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A variety of gene-based vaccination approaches have been used to enhance the immune response to viral
pathogens. Among them, the ability to perform heterologous immunization by priming with DNA and boosting
with replication-defective adenoviral (ADV) vectors encoding foreign antigens has proven particularly effective
in eliciting enhanced cellular and humoral immunity compared to either agent alone. Because adenoviral
vector immunization alone can elicit substantial cellular and humoral immune responses in a shorter period
of time, we asked whether the immune response induced by the prime-boost immunization was different from
adenoviral vaccines with respect to the potency and breadth of T-cell recognition. While DNA/ADV immuni-
zation stimulated the CDS8 response, it was directed to the same epitopes in Gag and Env immunogens of
human immunodeficiency virus as DNA or ADV alone. In contrast, the CD4 response to these immunogens
diversified after DNA/ADV immunization compared to each vector alone. These findings suggest that the
diversity of the CD4 immune response is increased by DNA/ADV prime-boost vaccination and that these
components work synergistically to enhance T-cell epitope recognition.

The ability of heterologous prime-boost vaccination to in-
duce potent immunity to specific antigens has been docu-
mented for a variety of infectious disease pathogens. These
responses have been observed with different viral vectors that
boost plasmid DNA vaccines, including DNA/poxviruses (1, 6,
9, 24, 29, 36, 37), DNA/adenoviral (ADV) vectors (6, 16, 17,
20, 22, 38, 42,47, 49, 50), and DNA/protein (2, 8, 13, 19, 21, 44)
prime-boost vaccination combinations. In addition, different
viral vector prime-boost combinations, such as alternative
ADV serotypes or ADV/poxvirus vector combinations, have
proven successful with different antigens in animal models
(4-6, 15, 25, 28, 30, 31, 37).

Among these vaccine platforms, DNA/ADYV vector boosting
has conferred protective immunity to different infectious chal-
lenges, with promising results having been described for Ebola
virus (42) and human immunodeficiency virus (HIV) (20, 38)
in nonhuman primates. The success of this approach may be
dependent on several factors. In some instances, immunity to
the vector used for the primary immunization can neutralize it
in repeated administrations, thus reducing the effective dose.
The prime-boost vaccination may also allow for alternative
modes of antigen presentation, depending on the gene delivery
modality. Such differences in the cell specificity of gene expres-
sion and antigen processing can affect the cellular and humoral
immune response.

At the same time, gene-based vectors, such as replication-
defective adenoviruses, can induce significant immune responses
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when administered alone. For example, in the case of Ebola
virus, adenoviral platforms have been used for viral pathogen-
esis studies (35, 39, 48) and vaccination (41, 42). Even though
DNA priming and adenoviral boosting elicits more potent an-
tibody and cellular immune responses (42), a single adminis-
tration of adenoviral vector encoding Ebola virus gene prod-
ucts protects against a lethal challenge 1 month later, despite
an immune response of a lower magnitude (41). When the
threat of infection is immediate, this approach may be desir-
able; however, in cases where long-term protection might be
preferred, the prime-boost combination may provide more du-
rable immune protection (12, 22, 23, 34, 40). To understand
the immunological basis of such protective immunity and de-
termine whether the character of the immune response differs
with heterologous vaccination modalities, we characterized the
immune response to HIV Env and Gag antigens delivered by
DNA, ADV, or DNA/ADYV vectors according to the specificity
of epitope recognition by T cells. These two antigens are rep-
resentative of those observed by immunizing by using DNA
and ADV with other antigens. Env typically elicits both CD4
and CDS8 responses, while Gag induces a more prominent CD8
response. We find that the CD8 responses are boosted quan-
titatively by prime-boost immunization, but they remain fixed
against the same epitopes. In contrast, the CD4 response to
different epitopes increases following prime-boost vaccination.

MATERIALS AND METHODS

Mice. Female BALB/c and C57BL/6 mice, aged 6 to 8 weeks, were obtained
from the Charles River Laboratory. Animal experiments were carried out in
compliance with all federal and NIH policies.

Immunogens. The Env immunogen was a modified version of the BaL strain,
a prototypic CCRS5-tropic clade B virus. The gp145 form of this Env was used in
the DNA vector, and gp140 was used for the ADV vector. Both versions con-
tained mutations in the cleavage site, fusion domain, and interhelical region
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(ACFI) to increase immunogenicity, as described previously (7). The clade B Gag
immunogen represents a codon-modified form derived from the HXB2 strain
(16) and was expressed under the regulation of a cytomegalovirus enhancer
together with sequences from the HTLV-1 R region, which have been reported
previously (51).

Vaccination schedule. Animals were injected with 50 g of each plasmid DNA
in the quadriceps muscle at 3-week intervals, for a total of three injections. The
replication-defective adenoviral vector encoding each antigen was injected (10'°
particles) intramuscularly. The DNA/ADV boost animals were injected with
50 ng DNA intramuscularly as described above, followed by the adenoviral boost
3 weeks after the third plasmid DNA injection. Intracellular cytokine staining
was performed 10 days after the last injection for DNA and DNA/ADV, and
ADV analyses were performed 3 weeks after a single ADV injection. In each
case, the vaccination schedule has been determined from previous studies to
represent the time at which the immune response can be maximally stimulated
and optimally measured.

Immunologic analyses. The intracellular cytokine staining assay for tumor
necrosis factor alpha (TNF-a) and gamma interferon (IFN-y) was performed
with peptides from the respective immunogens as previously described (7, 17,
51). Each fraction in the figures includes two overlapping peptides. Pools were
deconvoluted to test individual peptides at 2.5 wg/ml to determine the epitope
specificity. Threshold levels were determined using control peptides directed to
an irrelevant antigen from Ebola virus, as in past studies, and were set at
threefold above the average background stimulation with the control peptides.
No responses above this level were observed for the control peptides. Each
analysis represents intracellular cytokine staining (ICS) of lymphocytes pooled
from five animals and has been repeated independently in several instances to
confirm the reproducibility of the results.

RESULTS

The response to DNA immunization with Env was examined
initially for BALB/c mice by mapping epitopes that were rec-
ognized by T cells. Vaccination with a plasmid DNA encoding
a modified clade B Env immunogen revealed a CD4 response
to four peptide pairs that showed reactivity above the thresh-
old level of 0.1%, a >5-fold increase above the background
levels with control peptides, by ICS for IFN-y and TNF-« (Fig.
1A, upper panel). In contrast, ADV vector immunization re-
vealed a response to two epitope pairs, only one of which was
the same as that stimulated by plasmid DNA vaccination (Fig.
1A, middle panel). In contrast, DNA/ADV prime-boost vacci-
nation induced a response to at least 10 epitope pairs (Fig. 1A,
lower panel). All the responses induced by DNA immunization
were present within this pool, whereas only one of the adeno-
viral immunization epitope pairs was detected. The DNA/
ADYV immunization therefore elicited a stronger immune re-
sponse to at least five epitopes that had not been detected with
immunization by either DNA or ADV alone. In contrast, map-
ping of the CDS8 epitopes revealed a different pattern of epi-
tope responses. Two immunodominant peptide pairs in the V5
region were identified, and these epitopes were recognized
comparably by CDS cells from animals immunized with DNA
and ADV alone (Fig. 1B, upper and middle panels). While
DNA/ADYV immunization increased this response nearly five-
fold, the same epitopes were recognized, suggesting a quantita-
tive effect of the boost CDS epitope recognition (Fig. 1C).

To evaluate whether this response was independent of the
mouse strain and therefore generalizable, the CD4 and CDS§
responses of C57BL/6 mice to the Env epitopes were mapped.
In this strain, fewer CD4 epitopes were elicited by the ADV
immunization than by the DNA alone (Fig. 2A, middle panel
versus upper panel). Again, the DNA/ADV prime-boost im-
munization stimulated a response to several different epitope
pairs compared to the DNA vaccine alone (Fig. 3A, lower pan-
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el versus upper panel). The CD8 response to Env in BALB/c
mice was difficult to evaluate because of the absence of a sub-
stantial response to any epitope in this strain (Fig. 2B). Only
two responses induced by ADV alone were observed, of mar-
ginal significance, and no substantial effects were seen using
DNA or DNA/ADYV vaccination (Fig. 2B, middle panel versus
upper and lower panels), suggesting that this strain is a non-
responder for the Env antigen.

The immune responses to alternative immunogens were next
analyzed to determine whether diversification of the CD4 re-
sponse seen with DNA/ADYV vaccination applied to an inde-
pendent antigen, Gag. For BALB/c mice, the finding observed
was similar to that for the Env response. Only two epitope
pairs were recognized, slightly above background levels, after
DNA immunization (Fig. 3, upper panel). A larger number of
pairs (15) were observed after adenoviral immunization alone,
but the magnitude and diversity of the response was greater
with the DNA/ADYV boost, where responses to 20 pairs were
detected by ICS of CD4 cells (Fig. 3A, middle panel versus
lower panel). Of these epitopes, the majority differed from
those stimulated by either DNA or ADV boost alone. In con-
trast, six epitope pairs were identified with the CD8 response
to Gag in BALB/c mice after DNA vaccination, and an addi-
tional one was seen after ADV priming alone (Fig. 3B, upper
panel versus lower panel). Similar to the Env response, CD8
ICS increased in magnitude but retained the same specificity of
epitope response as DNA or ADV vaccination alone (Fig. 3B,
lower panel versus middle and upper panels).

Finally, the response to Gag in C57BL/6 mice was analyzed.
While three responses were observed above background for
DNA alone and six for ADV alone, eight were observed with
DNA priming and ADV boosting, of which four had not been
seen with either agent alone (Fig. 4A, lower panel versus mid-
dle and upper panels). In contrast, the CD8 response to Gag in
C57BL/6 mice was focused on three epitope pairs, all of which
were identical and boosted in magnitude with the DNA/ADV
immunization (Fig. 4B, lower panel versus middle and upper
panels).

DISCUSSION

In this study, we have examined the specificity of the im-
mune response to DNA, ADV, and DNA/ADV prime-boost im-
munization in mice. The response was characterized with two
different immunogens, Env and Gag, each of which was exam-
ined for two mouse strains. In each case, diversification of the
CD4™" T-cell immune response was observed following DNA/
ADV immunization compared to vaccination with either mo-
dality alone. With the exception of a null response to Env in
C57BL/6 mice for CD8 T cells. It is unsurprising that some
inbred mouse strains do not respond to specific antigens given
the homozygosity and limited major histocompatibility com-
plex (MHC) class I diversity. This finding is unlikely to predict
the success of this approach in human studies, where there is
considerable polymorphism and diversification of MHC class I
genes. Preliminary studies of humans suggest that such re-
sponses are readily elicited (data not shown). The response to
two antigens in independent strains suggests also that these
responses are likely to be representative and predictive
of responses to other immunogens for various genetic back-
grounds.
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FIG. 1. Definition of CD4 and CD8 epitope responses to HIV Env in BALB/c mice. BALB/c mice were injected with DNA, ADV, or
DNA/ADYV vectors encoding Env, as indicated in Materials and Methods, and ICS to peptide pairs in the indicated positions was determined. The
peptides to the HIV Env region were synthesized as 15-mers overlapping by 11, as previously described (7, 17). Responses to the (A) CD4 or (B)
CD8 epitopes are shown. The minimal threshold response is indicated by the dashed line. Red bars indicate responses above the background, while
blue bars indicate epitope responses below the background that are stimulated above the threshold using a second vaccination vector; however,
the values indicated by the blue bars do not show significant stimulation. Black bars show the level of response to epitopes below the background
level of detection. Any value below the threshold level indicated by the horizontal dashed line, whether blue or black, is below the background level
and not statistically significant. LS indicates the leader sequence, and TM refers to the transmembrane domain.

It has been well recognized that heterologous prime-boost
immunization confers a stronger response to immunogens and
greater protection in several infectious disease models than
immunization with either vector alone (10, 11, 14, 18, 25-27,
32, 33, 43, 45, 46); however, the immunologic basis for this

effect has not been understood. Although the magnitudes of
the immune responses elicited by prime-boost immunization
have been greater than those elicited by either vector alone, it
remained possible that the specificities of those responses were
similar. In this study, we show that diversification of the CD4
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FIG. 2. Analysis of CD4 and CD8 epitope responses of C57BL/6 mice to HIV Env. C57BL/6 mice were injected with DNA, ADV, or
DNA/ADYV vaccines for Env, as indicated in Materials and Methods, and ICS to peptide pairs in the indicated positions was determined. The
peptides to the HIV Env region were synthesized as 15-mers overlapping by 11. Responses to the (A) CD4 or (B) CDS epitopes are shown. The
minimal threshold response is indicated by the dashed line. Red, blue, and black bars are as defined in the legend to Fig. 1. LS indicates the leader

sequence, and TM refers to the transmembrane domain.

T-cell response occurs following prime-boost immunization. In
total, we have mapped the response to 159 Env peptides and
122 Gag peptides in two inbred mouse strains. When CD4 and
CDS8 responses were evaluated as positive responses to specific
peptides above background levels, at least 20 new CD4
responses that were not seen with either modality alone
appeared after DNA/ADV immunization; in contrast, no
additional CDS8 responses appeared. This association was

highly significant (P = 0.000001, Fisher’s exact test), indicating
that the prime-boost immunization significantly increases the
breadth of the CD4 responses while having only a quantitative
effect on measurable CD8 responses. Although some re-
sponses with the heterologous prime-boost combination
may be present at subthreshold amounts, the findings none-
theless indicate that this heterologous immunization allows
for boosting that can enhance this effect and substantially
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FIG. 3. Characterization of CD4 and CDS8 epitope responses of BALB/c mice to HIV Gag. BALB/c mice were injected with the indicated
vectors encoding Gag as described in Materials and Methods, and ICS to the indicated pairs of peptides was determined. The peptides to the HIV
Gag region were synthesized as 15-mers overlapping by 11 (16, 17). Responses to the (A) CD4 or (B) CD8 epitopes are shown. The minimal
threshold response is indicated by the dashed line. Red, blue, and black bars are as defined in the legend to Fig. 1.

increase the dominance of clones which recognize alterna-
tive epitopes in the antigen, specifically related to the CD4
response. In contrast, for CDS§ cells, the pattern of immu-
nodominance set by immunization with either agent alone
results in nearly identical epitope recognition and a similar
pattern of response following boosting.

Although the mechanisms that determine the breadth and
potency of epitope recognition are unclear, it is likely that such

responses are determined both by the T-cell repertoire and by
the reactivity of T-cell receptors with a given antigen, as well as
the mode of antigen processing and presentation. It has been
shown that DNA vaccination can alter the hierarchy of immu-
nodominance in T-cell responses (3), possibly through more
efficient MHC loading after synthesis in antigen-presenting
cells. While ADV appears to target early dendritic cells, which
may differentiate to mature dendritic cells that more effectively
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FIG. 4. Specificities of the CD4 and CDS epitope responses of C57BL/6 mice to HIV Gag. C57BL/6 mice were immunized with the specified
Gag immunogen vectors as described in Materials and Methods, and ICS to peptide pools from the HIV Gag region was determined. The peptides
to the HIV Gag region were synthesized as 15-mers overlapping by 11 (16, 17). Responses to the (A) CD4 or (B) CD8 epitopes are shown. The
minimal threshold response is indicated by the dashed line. Red, blue, and black bars are as defined in the legend to Fig. 1.

present antigens, they also synthesize larger quantities of
protein, which may be taken up by endocytosis. Thus, the
divergent cell targeting and antigen processing routes may
complement one another, allowing a greater diversity of epi-
tope recognition than with either agent alone.

These data have implications for the development and de-
sign of vaccines. In particular, because the immune response
arises more rapidly after ADV immunization alone (41), it

might be argued that this could be a preferable mode of im-
munization. If the specificities of the immune responses were
identical, this approach would be reasonable; however, the
data here suggest that alternative vectors, even when encoding
the same antigen, stimulate different specificities in the CD4
immune response. Each of these vaccine modalities should
therefore be considered independently for the evaluation of
vaccine efficacy.
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