model v0.286. We defined potential
enhancer regions by merging scATAC peaksets for each sample. We
provided sample-specific H3K27Ac read counts from scCUT&Tag
experiments described above. We also provided imputed RNA
expression tables for each cell type from the scATAC-scRNA integra-
tion described above. We estimated contact frequencies based on the
ABC power law function. We evaluated our enhancer predictions
against 67 VISTA enhancers classified as positive for cranial nerve, of
which 12 had ABC enhancer predictions. Importantly, our ABC pre-
dictions also correctly identify the peak and cognate gene for the
CREST1 enhancer (VISTA enhancer hs1419), for which both the
enhancer locus and cognate gene are known85.

Participant whole genome sequencing, reprocessing, SNV/indel
calling, and quality control
Research participants. Male (49.15%) and female (50.84%) research
participants of any age (range 1 month–78 years) diagnosed with
congenital cranial dysinnervation disorders and available family
members were enrolled in the study. Sex for human participants were
collected from clinical information. Reported or genetically inferred
sex was used for quality control, relatedness checks, and estimates of
contamination. Sex-specific traits were not investigated. This was a
cross-sectional observational study of subjects/families enrolled over
many decades through dedicated research protocols. Subjects were
referred to the research protocol through their physicians, family
support groups, or self-referral. They carried a diagnosis of a con-
genital cranial dysinnervation disorder. There was likely self-selection
bias for subjects who have access to health care and/or interest to
participate in research but this is not likely to impact results. No
compensation was provided to participants.

SNV/indel calling. WGS was performed at Baylor Human Genome
Sequencing Center through the Gabriella Miller Kids First Pediatric
Research Program (dbGaP Study Accession: phs001247). Joint variant
calling for all samples was performed at the Broad Institute. We
uploaded raw30Xcoverage PCR-freeWGSdata to the Broad Institute’s
secure Google Cloud server and reprocessed these data through the
Broad Institute’s production pipeline. We realigned raw read data to
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the GRCh38 human reference sequence using BWA-MEM and repro-
cessed using Broad’s Picard Toolkit. We then performed variant calling
on the resultant BAM files using the GenomeAnalysis Toolkit (GATK 4.0
HaplotypeCaller). In the final step of variant calling, we jointly geno-
typed each site in the genome alongside a collection of over 20,000
reference genomes assembled by the Broad Institute. Joint variant
calling provides two crucial advantages over individual or batched
genotyping149. First, it dramatically improves variant calling accuracy
due to (i) clearer distinction between homozygous sites versus missing
data; (ii) greater sensitivity to detect rare variants, and (iii) greater
specificity against spurious variants. Second, joint calling, by its design,
generates a well-calibrated estimate of allele frequency within our
cohort against the large gnomAD database. Assuming that the allele
frequency of a bona fideMendelian disease-causing variant is lower than
its disease prevalence, this information allows us to exclude variants
with implausibly high allele frequencies in population databases149,150.
Finally, we performed variant filtering using GATK’s Variant Quality
Score Recalibrator and applied custom hard filters as required.

SNV/indel QC. We performed QC at multiple stages of variant calling,
performed filtering based on standard sequencing quality metrics (e.g.,
uniformity of coverage, transition/transversion ratio, indel length pro-
files), and compared them to our internal database of reference gen-
omes. We used heterozygosity of common variants on chrX and
coverage of sites on chrY to confirm reported gender and to identify sex
chromosome aneuploidy. We also extracted variant calls from 12,000
well-covered variant sites and used these variants for principal com-
ponent analysis together with a large reference panel to infer the geo-
graphical ancestry of samples, infer pairwise relatedness of the samples,
identify unexpected duplicates, and determine cryptic relatedness and
unexpected patterns of relatedness within reported families.

Structural variants
Variant calling with GATK SV. We generated an SV callset using the
ensemble GATK-SV pipeline (https://github.com/broadinstitute/gatk-sv)91.
Briefly, we performed joint genotyping and harmonized SV calls from
multiple detection tools (Manta, Wham, MELT, GATK-gCNV, and
cn.MOPS151–155), as well as manual read inspection using IGV156, and
estimated SV allele frequencies against gnomAD SV v2.191. We first
excluded any SVs with cohort AF ≥0.005, irrespective of coding or
non-coding status. When evaluating de novo and inherited SV can-
didates, we restricted our callset to 45 and 49 curated pedigrees,
respectively. One SV (deletion chr22:27493955-27497536) was iden-
tified through manual curation. These SVs were subsequently used
for downstream analysis incorporating pedigree non-coding element
information.

Transposable elements. We also performed a separate bespoke
analysis for genome-wide transposon insertions (L1, Alu, and SVA)
profiling on the GMKF WGS dataset using xTea157. Raw transposon
insertions with different features and confidence levels were anno-
tated and processed to generate both rare and de novo insertion lists
for further variant interpretation. Beyond basic feature annotations
(transposon family, breakpoint, and gene annotations), all insertions
were annotated with (1) population allele frequencies (AFs) derived
from the 1000 genomes project, gnomAD SV, euL1db, and other
polymorphic insertion collections from the literature91,158–160; (2) over-
lapping repeats annotated by RepeatMasker and homopolymers; (3)
other gene annotations such as pLI score161, OMIM disease-causing
genes2, and potential CCDD-related genes. For putative pathogenic
rare insertions, we first applied a population AF threshold of 0.01 to
remove common polymorphic insertions. We then filtered nested
insertions–where a putative insertion landed in an existing insertion
from the same transposon family–as they are error-prone in short-read
sequencing platforms. Finally, we filtered for all high-confidence

annotations (two_side_tprt_both and two_side_tprt) in affected samples
for downstream genetic analysis. For de novo insertions, raw calls of
transposon insertions were examined, and only those present in the
affected proband but fully absent in both parents (i.e., without a single
supporting read)were retained. Trio familieswith anymemberbearing
an abnormally high number of transposon calls were filtered, as these
outlier samples carried excessive noisy signals (clipped and discordant
reads), and consequently, false positive calls could affect de novo
insertion calling. We then removed insertions that have been reported
in populational datasets and known polymorphic insertion collections
in the literature. We also filtered out error-prone nested insertions.
Finally, high-confidence insertions (feature = two_side_tprt_both) in
affected participants were reported as the de novo insertions for fur-
ther genetic interpretation (Supplementary Data 11).

Applying cell-type aware filters for human non-coding
mutations
General filtering. Our original WGS callset contained 49,824,956
variant calls for 899 individuals across 270 distinct families with
CCDDs. We loaded these unfiltered variant calls in.vcf format into Hail
(https://github.com/hail-is/hail) as a MatrixTable. Multi-allelic variants
were split so that all variants are represented in a biallelic format. In
splitting multi-allelic variants, spanning deletions were not kept. This
resulted in 54,804,014 biallelic variants. These variants were annotated
with TOPMed allele frequencies, gnomAD genomes allele frequencies
and allele counts, GERP scores, and ClinVar variant pathogenicity
labels92,162–164. Using native and custom Hail functions, we generated
scripts to filter the MatrixTable’s variant calls based on custom speci-
fications for variant annotations, variant locus, and call quality filters.

We set the following hard filters for all searches:
gnomAD AF (<1 × 10−3 for dominant/de novo; <1 × 10−2 for

recessive)
TOPMed AF (<1 × 10−3 for dominant/de novo; <1 × 10−2 for

recessive)
GERP >2
Only return variants that pass all quality filters in the VCF
Genotype quality: >20
Allele balance: >0.15 (heterozygous calls)

Cell type-specific filtering. To generate a list of cell type-specific
genomic regions of interest for each disease group, we used data from
single-cell ATAC-seq experiments performed on mouse cranial motor
neurons at e10.5 and e11.5. Fromhere, we implicitly assume that: (i) we
have correctly mapped each disease-relevant cell type (at the appro-
priate timepoint) to its appropriate cognate phenotype; (ii) biologi-
cally active cREs are accessible; and (iii) patterns of chromatin
accessibility are correlated across species11,59. Peaks called on each
cMN sample were lifted over from mm10 to hg38, and the converted
intervals were concatenated into a single file and overlapping peaks
were combinedusing bedtoolsmerge. For disease typeswith >1 cMNof
interest, the master list of intervals for each cranial nerve were again
merged using bedtools merge to create a list of intervals defining
regions accessible in one or both cMNs. This final master list of inter-
vals was used to narrow the total genomic search space for each dis-
ease group, with only variants contained in the regions specific to the
cMN(s) of interest being retained.

Modes of inheritance
SNVs/indels. To leverage pedigree information, we first stratified our
270 pedigrees into seven major disease categories that shared cell
type-specific etiology (CFEOM, FNP, DRS, CFP, Moebius, Ptosis, Ptosis/
MGJWS). We further stratified these pedigree groups into subgroups
based on four inheritance/phenotype patterns (familial/syndromic;
familial/isolated; sporadic (trio)/syndromic; sporadic (trio)/isolated).
We incorporated inheritance by only retaining variants that matched
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the appropriate mode(s) of inheritance in at least one family per sub-
group. For example, for trios, we searched variants obeying de novo,
dominant (if either parent was affected), compound heterozygous,
and/or homozygous recessive modes of inheritance. For de novo
variants, we used Hail’s likelihood-based caller (https://github.com/
ksamocha/de_novo_scripts). For familial cases, we manually inspected
each pedigree structure and specified custom variant searches based
on plausible modes of inheritance, including de novo, dominant,
compound heterozygous, homozygous recessive, and dominant with
incomplete penetrance. In the caseof compoundheterozygous variant
configurations affecting non-coding elements, we defined each scA-
TAC peak as our unit of heredity. Within this framework, one variant in
a peak had to be inherited from an unaffected father, and a different
variant in the same peak had to be inherited from an unaffected
mother. Finally, we performed cohort-level filtering by eliminating any
rare candidate variants that were also present in any unaffected indi-
viduals in the cohort (for dominant/de novo searches) or that were
present in a homozygous state in any unaffected individual (for
recessive searches). We excluded candidate variants from one outlier
pedigree that failed call QC.

SVs and transposable elements. For SV genetic interpretation, we
performed inheritance-based searches for dominant/de novo modes
of inheritance in the appropriate pedigrees, using the same custom
search parameters as described for the SNV/indel framework. We
identified all de novo and inherited variants overlapping disease-
relevant peaks for each eligible pedigree using the findOverlapPairs()
function from the GenomicRanges package.

For TE genetic interpretation, we imported the list of TEs called
with xTEA157 into Hail as a MatrixTable. We performed inheritance-
based searches for dominant/de novo modes of inheritance, again
using the same custom search parameters as described for the SNV/
indel framework. We converted the TE MatrixTable from hg19 coor-
dinates to hg38, and filtered out calls with invalid/unknown contigs,
and only included highest confidence calls (Feature info =
two_side_tprt_both). We applied estimated gnomAD AF thresholds of
0.01 and0 fordominant inherited anddenovo alleles, respectively.We
used the same cell type-specific peak interval/disease group combi-
nation described above but added ±15 bp padding to each peak to
account for uncertainty in the insertion point.

To identify multi-hit peaks, we aggregated candidate variant
results within each cell type/disease pairing by peak and selected any
peaks with SNVs/indels and/or SVs present in ≥2 families. For multi-hit
tabulation, we excluded any SVs >100 kb orwith clear coding etiology.
Variants within multi-hit peaks were required to obey the same broad
mode of inheritance (i.e., dominant or recessive). In addition, domi-
nant and recessive multi-hit variants could not be present in any
unaffected individual across the cohort in the heterozygous and
homozygous configuration, respectively. Candidate variants in any
previously solved pedigrees were excluded from final
tabulation19,21,22,27,34,98,99,101,103,165–171.

Permutation testing
To assess the statistical significance of the results that lie within the
regions drawn from scATAC sequencing of developing cranial motor
neurons, we performed permutation tests to determine whether the
regions corresponding to specific cranial motor neurons were enri-
ched for variants. We analyzed dominant inherited and de novo var-
iants separately.

First, we performed a search to find variants using the same
thresholds for frequency, conservation, quality, and inheritance, but
without limiting the search space to only genomic intervals defined in
the scATAC peaks. We then split these results by disease group based
on the phenotype of the family to create the genome-wide distribution
of candidate variants for each disease group. After examining the

distribution of the number of genome-wide de novo variants per
individual after filtering for thresholds, we removed four individuals
from the results due to existing significantly outside of the distribution
(with the threshold drawn at >75 de novo variants per individual).

We then conducted permutation tests on each disease group,
using regioneR172.We used the original set of genomic locations from
the cranial motor neuron(s) scATAC data to generate a size-matched
non-overlapping permuted peak callset. We used the hg38 masked
genome from BSGenomes in order to restrict the locations where the
randomized peaks could be located. We then counted the number of
variants within these regions. This process was repeated for 5000
iterations for each disease group for both de novo and dominant
inherited variants.

Droplet digital PCR (ddPCR) copy number validation
We performed ddPCR droplet generation and droplet reading using
the QX200 droplet digital PCR system with Biorad ddPCR Supermix
for Probes (Bio-Rad #186-3010). We performed copy number geno-
typing for non-coding element hs2757 in pedigrees S190 and S138
using ddPCR Copy Number Assay (Bio-Rad dHsaCNS845311073) and
TaqMan Copy Number Reference Assay, human, TERT (Life Tech
4403315) as an internal control. We used the following thermocycler
protocol: 1 x [95 °C for 10min]; 40 x [94 °C for 30 s, 60 °C for 1min]; 1 x
[98 °C for 10min], 1 x [4 °C hold]. Genotyping was performed in
duplicate for all samples.

Convolutional neural network training and prediction
Training. We generated accessibility predictions using Basenji120 after
training the network with mousemotor neuron scATAC-seq data. We
generated separate predictions for each biological replicate (32
replicates total). To preprocess scATAC-seq data before training the
neural network, we first generated bigwigs from the scATAC-seq bam
files using mm10 as the reference FASTA. We clipped bigwig cover-
age at 150 to trim outliers. We generated training, validation, and test
sequences with a split of 80% training sequences, 10% validation, and
10% test. We identified regions that should not be included in train-
ing sequences with a bed file containing regions that were hard
masked in the mm10 fasta file combined with the Encode denylist.
The mm10 FASTA file was filtered to only include chromosomes
1–19, X, and Y.

We trained the network retaining themodel architecture from the
original Basenji manuscript, with seven dilated layers. For this work,
the dense output layer contained 32 units (one for each sample).
Training was stopped when the correlation coefficient for validation
predictions vs. validation experimental data failed to improve after 12
iterations (patience = 12), and the weights from the best iteration were
saved as the final model. The complete architecture and list of
hyperparameters can be found at https://github.com/arthurlee617/
noncoding-mendel under params.json.

SAD score prediction. Using this trained network, we generated SNP
activity difference (SAD) scores for each human candidate variant by
calculating the total difference in predicted reference vs. alternate
coverage over a 131,072 bp window centered about each variant site
(hg38). Here we made the implicit assumption that a network trained
on mouse accessibility data was portable across species within the
same cell type120,173. We also included four solved CFP pathogenic
variants as truth data. For ease of interpretation, we converted all SNV
predictions from raw count differences to Z-scores, which fit a normal
distribution. To calculate Z-scores for individual candidate indels, we
used the SNV-derived scores for our null distribution.

Non-coding CRISPR mice and binomial ATAC
We performed scATAC-seq for GFP-positive cMN7 e10.5 from two
CRISPR-mutagenized mouse lines (cRE2Fam4/Fam4 and cRE2Fam5/Fam5)
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corresponding to human non-coding pathogenic HCFP1 variants.
cRE2Fam5/Fam5 corresponds to the pathogenic SNV (mm10 chr6:88224892
A>G) mouse line34. cRE2Fam4/Fam4 (mm10 chr6:88224893C>T) was
mutated on a C57BL/6J background via CRISPR-Cas9 homology-directed
repair at the Boston Children’s Hospital Gene Manipulation & Genome
Editing Core using guide sequence TAGCAGGTCAACAGGGGCAG and
subsequently crossed onto themixed IslMN:GFP line described above. For
each mutant line, we generated two biological replicates (four replicates
total) on embryos from [homozygous mutant ×homozygous mutant]
timedmatings and compared to our wildtype cMN7 e10.5 replicates. For
ad hoc comparison across these samples, we performed iterative LSI
dimensionality reduction and batch correction using Harmony174 and
normalized coverage by log10(nfrags). We note that cRE2Fam4/Fam4 also
harbors an off-target C>T variant 54bp downstream from the target site
(i.e., in addition to the on-target variant). This off-target nucleotide is not
mutated in any affected samples. However, we do not explicitly exclude
the possibility that this off-target variant contributes to the difference in
cRE2Fam4/Fam4 accessibility relative to wildtype. For binomial ATAC, we
performed [wildtype×homozygous mutant] timed matings for GFP-
positive cMN7 from the e10.5 cRE2Fam5/Fam5 line, again across two biolo-
gical replicates.

To test the cis effects of the mutant allele on accessibility, we
tabulated reference versus mutant allele counts and performed a two-
sided exact binomial test:

P =
X

i
Pr X = ið Þ=

X
i

n
i

� �
πi
0ð1� π0Þn�i

iϵfi : Pr X = ið Þ≤ Pr X = kð Þg
ð9Þ

where the number of trials, n corresponds to sequencing coverage, the
number of successes, k corresponds to reference allele count, and the
expected probability of success, π0 corresponds to the expected
sampling probability of the reference allele under the null hypothesis
H0: π = 0.5.

Statistics and reproducibility
No statistical method was used to predetermine the sample size.
Samples were excluded from the analyses if they failed QC. The
experiments were not randomized. The Investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheATAC-seq,RNA-seq,CUT&Tag, andmultiomedatagenerated in this
study have been deposited without restriction in the Gene Expression
Omnibus database under SuperSeries accession code GSE254090
[https://www.ncbi.nlm.nih.gov/geo/] and is composed of SubSeries
GSE254083, GSE254086, GSE254088, GSE254084, GSE254089, and
GSE254085. The human WGS data were available through dbGaP
authorized access (accession phs001247.v1.p1 [https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001247.v1.p1]; WL
is under phs001272.v2.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs001272.v2.p1]) because they are poten-
tially sensitive, access can be obtained by data access request to
the NIH. The in vivo enhancer data generated in this study have
been deposited without restriction in the VISTA enhancer database
[https://enhancer.lbl.gov] under accession codes as referenced in the
manuscript and are listed in Supplementary Table 3 and Supplementary
Data 10. Additional processed data are available via Figshare
Plus (https://doi.org/10.25452/figshare.plus.26517577.v1)175 and the
UCSC Genome Browser [https://mouse-motor-dev-atac.cells.ucsc.edu].
Source data are provided with this paper.

Code availability
Custom code to perform analyses from this work is available without
restriction at https://github.com/arthurlee617/noncoding-mendel176.
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