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Magnitude and kinetics of a set of neuroanatomic volume and
thickness together with white matter hyperintensity is
definitive of cognitive status and brain age
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Even among the subjects classified as cognitively normal, there exists a subset of individuals at a given chronological age (CA)
who harbor white matter hyperintensity (WMH) while another subset presents with low or undetectable WMH. Here, we
conducted a comprehensive MRI segmentation of neuroanatomic structures along with WMH quantification in groups of
cognitively normal (CN), cognitively impaired (CI) individuals, and individuals with an etiological diagnosis of cognitive impairment
owing to Alzheimer’s Disease (CI-AD) across the early (50–64 years), intermediate (65–79 years), and late (≥80 years) age groups
from the NACC cohort. Neuroanatomic volumetry quantification revealed that thinning of the parahippocampal gyrus in the early
(p= 0.016) and intermediate age groups (p= 0.0001) along with an increase in CSF (p= 0.0009) delineates between CI and CI-AD
subjects. Although, a significant loss of ~5–10% in volume of gray matter (p(CN vs CI) < 0.0001, p(CN vs CI-AD) < 0.0001), white matter
(p(CN vs CI)= 0.002, p(CN vs CI-AD)= 0.0003) and hippocampus (p(CN vs CI)= 0.007, p(CN vs CI-AD) < 0.0001) was evident at the early age
groups in the CI and CI-AD compared to CN but it was not distinct between CI and CI-AD. Using the neuroanatomic and WMH
volume, and the supervised decision tree-based ML modeling, we have established that a minimum set of Three brain quantities;
Total brain (GM+WM), CSF, and WMH volume, provide the Optimal quantitative features discriminative of cognitive status as CN,
CI, and CI-AD. Furthermore, using the volume/thickness of 178 neuroanatomic structures, periventricular and deep WMH volume
quantification for the 819 CN subjects, we have developed a quantitative index as ‘Brain Age’ (BA) depictive of neuroanatomic
health at a given CA. Subjects with elevated WMH load (5–10 ml) had increased BA (+ 0.6 to +4 years) than the CA. Increased BA
in the subjects with elevated WMH is suggestive of WMH-induced vascular insult leading to accelerated and early structural loss
than expected for a given CA. Henceforth, this study establishes that quantification of WMH together with an optimal number of
neuroanatomic features is mandatory to delve into the biological underpinning of aging and aging-associated cognitive disorders.
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INTRODUCTION
Chronological aging is one of the major unavoidable risks for brain
disorders [1]. While there is overall structural atrophy with
chronological aging [2–9], the presence of white matter hyper-
intensity (WMH) [10] on brain MRI, commonly known as a small
vessel disease arising from infarcts in small vessels indicative of
fiber loss, is remarkably noticed in a subset of individuals with
chronological aging. Given the subtle structural, fiber, and small
vessel changes observed with chronological aging, a large fraction
of chronological aging-associated structural and vascular changes
may overlap with cognitive pathologies, thus complicating the
precise clinical delineation of cognitively normal (CN), cognitively
impaired (CI) and cognitively impaired subjects with Alzheimer’s
Disease (CI-AD) at a given chronological age (CA). Aging and
aging-associated cognitive disorders are multifactorial events;
therefore, till date, there are no definitive in vivo non-invasive
quantitative structural and vascular determinants of cognitive
status and brain health [11–17]. Brain MRI segmentation provides
several neuroanatomic features, but not all the neuroanatomic

structural changes are sensitive and suitable for establishing brain
health and cognitive status, thus limiting the utility of neuroana-
tomic volumetry measurements in clinical settings for immediate
decision-making. Therefore, identifying a set of minimal but
optimal neuroanatomic and cerebrovascular events unique in
terms of threshold, sequence of occurrence viz early, intermediate,
and late, and its rate of atrophy/hypertrophy/thinning is needed
for precise delineation of CN, CI, and CI-AD.
We have observed that even within the subjects classified as

CN, a subset of individuals at a given CA presents with high WMH
while another subset has low/undetectable WMH [18, 19]. While
aging studies in the past have focused on structural alterations,
given the distinct WMH load in the aging subjects quantifying the
neuroanatomic volumetry together with WMH load will provide a
quantitative platform to pinpoint the brain structural health and
associated cognitive implications at a given CA. Conventionally,
brain health in clinical set up is measured based on cognitive
performance. Classification of subjects with WMH as CN indicates
a mismatch between cognitive evaluations and the presence of
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structural abnormalities which are detrimental to brain health.
WMH load is likely to pose a vascular insult to neuroanatomic
structures which beyond a threshold may lead to altered brain
health corresponding to subjects without WMH. Therefore, one of
the objectives of this study is to quantify WMH load and
investigate the threshold and kinetics of WMH with aging
together with neuroanatomic volumetry to delve into the
plausible impact of WMH on brain structural health and cognition
with chronological aging. Therefore, to establish the minimal but
optimal number of unique neuroanatomic features and their
thresholds unique to cognitive status as CN, CI, and CI-AD,
comprehensive quantification of brain structures and WMH, their
sequence and temporal order, kinetics and magnitude of
alterations with chronological aging have been performed in this
study using the cohort from National Alzheimer’s Coordinating
Center (NACC) (Supplementary Fig. 1).
The comprehensive MRI segmentation of neuroanatomic

features together with WMH quantification across the early
(50–64 years), intermediate (65–79 years), and late (≥80 years)
age groups from the NACC cohort, depicts that a subset of
neuroanatomic changes like medial cortical thinning of para-
hippocampal gyrus together with increase in CSF are discrimina-
tive of CI from CI-AD at early age groups. Although a significant
loss of gray matter (GM), white matter (WM), and hippocampus
was observed at the early age group in CI and CI-AD compared to
CN, the loss in GM, WM, and hippocampus lacks sensitivity to
discriminate between CI and CI-AD at the early age groups. Using
ML modeling for all the neuroanatomic features and WMH load,
we have established that a minimum set of Three optimal brain
quantities: Total brain (GM+WM), CSF, and WMH volume, are
sufficient to provide a significant and optimal discrimination of
cognitive status as CN, CI, and CI-AD.
Further, using the neuroanatomic volume/surface area/thick-

ness for 178 MRI-segmented brain structures, periventricular and
deep WMH quantification, and CA (50–99 years) in the cohort of
CN subjects, we have developed a unique Brain Age (BA)
estimation model to determine BA and Brain Age Gap (BAG)
relative to the CA as an indicator of neuroanatomic brain health.
Indeed, even the subjects classified as CN, when presented with
WMH load 5–10ml, showed increased brain age, suggestive of
WMH-induced vascular insult to brain structures.

METHODS
Study population and characteristics
Longitudinal MR Images, clinical investigations, and cognitive status of
subjects labeled as CN, CI, and CI-AD were obtained from NACC for the
subjects enrolled from 2005 to 2021. NACC is a longitudinal multicenter
study established in 1999 by the National Institute of Aging (NIA) which
collects and standardizes clinical and neuropathological data from
Alzheimer’s Disease Research Centers (ADRCs) across the United States
[20–22]. The ADRCs obtain the written informed consent from the
participants based on the IRB approval of each ADRCs (https://
naccdata.org/requesting-data/nacc-data). All NACC data is freely available
to researchers. To receive the NACC data a request is submitted by the user
(https://naccdata.org/requesting-data/data-request-process). For the pre-
sent study, we received anonymized Uniform Data Set (UDS) and imaging
data (MRI) from the NACC ADRCs (Data Request ID #5530) on 22 October
2021, for our analysis. The cognitive status labeled as CN, CI, and CI-AD is
based on the NIAA-NIND criterion employed by NACC as a variable
NACCALZD. A total of N= 3058 longitudinal MRI scans were acquired
using standard MPRAGE T1-weighted (T1w) and Axial T2-FLAIR methods
from the CN, CI, and CI-AD (N= 2114) subjects enrolled in the NACC study
till September 2021 from 16 ADRCs (https://www.alz.washington.edu/)
were received from NACC.
Only those MRI data obtained within a range of 1-year from the

cognitive measurements were included for brain neuroanatomic and white
matter hyperintensity (WMH) measurements and further analyses. Hence,
the total number of longitudinal MRI scans included in our study from CN,
CI, and CI-AD were 2642 (CN= 1616, CI= 252, and CI-AD= 774) arising

from subject numbers as NCN= 1082, NCI= 197, and NCI-AD= 588
(Supplementary Table 1A).

Brain region volumetry thickness quantification and its
kinetics with aging across CN, CI, and CI-AD
The MRI-based volumetry and thickness of brain regions were obtained
using the Imaging of Dementia & Aging (IDeA) Lab pipeline (Director:
Charles DeCarli, MD; University of California, Davis; https://
idealab.ucdavis.edu/) for investigating the chronological aging-associated
changes in magnitude and kinetics of structural and WMH volume across
the CN, CI, and CI-AD subjects. Volume of gray matter (GM), white matter
(WM), total brain (BRNV), hippocampus (HP), lateral ventricles (LV),
cerebrospinal fluid (CSF), and WMH for the CN, CI, and CI-AD subjects
obtained from segmentation using IDeA lab pipeline were normalized with
total intracranial volume (ICV) using Eq. (1):

Vnorm ¼ ðVestimated=VICVÞ ´Vavg�ICV (1)

Vnorm denotes normalized volume; Vestimated is the volume obtained
from segmentation, and Vavg-ICV represents mean ICV was estimated
separately for the CN, CI, and CI-AD groups within each age subgroup
[23, 24]. Additionally, for medial temporal cortical thickness (parahippo-
campal gyrus: PHG, entorhinal cortex: EC), the average thickness of the two
hemispheres was calculated.
To examine the relationship between the change in brain region volume

or thickness with CA in CI and CI-AD relative to the CN group, a Linear
Mixed Effect (LME) model [25] (Supplementary Table 4A) was employed on
longitudinal MRI measurements using R packages (R 4.1.2, lem4 1.1.35.1,
emmeans 1.8.6) [26] and also tested for a linear regression model [27, 28]
(Supplementary Table 4B) for the measurements obtained from the first
visit of each subject. The models were structured as a function of age, and
the intercept was adjusted for 50 years of age (Eq. 2) to account for the
various age of entry of the subjects in the study, using the following
equation:

Age50ij ¼ Ageij � 50 (2)

Yij ¼ β0 þ β1 ´Age50ij þ β2 ´ ðCI ´Age50Þij
þ β3 ´CIij þ β4 ´ ðAD ´Age50Þij
þ β5 ´ADij þ Siþ εij

(3)

In Eq. 3, Yij represents dependent variables viz the brain region volume
or thickness for the ith subject at jth time point modeled as a function of
several independent variables such as Age 50, and cognitive status (CI and
CI-AD) for the ith subject at jth time point. CIij and ADij are binary indicator
variables for the CI and CI-AD status of ith subject at jth time point,
respectively. The coefficients β0, β1, β2, β3, β4, and β5 are the parameters of
the model that represent the fixed effect of each independent variable on
the dependent variable (Supplementary Table 4). The intercept β0
represents the value of the dependent variable at age 50 when all
independent variables are equal to zero. The slope β1 represents the
change in the dependent variable per unit change in Age for the control
group (CN). The interaction coefficients β2 and β4 represent the effects of
CI (when CI= 1) and CI-AD (when AD= 1) in addition to the effects of
chronological aging, respectively. The β3 and β5 coefficients represent the
effect of CI (when CI= 1) and CI-AD (when AD= 1), respectively on the
brain regions when the age is held constant. Si represents the random
effect for the ith subject. The error term ɛij ~ N (0, σ2), represents additional
variabilities in the dependent variable which may not be explained by the
effect of the independent variables.
To quantify the differences in magnitude, MRI-determined volume and

thickness for the three cognitive groups from the first of the total visits,
were stratified across three age ranges i.e., 50–64 (early), 65–79
(intermediate), and ≥80 (late) as described in prior investigations
[29, 30]. A nonparametric multivariate model from the npmv R package
[31] was used to test the global differences for the MRI-determined
volume and thickness across the CN, CI, and CI-AD across the three age
groups.

Kinetics of white matter hyperintensity with age
Segmentation of T2w-FLAIR and T1w images using the IDeA lab pipeline
[32] (Director: Charles DeCarli, MD; University of California, Davis; https://
idealab.ucdavis.edu/) provided the total WMH volume. The total WMH
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volume estimated from the segmentation was normalized by the ICV. An
exponential growth curve model using an in-house function (in Python)
was fitted and optimized for investigating the kinetics of WMH progression
[28] with chronological aging across the three cognitive groups, CN, CI, and
CI-AD as follows:

WMH ¼ V0 er ´ Age (4)

Where V0 is the initial total WMH volume at 50 years of age and r is the rate
constant.
Furthermore, the periventricular WMH (PVWMH) and Deep WMH

(DWMH) volumes were extracted and estimated from T1-weighted and
T2-FLAIR images using a cluster-based fully automated pipeline called
“UBO Detector” [33] where UBO stands for Unidentified Bright Object.

Determining optimal number of MRI-obtained brain features
for cognitive discrimination
A combination of neuroanatomic volume and thickness of the features
that showed significant early/intermediate/late age differences between
the cognitive groups together with total WMH volume, age, and gender
were used as inputs for machine learning (ML) based supervised analysis
(The scikit-learn library [34, 35] in Python) to discern a minimum number of
‘Optimal Brain Features’ which are discriminative of cognitive status as CN,
CI, and CI-AD with higher accuracy and precision. Various decision tree-
based supervised ML models: Simple Classification tree [36], Random
Forest method [37], Bagging Classification [38, 39], and Extreme Gradient
Boosting (XGBoost or XGB) classifier [39, 40] were tested to optimize the
number of MRI features discriminative of CN, CI, and CI-AD subjects. The
regional brain anatomical volume, cortical thickness, and total WMH
volume obtained from the longitudinal measurements from CN, CI, and CI-
AD were randomly distributed into training and test sets (80:20). The
accuracy and performance of the four-decision tree-based ML models for
all the plausible combinations of MRI features were analyzed using a
stratified k-fold (k= 5) cross-validation technique [41], and was iterated 6
times. Each iteration included a unique subset of the training subjects such
that none of the subjects gets repeated in either of the iterations.
Furthermore, precision (P), recall score (R), accuracy (A), and confusion
matrix were determined to establish the best-suited ML model. The true
positive (TP), false positive (FP), and false negative (FN) values obtained
from the confusion matrix were used to estimate the P, R, and A using
scikit-learn [34].

Estimating the brain age from neuroanatomical structures
and WMH
To estimate brain age (BA) as a function of neuroanatomic volumetry and
WMH load for a given CA from the cohort of cognitively normal subjects
(727 longitudinal MRI scans from 528 subjects). The BA determination ML
model was developed using 178 neuroanatomic volumetry, two WMH
quantities (PVWMH and DWMH), and CA. Neuroanatomic volumetry
segmentation was performed using the automated cortical reconstruction
segmentation method (FreeSurfer Version 7.2.0) [42], and WMH load was
quantified using the UBO Detector pipeline [33].
The training set involved MRI data from only the CN subjects (221 scans

out of 727), who had undetectable or low WMH (PVWMH< 1.5 ml and
DWMH< 1.5ml) load. To rule out the effect of WMH-induced abnormality
on brain structures, only the subjects who had undetectable or low WMH
were included in the training set for brain age estimation. Bagging and
error correction techniques were performed by dividing the training data
into numerous train and validation sets, such that each sample serves as a
training set at least in one of the trials and validation set in another trial.
The training and validation processes were iterated for 50 times. The BA
estimation model was developed in Python using the Scikit-learn [34]
library.
Subsequently, the trained Brain Age model was used to predict BA and

BAG [43] using the following equation.

BAG ¼ Chronological Age� Estimated Brain Age (5)

Furthermore, using the Scikit-learn [34] python library approach, a set of
top ten important features decisive of the brain age derived using
permutation importance strategy was obtained. The BA estimation model
trained using the NACC data was further cross-validated for CN subjects
harboring low WMH (0–1.5 ml) and high WMH (5–10ml) from the ADNI-3
cohort (N= 92).

Statistical analysis
The global differences in neuroanatomic volume (6 neuroanatomic
structures: GM, WM, BNRV, HP, LV, CSF), thickness (2 structures: ENT,
PHG), and WMH load (1:Total WMH) between CN, CI, and CI-AD at a given
age group (50–64, 65–79, and ≥80) was tested using the nonparametric
multivariate model using npmv R package [31], a statistical algorithm that
provides the F-approximation and permutation p values for four types
rank-based tests: ANOVA type, Wilks’ Lambda type, Lawley Hotelling type,
and Bartlett Nanda Pillai type Henceforth, for multiple comparison using
three cognitive status as factor levels and nine structures as response
variables, familywise error rate was controlled at α= 0.05. Furthermore, a
nonparametric relative effect test was performed to evaluate the extent of
impact of all the aforementioned 9 MRI quantified features, their
probability, and tendency to serve as a determinant of the cognitive status.
In addition, to evaluate differences for each neuroanatomic feature

between cognitive groups (CN vs CI, CN vs CI-AD, and CI vs CI-AD) at a
given age range, unpaired two-tailed Welch’s t test was conducted, and t
values were obtained. Bonferroni correction was applied to account for
multiple comparisons, thereby the significance threshold for t values was
set at p < 0.017.
The multivariate LME regression (Eq. 3) for brain region volume or

thickness was performed using the lme4 library in R (R 4.1.2, lme4 1.8.3)
[26], and the significance of the full model was tested using the f test. The
‘p’ values < 0.05 were considered significant for the coefficients β0, β1, β2,
β3, β4, and β5 obtained from Eq. 3.
The Supervised ML models were trained using various combinations of MRI-

derived neuroanatomic structures to discriminate the cognitive status. The
trained ML models were evaluated for each combination of brain features
using accuracy, precision, and recall analysis to assess the performance of the
model in correctly classifying subjects as CN, CI, and CI-AD.

RESULTS
Global neuroanatomic differences and gray matter, white
matter, and total brain volume with aging in CN, CI, and CI-AD
The nonparametric global multivariate analysis (ANOVA type)
examining the neuroanatomic differences between CN, CI and CI-
AD revealed significant differences for volume of GM, WM, BRNV,
HP, LV, CSF, thickness of medial temporal lobe cortices (EC and
PHG), and WMH volume at the early age (F= 15.54, p= 0),
intermediate age (F= 29.35, p= 0) and late age groups (F= 11.17,
p= 0) (Supplementary Table 2A, B). All nine neuroanatomic
quantities showed a significant global difference between the
cognitive groups at an early age.
Segmentation of T1-weighted images from the first MRI visit

revealed a progressive loss in gray matter (GM), white matter
(WM), and total brain volume with age in all the three cognitive
groups; CN, CI, and CI-AD. At the early age group, the GM, WM,
and total brain volume were significantly lower in CI and CI-AD
subjects compared to the CN (Fig. 1A, C, Supplementary Fig. 2A, B,
Supplementary Fig. 3A). The t-map depicts progressive loss in GM
and WM with a significant volume reduction in CI and CI-AD
subjects at early age groups, marked with the progressive loss
with aging (Fig. 1A, Supplementary Fig. 2A). Unpaired two-tailed
Welch’s t-test showed significant loss in the GM volume in the CI
(593.6 ± 25.1 ml, p(CN vs CI) < 0.0001) and CI-AD subjects
(595.6 ± 31.4 ml, p(CN vs CI-AD) < 0.0001) compared to the CN
(622.4 ± 20.2 ml) (Fig. 1C, Supplementary Table 3) at early age
groups but not at intermediate and late age groups. However,
there was no significant difference in the GM volume between CI
and CI-AD at any of the three age groups (Fig. 1C, Supplementary
Table 3, 5).
The LME model as described in Eq. 3 (Supplementary Table 4A)

revealed a loss of 2.1 ml/year of GM volume for CN subjects while
a 1.4 ml/year reduction in CI and 1.7 ml/year decline in CI-AD
subjects corresponding to a significantly lower slope in CI and CI-
AD subjects compared to the CN (Fig. 1E). However, the baseline
volume of GM in CI and CI-AD subjects was remarkably lower
compared to the CN group as revealed from the intercepts
(obtained upon restricting the initial age to 50 years) (GM-
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I(CN)= 635.1 ml, I(CI)= 611.4 ml, I(CI-AD)= 615.3 ml, Intercept-GM:
p(CN vs CI) < 0.0001, p(CN vs CI-AD) < 0.0001, p(CI vs CI-AD)= 0.49).
Similarly, a significant reduction in WM volume was observed at

the early age group for both CI and CI-AD compared to the CN
subjects (CN: 495.5 ± 25.1 ml, CI: 473.9 ± 35.1 ml, CI-AD:

476.1 ± 37.6 ml; p(CN vs CI)= 0.013; p(CN vs CI-AD < 0.0001). The
differences between the cognitive groups get masked at
intermediate and late age groups (Supplementary Fig. 2B).
Moreover, there was no significant difference in WM volume
between CI and CI-AD subjects at the early age group
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(p(CI vs CI-AD= 0.8). The LME model revealed the WM loss with age
for the CN group was −3.5 ml/year, while a significantly slower
rate of WM loss was observed in the CI (−2.5 ml/year, p(CN vs

CI) < 0.0001) and CI-AD (−2.8 ml/year, p(CN vs CI-AD) < 0.0001) groups
compared to CN (Supplementary Table 4A). Moreover, the slope of
WM loss was not different between CI and CI-AD groups
(p(CI vs CI-AD)= 0.34) (Supplementary Fig. 2C). Similar to that
observed for GM, the baseline volume of WM for CI and CI-AD
group was remarkably lower compared to the CN group (WM-
I(CN)= 520 ml, I(CI)= 501.1 ml, I(CI-AD)= 504 ml, Intercept-WM: p(CN
vs CI)= 0.003, p(CN vs CI-AD)= 0.0007, p(CI vs CI-AD)= 0.67) suggestive
of reduced WM in CI and CI-AD subjects.
The Welch’s t-test showed a significant loss in the total brain

volume (BRNV= GM+WM volume) in the CI (1064.9 ± 31.8 ml,
p < 0.0001) and CI-AD subjects (1071.7 ± 48.6 ml, p < 0.0001)
compared to the CN (1118.0 ± 27.3 ml). BRNV in the CN group
showed a progressive decline with a rate of −5.6 ml/year, while a
relatively lower kinetics was observed for the CI (−4.1 ml/year;
−27%, p(CN vs CI) < 0.0001) and CI-AD (−4.5 ml/year; −20%,
p(CN vs CI-AD) < 0.0001) groups compared to the CN group
(Supplementary Fig. 3B). However, the rates of decline of BRNV
were not distinct between CI and CI-AD groups p(CI vs CI-AD)= 0.05).
The intercept analysis clearly depicts BRNV is significantly lower
for the CI and CI-AD subjects compared to the CN
(I(CN)= 1155.1 ml, I(CI)= 1113.6 ml, I(CI-AD)= 1121.2 ml, Intercept:
p(CN vs CI) < 0.0001, p(CN vs CI-AD) < 0.0001, p(CI vs CI-AD)= 0.31) at
the baseline (Supplementary Fig. 3B).

Hippocampus volume kinetics with aging in CN, CI, and CI- AD
Indeed, the volume quantification suggests significant hippocam-
pal volume reduction at the early age groups in the CI (CN:
6.9 ± 0.5; CI: 6.4 ± 0.8; p(CN vs CI)= 0.007) and CI-AD (CN: 6.9 ± 0.8; CI-
AD: 6.2 ± 0.9; p(CN vs CI-AD) < 0.0001) compared to the CN subjects.
(Fig. 1B, D, Supplementary Table 3, 5). The hippocampus volume
was not discriminative of CI and CI-AD subjects at the early age (CI:
6.4 ± 0.8; CI-AD: 6.2 ± 0.9; p(CI vs CI-AD)= 0.07) while significantly
distinct hippocampal volume was observed between CI and CI-AD
at intermediate (CI: 6.2 ± 0.8ml; CI-AD: 5.6 ± 0.9 ml, p < 0.0001), age
group (Fig. 1B, D). Although the baseline hippocampus volume as
depicted by the intercept (I(CN)= 7.1 ml, I(CI)= 6.7 ml, I(CI-
AD)= 6.6ml) obtained from LME regression was lower for the CI
and CI-AD subjects compared to the CN subjects (p(CN vs

CI) < 0.0001, p(CN vs CI-AD) < 0.0001) but the rate of hippocampal
loss (CN: −0.037ml/year; CI: −0.027ml/year; CI-AD: −0.036ml/
year) with age was similar across the cognitive groups (Fig. 1F).

Medial temporal lobe cortical thinning with aging in CN, CI,
and CI-AD
The medial temporal lobe cortices, entorhinal cortex (EC) and
parahippocampal gyrus (PHG) exhibited progressive thinning with
age for all the cognitive groups as observed on the t-map (Fig. 2A).

While the thickness of EC was not distinct between CI and CN at early
(CN: 3.60 ± 0.5, CI: 3.48 ± 0.5, p= 0.2) and intermediate age groups
(CN: 3.65 ± 0.5, CI: 3.49 ± 0.66, p= 0.019), the thickness of EC was
significantly reduced in the CI-AD subjects at all the age groups
compared to CN subjects (Fig. 2A, B; Supplementary Table 3).
Noticeably, CI-AD subjects also had reduced EC thickness compared to
CI subjects (Fig. 2A, B; Supplementary Table 3) at intermediate and late
age groups. Further, the multivariate LME regression (Supplementary
Table 4A) of the EC thickness with age for the CN group showed a
thinning rate of −0.004mm/year (p= 0.02). The annual reduction of
EC thickness with age was ~3 to 4 times faster in CI (−0.012mm/year)
and CI-AD (−0.016mm/year) subjects compared to the CN subjects
(p(CN vs CI)= 0.07, p(CN vs CI-AD)= 0.0001) despite the baseline thickness
of EC was significantly lower for CI-AD subjects compared to CN
(I(CN)= 3.69mm vs I(CI-AD)= 3.37mm, −8.7%, p(CN vs CI-AD)= 0.0002)
and CI subjects (I(CI)= 3.70mm, −8.9%,p(CI vs CI-AD)= 0.01) (Fig. 2D).
However, the per year decrease in the EC thickness was not distinct
between CI and CI-AD subjects (p(CI vs CI-AD)= 0.4) (Fig. 2D).
PHG thinning with age revealed a significantly unique aging

pattern, wherein CI-AD subjects exhibit reduced thickness
compared to CI at early (CI: 1.91 ± 0.24, CI-AD: 1.78 ± 0.28,
p= 0.016) as well as intermediate (CI: 1.82 ± 0.32, CI-AD:
1.71 ± 0.29, p= 0.0001) age groups (Fig. 2A, C; Supplementary
Table 3). Also, the thinning of PHG was discriminative of CI-AD
from CN subjects at all the age groups (Fig. 2C). Although the
baseline thickness of parahippocampal gyrus for CI-AD subjects
was significantly lower by −7.2% compared to CN
(p(CN vs CI-AD)= 0.0002) (Fig. 2E), the yearly rate of PHG thinning
was similar across all three cognitive groups (CN: 0.007 mm/year;
CI:0.006 mm/year; CI-AD: 0.008mm/year) (Fig. 2E, Supplementary
Table 4A).

Lateral ventricle and CSF volume with aging in CN, CI, and CI-
AD
The lateral ventricle and the CSF volume increased significantly
with age for all the three cognitive groups (CN, CI, and CI-AD).
Interestingly, the mean lateral ventricle volume of CI-AD and CI
group was significantly higher compared to CN at the early (CN:
19.2 ± 10.4 ml, CI: 28.1 ± 17.8 ml, CI-AD: 38.0 ± 28.4 ml) and inter-
mediate (CN: 29.2 ± 14.6ml, CI: 37.3 ± 17.5 ml, CI-AD: 44.3 ± 21.1 ml)
age groups. CI and CI-AD did not have significantly different
volumes at the early age group, but CI-AD presented with
significantly increased ventricular volume compared to CI at the
intermediate age group (Fig. 3A, B, Supplementary Table 3). The
LME regression analysis for lateral ventricle revealed the annual
rate of ventricular increase was similar for all the three cognitive
groups, although the intercept for the ventricular volume for CI
and CI-AD subjects, was significantly higher compared to the CN
(I(CN)= 12.4ml; I(CI)= 20.1 ml; I(CI-AD)= 23ml, Intercept: p(CN vs

CI)= 0.004, p(CN vs CI-AD) < 0.0001, p(CI vs CI-AD)= 0.3) at the baseline
age (Fig. 3D, Supplementary Table 4A).

Fig. 1 Magnitude and kinetics of Gray matter and Hippocampus volume with age across CN, CI, and CI-AD subjects. A Gray matter and
B hippocampus volume of the CN, CI, and CI-AD quantified from the first MRI visit showing the differences between CN vs CI, CN vs CI-AD, and
CI vs CI-AD subjects is depicted by the t-map across the three age groups: 50–64 (early) (CN= 300, CI= 29, and CI-AD= 58), 65–70
(intermediate) (CN= 560, CI= 107, and CI-AD= 314), and ≥80 (late) (CN= 222, CI= 61, and CI-AD= 216), wherein warmer color depicts the
remarkable difference between the two cognitive groups at the given age range. The significance was set to p < 0.017 upon Bonferroni
correction. The color bar depicts the t value. Boxplot presents the median and mean volume of C gray matter and D hippocampus quantified
from the first visit of the CN, CI, and CI-AD subjects. The volume between the cognitive groups were compared using unpaired, two-tailed
Welch’s t test followed by Bonferroni correction. The upper margin of the boxplot represents the Q3 (third quartile), and the lower margin of
the box represents the Q1(first quartile). The height of the box represents the interquartile range (IQR); the median is represented by the black
line inside the box and the white square in the middle represents the mean of the sample. Statistical significance for comparing the mean
gray matter volume between the cognitive groups (CN, CI, and CI-AD) across the stratified age groups is depicted as *p < 0.017, **p < 0.001.
Linear Mixed Effect (LME) regression model analysis of change in E gray matter and F hippocampus volume with age. The LME analysis was
performed upon setting up the age intercept at 50 years of age for all three cognitive groups. Green, Blue, and Red represent CN, CI, and CI-
AD, respectively. Statistical significance for the slope and intercept comparison between CN vs CI (*), CN vs CI-AD (#), and CI vs CI-AD ($) was
set at p < 0.05.
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The mean CSF volume shows remarkable features, wherein the
mean CSF volume was significantly distinct between CI and CI-AD
at early age group (CI: 308.6 ± 29.1 ml, CI-AD: 353.9 ± 48.2 ml;
p < 0.0001) and intermediate age group (CI: 343.4 ± 41.4 ml, CI-AD:
372 ± 37.9 ml; p < 0.0001) in addition to significantly higher CSF
volume in CI-AD subjects compared to CN subjects across all the
three age groups (Fig. 3C, Supplementary Table 3). The multi-
variate LME regression revealed a significantly slower rate of CSF
increase for the CI-AD group (1.5 ml/year) compared to CN (2.4 ml/
year, p(CN vs CI-AD) < 0.0001) and CI (2.4 ml/year, p(CI vs CI-AD)= 0.001)
groups. Furthermore, CI-AD subjects exhibited a significantly
higher CSF volume in the CI-AD compared to CN and CI subjects
as determined from the intercept (I(CN)= 280.7 ml; I(CI)= 292.2 ml;
I(CI-AD)= 333.9 ml) (Intercept: p(CN vs CI)= 0.06, p(CN vs CI-AD) <
0.0001, p

(CI vs CI-AD)
< 0.0001) at the baseline age (Fig. 3E,

Supplementary Table 4A).

White matter hyperintensity with aging in CN, CI, and CI-
AD groups
T2-FLAIR segmentation showed that the total WMH load (deep +
periventricular WMH) increases with aging across all three
cognitive groups (Fig. 4A). With progression in age, a higher
WMH load (~2X) was quantified in CI and CI-AD subjects
compared to the CN subjects at the early, intermediate, and late
age groups (Fig. 4B).
The increase in total WMH with age followed the exponential

growth pattern wherein the exponential fitting (Fig. 4C) depicted
WMH load increase with age for all the three cognitive groups. The
WMH initial load observed at 50 years of age for CN, CI, and CI-AD
was V0(CN)= 1.35 ml, V0(CI)= 2.76 ml, and V0(CI-AD)= 2.85 ml and
the rate constant was r(CN)= 0.063, r(CI)= 0.054, r(CI-AD)= 0.049

respectively suggestive of increased rate of WMH in CI and CI-AD
subjects compared to the CN with aging. Indeed, at any given CA
the rate of increase of WMH load for CI and CI-AD subjects was
~1.4 times faster (CI/CN: 1.4 ± 0.2; CI-AD/CN: 1.2 ± 0.2) compared
to the CN (Fig. 4D). Similarly, WMH quantification from the ADNI
cohort, showed a similar rate of increase; ~1.2 times faster (CI/CN:
1.2 ± 0.1; DM/CN: 1.1 ± 0.3) of WMH load for CI and dementia (DM)
subjects compared to the CN (Fig. 4E) similar to that observed in
the NACC cohort.

ML method for optimizing brain MRI events distinctive of CN,
CI, and CI-AD subjects
Using the neuroanatomic volumetry and thickness quantifications,
WMH volume estimates together with age, various supervised ML
algorithms: simple classification tree, random forest, bagging
classification, and XGB classifier (Fig. 5A) were trained to
determine the optimal number of brain MRI-segmented features
discriminative of cognitive status.
Unique predictive accuracy for the Cognitive status as CN, CI,

and CI-AD was observed upon various combinations of neuroa-
natomic structures and WMH load. Inclusion of only a single
neuroanatomic feature provided accuracies ranging between
~50–60%, whereas random addition of various combinations of
the volume of neuroanatomic structures with WMH load provided
varied accuracies (50–88%) for discrimination of cognitive status
(Fig. 5B). A unique combination of two neuroanatomical features
viz Total Brain Volume and CSF together with WMH volume
provided the highest average accuracy (~87 ± 1.3%) discriminative
of cognitive status using the XGB Classifier (Fig. 5B, C) and Bagging
Classification methods (Fig. 5B). The combination of these three
unique MRI-segmented quantities also yielded the highest

Fig. 2 Cortical thinning with age across CN, CI, and CI-AD subjects. A The t-map depicting the difference of entorhinal cortex thickness and
parahippocampal gyrus thickness between CN vs CI, CN vs CI-AD, and CI vs CI-AD across early (CN= 300, CI= 29, and CI-AD= 58),
intermediate (CN= 560, CI= 107, and CI-AD= 314), and late (CN= 222, CI= 61, and CI-AD= 216) (CN= 222, CI= 61, and CI-AD= 216) age
groups. The significance was set to p < 0.017 (Bonferroni corrected) and the color bar depicts the t value. Higher the t value greater the
difference between the thickness of cognitive groups. B, C The Boxplot with median (solid line) and mean (white square) thickness of the
entorhinal cortex and parahippocampal gyrus stratified across the early, intermediate, and late age groups for CN (green), CI (blue), and CI-AD
(red) subjects. P values were calculated using the unpaired, two-tailed Welch’s t test followed by Bonferroni correction. Statistical significance
for the mean entorhinal cortex and parahippocampal gyrus thickness comparison among cognitive groups (CN, CI, and CI-AD) across the age
groups is depicted as *p < 0.017, **p < 0.001. D, E LME regression model analysis of entorhinal cortex and parahippocampal gyrus thickness
with age upon setting up the intercept at 50 years. Statistical significance for the slope and intercept comparison between CN vs CI (*), CN vs
CI-AD (#), and CI vs CI-AD ($) was set at p < 0.05.
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accuracy with other ML algorithms, Simple Classification tree
provided an average accuracy of 80.7 ± 1.9%, while Random Forest
achieved average accuracy of 83.7 ± 1.2% (Fig. 5B).

Establishing brain age using 180 MRI-determined volumetry
features
This unique Brain age estimation model utilizing the 178
neuroanatomic volumetry and two WMH (PVWMH and DWMH)
volumes provided significantly and strongly correlated BA with CA
(average correlation coefficient (r) as 0.89 ± 0.03 for 50 iterations)
suggestive of a reliable and robust architecture of the BA
estimation model (Fig. 6). BA was not significantly different from
CA for the CN subjects with low WMH. BAG, determined by
subtracting the CA from BA, revealed that CN subjects who had
high WMH (5–10ml) load in the brain were estimated to have
significantly higher BAG at the early (2.5 ± 2.9 years, p < 0.001) and
intermediate age groups (2.2 ± 3.3 years, p < 0.001) compared to
the subjects with undetectable or low WMH (<1.5 ml) (Fig. 6,
Supplementary Fig. 5A). Further, cross-validation for the estima-
tion of BA using the same model architecture using the ADNI-3
cohort, revealed similar BAG estimates as for the NACC cohort for
the subjects with no and high WMH load (Supplementary Fig. 5B).
Permutation importance analyses for the top ten brain

volumetry contributors towards BA estimation for the subjects
with no WMH revealed that the volume of 3rd ventricle is the
topmost feature with an importance factor of 0.14 (Supplementary
Fig. 6A) while, for the subjects with high WMH, the volume of
periventricular white matter hyperintensity (PVWMH) was the
most important feature with an importance factor of 0.083
(Supplementary Fig. 6B). However, a set of brain structures; the
volume of accumbens area, the ratio of brain segmented volume
by total intracranial volume, and amygdala are common top

features contributing towards brain age for both the groups viz no
WMH and high WMH, but the extent of contribution is distinct. It is
noticeable that in the case of high WMH subjects, PVWMH
contributes maximally to the BA compared to DWMH (0.083 vs
0.002).

DISCUSSION
Quantification of chronological aging-associated changes in the
magnitude of neuroanatomic volume, temporal sequence (early,
intermediate, and late), and WMH load is imperative to develop
a non-invasive quantitative precise clinical index for ascertaining
the brain health and cognitive status. The brain structural
changes in CN, CI, and CI-AD subjects were compared for the
three age groups to identify early, intermediate, and late brain
MRI events in the trajectory of aging. Using the brain MRI
quantified features, a ML model was established to pinpoint an
optimal but minimum number of brain MRI-segmented features
discriminative of cognitive status. Moreover, for the first time a
comprehensive brain age (BA) model was developed using the
neuroanatomic structures together with periventricular and
deep WMH volume for estimating the BA and BAG (Supplemen-
tary Fig. 1).
Hippocampal volume quantification in CI and CI-AD subjects is

not distinctive of CI and CI-AD at early age groups. The early onset
of AD (EOAD) i.e., before the age of 65, presents with a non-
amnestic phenotype that spares the involvement of hippocampi
[44, 45], is in consistence with the findings of no significant
difference in hippocampus, GM, and WM volume between CI and
CI-AD subjects at the early age groups. The substantial loss in the
hippocampus provides sensitivity to differentiate between CI and
CI-AD at the intermediate age group of ≥65 years, at which almost

Fig. 3 Lateral Ventricular hypertrophy and CSF increase with age across CN, CI, and CI-AD subjects. A The t-map illustrating the difference
of Lateral ventricle volume between CN vs CI, CN vs CI-AD, and CI vs CI-AD across three age groups i.e., 50–64 (early) (CN= 300, CI= 29, and
CI-AD= 58), 65–70 (intermediate) (CN= 560, CI= 107, and CI-AD= 314), and ≥80 (late) (CN= 222, CI= 61, and CI-AD= 216). The lower the t
value, the higher the difference in the lateral ventricle volume between the cognitive groups. The t-value significance was set at p < 0.017
(Bonferroni corrected) and the color bar depicts the t value. Early enlargement of the ventricles was observed for CI and CI-AD groups
compared to the CN. B, C Lateral Ventricle and CSF volume of CN, CI, and CI-AD subjects across early, intermediate, and late age groups
respectively. P values were calculated with the unpaired, two-tailed Welch’s t test followed by Bonferroni correction. Statistical significance for
comparing the mean lateral ventricle and CSF volume among cognitive groups (CN, CI, and CI-AD) across the stratified age groups was
depicted as *p < 0.017, **p < 0.001. D, E LME model regression analysis of Lateral ventricle volume and CSF shows a progressive increase in the
volume across three cognitive groups- CN (green), CI (blue), and CI-AD (red). The LME analysis was performed upon setting up the age
intercept at 50 years. Statistical significance for the slope and intercept comparison between CN vs CI (*), CN vs CI-AD (#), and CI vs CI-AD ($)
was set at p < 0.05.
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94% of late-onset of AD cases are observed and become
symptomatic.
Interestingly, quantification of thinning of PHG provided one of

the unique early age changes discriminative of CI vs CI-AD. Indeed,
the medial lobe cortices are the primary site for tau deposition, a
key characteristic in the manifestation of Alzheimer’s disease.
Indeed, the prior measurements of parahippocampal cortical
thickness in a community cohort reported parahippocampal
thinning as one of the most important features of amnestic (Mild
cognitive) MCI and AD [46, 47]. The entorhinal cortical (EC)
thickness was discriminative of CI and CI-AD subjects at the
intermediate age group but failed to distinguish CN vs CI and CI vs
CI-AD at the early age groups, suggests EC thinning is not an early
event in manifestation of CI and CI-AD. However, the thinning of
EC in CI and CI-AD compared to CN is significantly noticeable at
the intermediate and late age groups. A prior study that measured
EC thickness did not observe significant differences between CN
and amnestic (mild cognitively impaired) MCI [47], as it did not
stratify the thickness for age groups but rather pooled the EC
measurements across a large age range.
Similar to the trends observed for PHG, quantification of CSF

volume also provided an early feature discriminative of CI from CI-
AD. Since CSF volume was not distinct in CI compared to CN at the
early age group, thus CSF quantification may not be a sensitive
feature for early age discrimination of CI and CN. But, the

quantification of lateral ventricles provided sensitivity for an early
discrimination of CI vs CN and CI-AD vs CN subjects (Supplemen-
tary Table 3, 5). This indicates that a combination of CSF and
ventricular volume must be analyzed together to pinpoint the
early chronological aging changes to discern CN, CI, and CI-AD
groups.
Quantitative estimation of GM and WM at early age provides

significant sensitivity for delineation of CI and CI-AD subjects from
that of CN but fails to distinguish between CI and CI-AD subjects at
the early age group. A reduced rate of GM and WM atrophy in the
CI and CI-AD subjects was observed in contrast to prior reports of
the increased rate of loss of GM and WM in AD subjects compared
to the healthy controls [48–50]. Here, we argue that, since the CI
and CI-AD subjects present with significantly lower volume at the
baseline measurements (50 years of age) compared to the CN, in
no condition, CI and CI-AD will have a faster rate of atrophy
compared to the CN. The slower rate of change of GM and WM
volume is solely attributed to lower baseline values of GM and
WM. Therefore, absolute volumetric quantification of neuroana-
tomic volume at a given age is mandatory while evaluating the
structural kinetics in longitudinal measurements.
Progressive increase in WMH load with aging across all the

three cognitive groups CN, CI, and CI-AD is suggestive of
enhanced vascular insult to neuroanatomic structures, which is
likely to trigger an accelerated aging-associated neuroanatomic

Fig. 4 White matter hyperintensity (WMH) loads across CN, CI, and CI-AD subjects. A Segmentation mask of WMH load generated from
T1w, and T2-FLAIR MRI for CN CI and CI-AD subjects across early, intermediate, and late age groups. B The Boxplot depicts the median (solid
line) and the mean (white square) WMH volume across 50–64 (early) (CN= 300, CI= 29, and CI-AD= 58), 65–79 (intermediate) (CN= 560,
CI= 107, and CI-AD= 314), and ≥80 (late) (CN= 222, CI= 61, and CI-AD= 216) subjects. p values were calculated with the Mann-Whitney U
test followed by Bonferroni correction. Statistical significance for the WMH comparison among cognitive groups (CN, CI, and CI-AD) across the
age groups was depicted as *p < 0.017, **p < 0.001. C The exponential increase of total WMH load with age across CN (green), CI (blue), and CI-
AD (red) subjects. The equation represents the rate of change of WMH load where, r is the rate constant and V0 is the initial WMH volume at 50
years of age. D Bar plot depicting mean ± standard deviation WMH rate fold change for CI and CI-AD subjects with respect to cognitively
normal (CN) subjects in NACC cohort. E Bar plot depicting Average WMH rate fold change in CI and Dementia (DM) subjects with respect to
CN subjects in ADNI cohort.
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changes thus predisposing altered structure-function relationship
and transforming the aging trajectory towards CI and/or CI-AD.
Indeed, a two-fold rate of WMH increase in CI and CI-AD compared
to CN with aging is plausibly the cause of early and remarkable
neuroanatomic volumetry deterioration in CI and CI-AD subjects.
Since WMH load is increased in both CI and CI-AD but is not
different between CI and CI-AD subjects, is suggestive of a similar
vascular involvement in CI and CI-AD subjects. An exponential
increase in WMH load indicates that once the punctate WMH
lesions attain confluency at an age, an abrupt WMH increase is
observed leading to an exponential pattern of increase.
Volumetry comparisons at the early, intermediate, and late age

groups (Supplementary Table 3, 5) revealed that the volume of
GM, WM, HP, BRNV, CSF, LV are significantly altered in CI and CI-AD
subjects compared to CN at early age groups but only medial
cortical thinning and increase in CSF volume mark an early event
depictive of clinical manifestation of CI and CI-AD. Indeed, not all
brain structures may serve as a discriminator for cognitive status,
as the magnitude of changes is subtle, and follows a unique
sequence which are temporally and spatially separated, Therefore,
in order to attain clinical suitability, it is impeccable to deduce the
minimum number of optimal, unique, easy-to-quantify MRI
features distinctive of cognitive health. The ML models establish
a significantly higher accuracy for predicting cognitive status
using a minimum number of three distinct features comprising a

structural feature, i.e., the total brain volume (=GM and WM), a
glymphatic system as CSF volume, and a small vessel disease
feature, i.e., WMH. The inclusion of additional MRI-determined
neuroanatomical structures did not improve the accuracy and led
to plateauing of the accuracy, suggesting the ease of extension of
our current findings across various aging cohorts and clinical
validations in the decision-making of cognitive status using
structural and small vessel disease load. Given the WMH presence
in almost all the brains studied in this study across CN, CI, and CI-
AD in minuscule or high amounts, WMH quantification and its
inclusion with neuroanatomic volume is unavoidable to study
aging-associated brain health. The ML model clearly indicates that
WMH volume is one of the unique features along with total brain
volume and CSF, as a predictor of clinical cognitive status. WMH
quantitation, along with structural volumetry, will provide the
extent of vascular insult and its impact on the structure and
functional status of the brain.
Our BA estimation model is a unique study wherein the WMH

load of PVWMH and DWMH have been included together with
neuroanatomic features. The subjects with low and high WMH
revealed a clearly distinct higher BAG. Subjects with WMH > 5ml
had BAG of more than ~3 years compared to the subjects with low
or minuscule WMH. This study firmly establishes a strong
perspective that in order to understand the normal aging and
pathological aging trajectory, it is mandatory to account for WMH

Fig. 5 Summary of the Machine learning algorithm performance in predicting the cognitive status of the participants based on the MRI-
segmented brain volume and thickness and age. A Schematics of XGB classifier ML model based on the gradient boosting technique.
B Cognitive status prediction accuracy of different ML Models for combination of different MRI obtains neuroanatomic volumes and
thicknesses. MRI features were added one by one with age and gender to check for the increase in average accuracy of XGB classifier (blue
circle), Random Forest (green triangle), Bagging classifier (yellow diamond) and Simple Classification Tree (orange square) ML models. The
result showed the mean accuracy ± SD (standard deviation). The highest accuracy for all ML models was obtained for the combination of
three MRI features, i.e., total Brain volume, CSF, and WMH with age and gender, and out of the 4 ML models, the XGB classifier gave the highest
accuracy. C Average normalized confusion matrix for XGB classifier ML machine models for predicting the cognitive status of the test data for
the three optimized MRI features (total brain volume, CSF, and WMH) with age and gender, which gave the highest accuracy. *BRNV total brain
volume, CSF cerebrospinal fluid, LV lateral ventricle, HP hippocampus, WMH white matter hyperintensity, EC entorhinal cortex and PHG
parahippocampal gyrus.
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load and cannot treat the subjects with WMH and without WMH
together. Owing to the vascular insult from WMH, the structural
atrophy and hypertrophy kinetics will be distinct depending upon
WMH load. Gray matter (Neuronal body) and white matter (fiber)
loss is an early event of compromised structural health, and
beyond a threshold of WMH load when it tips up suddenly, the
GM and WM loss may get accelerated resulting in accelerated
cognitive decline, and hence increased BAG. Our BA estimation
model showed a strong correlation between BA estimates and CA
(r= 0.89 ± 0.03), aligning closely with prior studies [51]. The ML
model for determining the optimal features for cognitive
discrimination is robust and reliable given the cross-validation of
the ML model was iterated six times with non-overlapping training
in such a fashion that no data gets repeated, but all the data sets
serve as part of training during one or the other iteration data and
thus minimize any outcome arising because of overfitting. Cross-
validation results strongly claim that our model would perform
reliably on any prospective or retrospective neuroanatomic and
WMH measurements in aging cohorts. Furthermore, the rate of
structural changes obtained from LME-based longitudinal data
analysis removes the individual variabilities arising from the
distinct age of entry of subjects during the study. However, linear
regression using cross-sectional measurements viz quantification
from the first visit (Supplementary Fig. 4, Supplementary Table 4B)
depicts a similar slope and pattern as obtained from longitudinal
measurements. Given the ease of designing cross-sectional
studies, finding similar kinetics and temporal patterns as that

obtained from longitudinal measurements is encouraging for
extensive aging studies at multiple sites.
BA is indeed a comprehensive representation of a set of

neuroanatomical quantities which are major contributors, such as
3rd Ventricle volume estimates with chronological aging con-
tributes most towards BA with an importance factor of 0.14 out of
the top 10 brain features such as volume of accumbens, brain
segmented volume by total intracranial volume ratio, amygdala
volume, post-central thickness, cerebellum white matter volume,
caudal-anterior cingulate white matter volume, posterior cingu-
late surface area, temporal pole white matter volume, and post-
central white matter volume (Supplementary Fig. 6A). It is
interesting to further enhance the biological underpinning of
these top 10 features which appears to be key players for BA and
brain health in the subjects with no WMH deposition. It is
intriguing to note that a unique set of brain features contributes
towards the BA for the subjects with high WMH load compared to
the low/nil WMH subjects (Supplementary Fig. 6B). Despite the
differences in the set of important features between the two
groups, a few features were common contributors of the BA
estimation. Therefore, here we establish that BAG may serve as a
potential clinical measure of brain health, when investigated into
structural and commonly observed small vessel pathology of
WMH. The findings from our study strongly claim that the
ongoing and prospective aging and AD consortium investigations
must revisit the role of small vessel diseases, develop a common
pipeline and method to quantify WMH together with structural,

Fig. 6 Brain age (BA) model developed from 180 MRI-obtained neuroanatomical volumetry and white matter hyperintensity load.
Schematics illustrating the workflow of the Brain Age estimation model. The T1 and T2-FLAIR MR images from CN subjects were segmented to
obtain 178 neuroanatomic measures, PVWMH, and DWMH. The subjects were then divided into training, test, and validation data sets. The
neuroanatomic features, PVWM and DWMH of the subjects in the training data set were used as an input together with Chronological Age
(CA) to develop the BA model. The model’s performance was validated using the average association between BA and CA, obtained from the
average prediction for 50 iterations. BA and Brain Age Gap (BAG) were estimated using the BA model for test and validation data sets. A
comparison of BAG and WMH was shown using voxel-wise probability maps, depicting the occurrence of total WMH load (PVWMH+DWMH)
on the coronal, sagittal and axial slice for cognitively normal subjects in the early age group with no or low WMH (WMH < 1.5 ml, n= 95) and
high WMH (WMH 5–10ml, n= 32) and intermediate age group with no or low WMH (n= 35) and high WMH (n= 118) with the range of BAG.
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cognitive, and vascular variables to precisely delineate the clinical
and biological roles of WMH for improved understanding of
aging-associated disorders.

CONCLUSION
‘Three’ unique brain changes associated with aging, wherein
two structural features, Total brain volume, and CSF volume,
together with WMH lesion load provide highly precise
discrimination of cognitive status as CN, CI, and CI-AD. The
unique brain age model that incorporates WMH load, for the
first time, along with neuroanatomic quantities, depicts that
the elevated load of WMH at a given CA contributes to an
increased BAG even in subjects identified as CN using cognitive
batteries. Despite the presence of a structural lesion in the
form of WMH in the brain, an individual gets classified as CN,
calling for a debate on the precision of the clinical cognitive
evaluations as a true indicator of brain health. Increased BAG
with elevated WMH load, even at the early age group is
suggestive of profound vascular insult resulting in early and
accelerated neuroanatomic atrophy or hypertrophy. Cross-
validation in the ADNI cohort provided a similar increase in
BAG in the subjects with elevated WMH load. Our sample size
had the subjects only starting at the age of 50 years. Further
extension of our study analyses to a retrospective or
prospective cohort that includes a younger group of subjects
<50 years of age will provide comprehensive insights into the
role of WMH in chronological aging and application of the
Brain age model.
While the loss of hippocampus volume, GM and WM volume is

distinctive of CI and CI-AD from CN at the early age group but lacks
sensitivity to discriminate between CI and CI-AD. It is remarkable to
note that medial cortical thinning from the parahippocampal gyrus is
an Early event discriminative of CI from that of CI-AD. It is very evident
that quantification of WMH along with neuroanatomic structural
features provide a quantitative and sequential platform with a
sensitivity for early, intermediate, and late age delineation of the
cognitive status. An early and substantial loss of GM, WM, HP, EC, and
PHG in CI and CI-AD subjects is likely to be a manifestation of high
WMH load and increased progression kinetics in CI and CI-AD subjects.
Indeed, WMH serves as one of the three unique features discriminative
of cognitive status and also estimates of PVWMH load as a significant
contributor towards increased BAG. Henceforth, this study establishes
that quantification of WMH together with an optimal number of
neuroanatomic features is mandatory to delve into the biological
underpinning of aging and aging-associated cognitive disorders.
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