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Germline functional variants contribute to
somatic mutation and outcomes in
neuroblastoma

Eun Seop Seo 1,2,3,6, Ji Won Lee 1,6, Jinyeong Lim 3, Sunghwan Shin 4,
Hee Won Cho1, Hee Young Ju1, Keon Hee Yoo1, Ki Woong Sung1 &
Woong-Yang Park 2,3,5

Germline genetic context may play a significant role in the development and
evolution of cancer, particularly in childhood cancers such as neuroblastoma.
This study investigates the role of putatively functional germline variants in
neuroblastoma, even if they do not directly increase disease risk. Our whole-
exome sequencing analysis of 125 patients with neuroblastoma reveals a
positive correlation between germline variant burden and somatic mutations.
Moreover, patients with higher germline variant burden exhibit worse out-
comes. Similar findings are observed in the independent neuroblastoma
cohort where a higher germline variant burden correlates with a higher
somatic mutational burden and a worse overall survival outcome. However,
contrasting results emerge in adult-onset cancer, emphasizing the importance
of germline genetics in neuroblastoma. The enrichment of putatively func-
tional germline variants in cancer predisposition genes is borderline sig-
nificant when compared to healthy populations (P =0.077; Odds Ratio, 1.45;
95% confidence intervals, 0.94−2.21) and significantly more pronounced
against adult-onset cancers (P = 0.016; Odds Ratio, 2.13; 95% confidence
intervals, 1.10−3.91). Additionally, the presence of these variants proves to
have prognostic significance in neuroblastoma (log-rank P < 0.001), and
combining germline with clinical risk factors notably improves survival
predictions.

As individuals age, the risk of accumulating mutations in their DNA
increases significantly1,2. This accumulationofmutations is the primary
reason that the risk of developing cancer increases over time3,4. How-
ever, the causes of childhood cancers such as neuroblastoma (the
most common extracranial solid cancer in childhood5)may differ from
those of adult-onset cancers6. Instead, inherited germline genetic
variants may play a greater role in the development and presentation

of tumors, as children have fewer opportunities to accumulate
mutations.

Considerable research into germline genetics in neuroblastomas
has revealed fundamental insights into predisposing germline
variations. Genome-wide association studies (GWAS) have identified
dozens of single-nucleotide polymorphisms associated with neuro-
blastoma risk7–9, while next-generation sequencing studies have
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reported several rare germline pathogenic variants in cancer predis-
position genes (CPGs)10–13. However, variants identified from GWAS
typically havemodest effects14, and only a small proportion of patients
with neuroblastoma exhibit known pathogenic germline variants in
CPGs8,11,15,16. This indicates that most neuroblastomas occurred in the
absence of highly penetrant germline variants. Additionally, previous
studies have only focused on the predisposition to neuroblastoma
associated with germline variants, but have overlooked the possibility
that germline variants that do not possess a direct association with
elevating the disease risk, could have a significant impact on neuro-
blastoma biology. Such variants could potentially contribute to the
disease either collectively or by interacting with somatic mutations, as
evidenced by recent research17–20.

We, therefore, hypothesized that putatively functional germline
variants (pFGVs) that affect protein function or structure may influ-
ence tumor biology in neuroblastoma, even if they do not indepen-
dently increase the risk of the disease. Furthermore, we anticipated
that the degree of contribution to tumor biology would be greater in
neuroblastoma than in adult-onset cancer. To explore these hypoth-
eses, we conducted a germline whole-exome sequencing (WES) study
of patients with neuroblastoma, focusing on two types of pFGVs:
damaging missense and protein-truncating variants (PTVs). We inves-
tigated the role of pFGV burden as well as pFGVs in CPGs. To validate
our findings in a separate neuroblastoma cohort, we replicated our
analysis on WES data from the NCI-Therapeutically Applicable

Research to Generate Effective Treatments (TARGET) neuroblastoma
cohort6. We also analyzed pFGVs from The Cancer Genome Atlas
(TCGA)21 and the Korean Genome Project (Korea1K)22 dataset to
compare the roles of pFGVs in neuroblastoma patients to those in
adult-onset cancer and healthy individuals.

Herein, we describe the role of germline variants in neuro-
blastoma beyond their role in the initiation of the disease. In addition,
we show the differences in the impact of germline variants on neuro-
blastoma and adult-onset cancers. Overall, our study highlights the
importance of considering the impact of germline variants in neuro-
blastoma and their potential implications for patient care and
management.

Results
Germline variant burden of putative functional germline var-
iants (pFGVs) is associated with somatic mutational burden in
neuroblastoma
We performed WES of germline and somatic DNA from 125 Korean
neuroblastoma patients at the SamsungMedical Center (SMC cohort),
with 65 cases (52%) classified as high-risk and 60 cases (48%) classified
as intermediate or low-risk (Supplementary Table 1). Median age at
diagnosis was 3.12 and 49% of the patients were male. Following mul-
tiple filtering steps, as depicted in Fig. 1a, we identified a median
burden of 41 (range, 27−58) pFGVs per patient, of which 24 were PTVs
(Fig. 1b). We observed that patients with a higher germline variant

Fig. 1 | Identification of putatively functional germline variants (pFGVs) and
their association with somaticmutations. a Flow chart of the pipeline to identify
pFGVs. b Box plot of all pFGVs, protein-truncating variants (PTV), and missense
pFGVs in all patients (n = 125). c Box plot of somatic mutational burden compared
with high (above mean, n = 66) vs. low germline variant burden (below mean,
n = 59). d Correlation between germline variant burden and somatic mutational
burden (log-transformed). e Correlation between number of rare synonymous

germline variants and somaticmutational burden (log-transformed). Each box plot
displays themedian value as the center line, the upper and lower box boundaries at
the first and third quartiles (25th and 75th percentiles) and the whiskers extend to
points within 1.5 times the interquartile range. For all the scatter plots, the r
represents Pearson’s correlation coefficient and the black line represents the fitted
values from linear regressions,with 95%confidence intervals in gray. AllP values are
derived from two-sided test. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52128-5

Nature Communications |         (2024) 15:8360 2

www.nature.com/naturecommunications


burden (above the mean) harbored a higher somatic mutational bur-
den (the total number of nonsynonymous mutations per coding area)
(P = 0.018; Fig. 1c), indicating a positive association between the two
factors. We also found a statistically significant but weak correlation
(Pearson’s r = 0.18; P =0.041; Fig. 1d) between the germline variant
burden and log10-transformed somatic mutational burden across all
protein-coding genes. This correlation maintained nominal statistical
significance in patients without pFGVs in DNA damage repair (DDR)
genes (Pearson’s r =0.23; P = 0.032; Supplementary Fig. 1a). However,
we found no significant correlation between the total number of rare
synonymous germline variants and somatic mutational burden (Pear-
son’s r = −0.01; P =0.942; Fig. 1e). These findings persisted when we
implemented a down-sampling analysis, addressing potential biases
due to thedisproportionate volumeof synonymous variants in relation
to pFGVs (Supplementary Fig. 1b, c).

To validate our findings in an independent cohort, we analyzed
germline and somatic exome data from the TARGET dataset. Con-
sistent with our observations in the SMC cohort, we found that
patients with a higher germline variant burden (above the mean) also
had a significantly higher somatic mutational burden (P =0.007;
Fig. 2a). We also observed a significant correlation between germline
variant burden and somatic mutational burden in all TARGET patients

(Spearman’s ρ =0.26; P =0.0001; Fig. 2b). This correlation persisted in
patients without pFGVs in DDR genes (Spearman’s ρ =0.33;
P =0.0002; Supplementary Fig. 2a), aswell as in analyses that excluded
outliers identified using a Z-score threshold of 3 (Spearman’s ρ =0.24;
P =0.0005; Supplementary Fig. 2b).

To account for potential confounding factors, we employed a
multivariable regression analysis. In analysis of the SMC cohort, after
adjusting for median sequencing depth in both tumor and germline
and the clinical risk, the somaticmutational burden continued to show
a significant positive association with germline variant burden
(β =0.01, P =0.045). This association was consistent among TARGET
neuroblastoma patients, even when adjustments were made for race
and median sequencing depth in both tumor and germline (β =0.01,
P =0.016). We also investigated whether germline variants have a
greater impact on neuroblastoma than adult-onset cancers. We ana-
lyzed the TCGA adult-onset solid cancer dataset and found a negligible
negative correlation between germline variant burden and somatic
mutational burden (Spearman’sρ = −0.03;P =0.024; Fig. 2c).However,
we observed a different pattern of correlation when we analyzed the
data across age groups. For patients with early-onset cancer (age at
diagnosis <50 years), we found a very weak but positive association
between germline variant burden and somatic mutational burden
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Fig. 2 | Correlation between germline variant burden and somatic mutational
burden in the TARGET and TCGA. a Box plot of somatic mutational burden
comparing high (above mean, n = 64) vs. low (n = 156) germline variant burden in
the TARGET. Boxes represent interquartile ranges with the center line corre-
sponding to the median. The whiskers extend to points within 1.5 times the inter-
quartile range. The statistical analysis was performed using theWilcoxon rank-sum
test. b Correlation between germline variant burden and somatic mutational bur-
den (log-transformed) in the TARGET. c Correlation between germline variant
burden and somaticmutational burden (log-transformed) in the TCGA.d Trends in

Spearman’s correlation coefficient and confidence intervals between germline
variant burden and somatic mutational burden across age groups at diagnosis in
the TARGET (white ethnicity, n = 160) and TCGA (n = 7482). For all the scatter plots,
the ρ represents Spearman’s correlation coefficient and the black line represents
the fitted values from linear regressions, with 95% confidence intervals in gray.
Statistical analysis for (a–c) was performed using two-sided tests. The Jonckheere-
Terpstra test for (d) was performed with a one-sided alternative hypothesis (less),
indicating a decreasing trend. Source data are provided as a Source Data file.
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(Spearman’s ρ = 0.08; P =0.002; Supplementary Fig. 2c), whereas for
patients diagnosed at an older age (age at diagnosis ≥50 years), a very
weak negative correlation was observed (Spearman’s ρ = −0.06;
P <0.00001; Supplementary Fig. 2d). Finally, we analyzed the asso-
ciation between germline variant burden and somatic mutational
burden across all age groups at diagnosis. This analysis included
patients with neuroblastoma from the white ethnicity subgroup
within the TARGET cohort. Interestingly, we observed a decreasing
trend in the correlation coefficient between germline variant
burden and somatic mutational burden (Jonckheere-Terpstra test,
P =0.0006; Fig. 2d).

Germline variant burden of pFGVs have prognostic impact in
neuroblastoma
While no significant association was found between germline variant
burden and any known clinical risk factors for neuroblastoma (Sup-
plementary Fig. 3), patients with a higher germline variant burden
(above themean) had a poorer progression-free survival (PFS) (Fig. 3a;
log-rank P = 0.018) but not reduced overall survival (OS) (Fig. 3b; log-
rank P = 0.455) in our SMCcohort. The clinical significance of germline
variant burden persisted even after adjusting for age, stage, andMYCN
status using a multivariable Cox model (adjusted HR, 2.78; 95% CI,
1.19−6.51; P =0.018). In the TARGET cohort, patients with a higher
germline variant burden (above the mean) had poorer OS than those
with a lower germline variant burden (log-rank P =0.005; Fig. 3c). After
adjusting for ethnicity and MYCN status, the impact of a higher
germline variant burden remained statistically significant (adjusted
hazard ratio [HR], 1.70; 95% CI, 1.19−2.42; P = 0.003). However, there

was no prognostic significance according to germline variant burden
in the TCGA cohort (log-rank P = 0.643; Fig. 3d).

Enrichment analysis of pFGVs in CPGs of neuroblastoma
To prioritize genes with the greatest biological impact, we focused on
109 CPGs listed in the Cancer Gene Census (CGC) from the Catalogue
Of Somatic Mutations In Cancer (COSMIC) database23 (Supplementary
Data 1). In this analysis, we considered the role of each gene in cancer
development, specifically targeting only missense variants of onco-
genes, while examining all pFGVs in tumor suppressor genes (TSGs). In
our SMC cohort, we identified 45 pFGVs and 31 affected CPGs in 39 of
125 patients (31%) (Fig. 4) (Supplementary Data 2). In the TARGET
cohort, 97 pFGVs were identified in 79 patients (36%) (Supplementary
Data 3). To determine whether pFGVs in CPGs were enriched in neu-
roblastoma compared with the general population and adult-onset
cancers, we compared the prevalence of pFGVs in CPGs across cohorts
while considering ethnicities. Our analysis revealed that pFGVs in CPGs
were enriched in neuroblastoma in both the SMCand TARGET cohorts
compared to healthy individuals (KOREA1K) and patients with adult-
onset cancers (TCGA), respectively. In the SMC cohort, we observed a
trend towards significance (P = 0.077; Odds Ratio, 1.45; 95% CI,
0.94−2.21) compared to KOREA1K, while in the TARGET cohort, we
found a statistically significant difference (P =0.027; Odds Ratio, 1.46;
95% CI, 1.04−2.05) compared to the TCGA cohort. Moreover, we
observed a significant decreasing trend in the prevalence of pFGVs in
CPGs across age in the TCGA cohort (Cochran–Armitage test for trend
P =0.00007; Supplementary Fig. 4). However, itwas important to note
that when refining our analysis based on the American CollegeMedical

Fig. 3 | Kaplan–Meier survival curves of survival probability according to the
germline variant burden of pFGVs. a Progression-free survival (PFS) for the
patients in the SMC cohort. b Overall survival (OS) for the patients in the SMC

cohort. c OS for patients in the TARGET cohort. d OS for patients in the TCGA
cohort. Source data are provided as a Source Data file.
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Genetics (ACMG) guidelines for clinical interpretation24, which focuses
sole on pathogenic or likely pathogenic (P/LP) variants in CPGs, there
was a pronounced enrichment of these variants in neuroblastoma
within the SMC cohort compared to the general population (P = 0.016;
Odds Ratio, 2.13; 95% CI, 1.10−3.91).

pFGVs in CPGs are potential prognostic factors in
neuroblastoma
Next, we investigated whether pFGVs in CPGs were associated with
clinical factors and outcomes. pFGVs in CPGs were not associated
with known clinical risk factors (Supplementary Table 2); however,
we found that patients with pFGVs in CPGs had a higher incidence of
family history of cancer in at least one second-degree relative
(χ2(1) = 3.99; P = 0.046; Odds Ratio = 2.93; 95% CI, 1.00−8.61). Addi-
tionally, we found that pFGVs in CPGs may be potential risk factors,
as they were associated with worse PFS (log-rank P = 0.00058;
Fig. 5a) and OS (log-rank P = 0.025; Fig. 5b). We also analyzed the
prognostic impact of other cancer-relevant genes (not CPGs), which
are classified as either TSG or oncogenes in CGC (n = 565). However,
no additional prognostic impact was observed for the other cancer-
relevant genes (Supplementary Fig. 5). When we considered only P/
LP variants according to the ACMG guidelines, a more pronounced
distinction was observed in the family history of cancer between
patients harboring P/LP variants in CPGs and those without such
variants (χ2(1) = 5.18; P = 0.023; Odds Ratio = 5.42; 95% CI, 1.11−26.52).
However, the survival differences in survival outcomes were sig-
nificantly only for only OS (log-rank P = 0.009; Supplementary
Fig. 6a), and not for PFS (log-rank P = 0.308; Supplementary Fig. 6b).
Univariable Cox proportional-hazards analysis revealed that MYCN
status, germline variant burden, and pFGVs in CPGs were associated
with the risk of progression or relapse (Supplementary Fig. 7). Mul-
tivariable Cox proportional-hazards analysis showed that the

presence of pFGVs in CPGs was independently associated with risk of
progression or relapse, even after adjusting for age, stage, MYCN
status, risk, and germline variant burden (adjusted HR, 2.91; 95% CI,
1.35−6.28; P = 0.006; Fig. 5c). Interestingly, even after excluding
patients with pFGVs in CPGs, there was still a significant prognostic
impact of the germline variant burden (PFS; log-rank P = 0.013;
Fig. 5d). In the TARGET cohort, which consisted of patients aged >18
months, stage 4, and high-risk, a similar trend was observed,
although the survival difference was not statistically significant when
evaluating the presence of pFGVs in CPGs (OS, log-rank P = 0.191).
However, in the subgroup analysis of the TARGET cohort, there was a
significant difference in OS in patients without MYCN amplification
based on the presence of pFGVs in CPGs (log-rank P = 0.016 and
0.414 for patients without and withMYCN amplification, respectively;
Fig. 6a, b). These results were also consistent in the SMC cohort with
nominal statistical significance (Fig. 6c, d). When assessing patho-
genicity as per the ACMG guidelines, the TARGET cohort displayed
significant differences in OS log-rank (P = 0.025). However, in the
TCGA adult-onset cancer cohort, we observed the opposite trend,
with no statistical significance in OS, as expected (log-rank P = 0.119).

The added predictive value of germline risk factors in
neuroblastoma
As both the burden and presence of affected CPGs were independent
risk factors for PFS,we investigatedwhether germline risk factors (high
germline variant burden and presence of pFGVs in CPGs) provide
additional benefits for stratifying patients with neuroblastoma.
Therefore, we obtained the C-index distribution of clinical risk strati-
fication in the development and internal validation groups using the
bootstrap method. In the development group, the combination of
germline risk factors and clinical risk factors (age, stage,MYCN status)
demonstrated better discrimination power than clinical risk factors

Fig. 4 | pFGVs in cancerpredispositiongenes (CPGs) across 125neuroblastomapatients.Oncoprint of pFGVs in cancer predisposition genes (CPGs). The frequencies of
pFGVs in CPGs are displayed as horizontal barplots (right). Source data are provided as a Source Data file.
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alone (mean C-index; 0.85 vs. 0.77, P <0.00001 after Bonferroni cor-
rection; Fig. 7a). This finding was confirmed in the internal validation
group (0.86 vs. 0.77; P <0.00001 after Bonferroni correction; Fig. 7b).

Discussion
Cancer genomics research in pediatric patients has focused on the
discovery of somatic drivers of tumorigenesis6,13,25,26, and has revealed
that pediatric cancers, including neuroblastoma, have few somatic
mutations. However, it is becoming increasingly clear that germline
variants, inherent to each patient’s genetic makeup, can significantly
shape tumor characteristics. Mounting evidence underscores the sig-
nificance of germline variants, extending beyond cancer susceptibility
to influence tumor progression and phenotype8,15,17–20,27–32. Our work
builds on this foundation, focusing on the comprehensive analysis of
rare germline variants and their broader implication in tumor biology
and patient outcomes. In the present study, we comprehensively
analyzed the role of rare, potentially harmful germline variants in
patients to gain a holistic understanding of their influence.

It is widely recognized that the tumor mutational burden corre-
lates with age at diagnosis33,34. This is because, as individuals age,
environmental mutagens and mutations in DNA repair genes accu-
mulate, which can lead to cancer development33,34. However, child-
hood cancers arise from different processes21. Our findings suggest
that the burden of pFGVs affects somatic mutagenesis in neuro-
blastoma as well as in young adult-onset cancer patients. These results
were consistent even in patients without pFGVs in DDR genes. In
addition, we observed that the degree to which germline variants
contributed to somatic mutation decreased over the course of their
lifetimes. These findings are particularly noteworthy because previous
studies on germline variant burden have only been conducted in adult-
onset cancer and have not identified a reverse association between
early-onset and late-onset cancer. Furthermore, while many studies
have identified a personal germline variant burden in specific or
manually curated gene lists17,19,30, we avoided potential biases by
refraining from selecting specific genes for analysis. Finally, we also
demonstrated that germline variant burden contributes not only to

Fig. 5 | Survival analysis according to presence of pFGVs in CPGs.
a Kaplan–Meier survival curves for progression-free survival (PFS). b Kaplan–Meier
survival curves for overall survival (OS). c Forest plot of Cox multivariable regres-
sion analysis for PFS. d Kaplan–Meier survival curves for PFS in patients without

pFGVs in cancer predisposition genes (CPGs) according to germline variant burden.
All P values are two-sidedwithout correction formultiple comparisons. Source data
are provided as a Source Data file.
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somatic mutations but also to neuroblastoma survival outcomes,
which represents a significant finding.

Qing et al.19 have clearly described the association between
germline variants and somatic mutations in adult-onset solid cancer,
whereas our variant filtering process differed from theirs. In our ana-
lysis, we opted for the REVEL35 method, which has demonstrated
superior performance in comparison toMetaSVM36, employedbyQing
et al. Additionally, we further refined our selection by excluding var-
iants that were present in more than 10% of each cohort, aiming to
minimize false positives. Consequently, our findings present a nar-
rower range of variants, with no more than 203 variants per patient in
the TCGA cohort, in contrast to the 79−239 variant range reported in
Qing’s study. Another difference is our study’s focus on pediatric
patients and the inclusion of a wide array of genomic data, not limited
to cancer-specific genes. This likely accounts for the observed weaker
correlation between germline variants and somatic mutations com-
pared to the associations reported by Qing et al.

We also investigated the prevalence and clinical relevance of
germline variants in CPGs. The study by Kim et al., which includes
analyses from the TARGET dataset that our research also examines,

highlights the prevalence and potential prognostic implications of P/
LP variants in CPGs29. However, it is important to recognize that our
understanding of the role of these variants across a broader patient
population remains limited. Additionally, most patients were pre-
dominantly of European ancestry, limiting their representativeness.
Our study was designed to provide a comprehensive landscape of
pFGVs inCPGs and explore the role of thesevariants inneuroblastoma,
regardless of confirmed pathogenicity. We identified deleterious
germline variants in CPGs of a substantial proportion of patients with
neuroblastoma. We also demonstrated that using all pFGVs in CPGs
was effective in predicting disease progression in a cohort of unse-
lected patients (the SMC cohort). Importantly, we also observed that
germline variant burden had a prognostic impact in patients without
pFGVs in CPGs. This suggests that even pFGVs in nondefinitive CPGs
may have a biological impact on neuroblastomas. Furthermore, we
showed that pFGVs in CPGs serve as critical determinants of OS in
patients without the strongest somatic driver alterations (MYCN
amplification) in the both SMCandTARGETcohorts.Overall, our study
may expand the definition of pathogenicity and highlights the sig-
nificance of the identified pFGVs.

Fig. 6 | Kaplan–Meier survival curves of survival probability according to
presence of pFGVs in CPGs stratified byMYCN status. a Overall survival (OS) for
patients without MYCN amplification (TARGET cohort). b OS for patients with

MYCN amplification (TARGET cohort). c OS for patients without MYCN amplifica-
tion (SMC cohort).dOS for patients withMYCN amplification (SMC cohort). Source
data are provided as a Source Data file.
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Neuroblastoma treatment strategies have considerably evolved
over time, reflecting advances inmedical research and clinical practice.
It is essential to contextualize our findings within the treatment era of
the patient cohorts studied. The TARGET cohort, comprising exclu-
sively high-risk patients, experienced a wide variety of high-risk
treatment protocols. These included different induction regimens37,
the use of high-dose chemotherapy38, variations in both the che-
motherapy regimens39 and the number of high-dose chemotherapy
cycles40, adjustments in radiation therapy doses41, and the introduc-
tion of anti-GD2maintenance therapy42,43. In contrast, the SMC cohort,
which included patients from all clinical risk groups, could not utilize
anti-GD2 therapy. Instead, for high-risk patients, it adopted the
implementation of intensified tandem high-dose chemotherapy and
high-dose MIBG treatment44,45. Despite these differences and changes
in treatment paradigms, the prognostic value of germline variants
remains evident.

However, our study has several limitations. First, we could not
determine how the burden of germline variants affected somatic
mutations. The association signals between germline variant burden
and somatic mutation burden were weak, and it is important to note
that it is unlikely that all the disruptions in protein-coding genes are
equally important on somatic mutations. Furthermore, our control
cohorts were not subjected to the same experimental conditions or
variant calling processes as the case cohorts, as they relied on pre-
processed variant data. This introduces a layer of complexity that
might affect the comparability of our findings. The total count of
germline variants and the identification of pFGVs in CPGs identified
could have been affected by the specific experimental design and
variant filtering processes, which varied across cohorts. Consequently,
interpretations of the germline variant burden and the presence of
pFGVs in CPGs should be approached with caution at an individual
level, and this variance in methodology complicates direct compar-
isons between cohorts. Third, the lack of functional data on pFGVs
hindered our ability to annotate and predict the effects of these var-
iants on proteins, Additionally, the absence of analysis of parents’ data
precluded us from determining the origin of the identified pFGVs.
Finally, our pFGVs cannot supplant or diminish the importance of P/LP
variants as defined by the ACMG. This is because a family history of
cancer, enrichment, and some observed survival differences are more
pronounced when adhering strictly to P/LP classifications compared
to pFGVs.

Despite these limitations, this study has several important clinical
implications. We showed that differences in somatic aberrations and
outcomes between tumors could be partially explained by collectively
considering a patient’s germline variants. This suggests that a larger
number of germline variants may affect somatic mutations and out-
comes in neuroblastoma, which differs from observations in adult-
onset cancers. Additionally, we have broadened our understanding of
pathogenic variants in CPGs, encompassing aspects beyond disease
predisposition. Our study highlights the feasibility of incorporating
germline risk factors into the clinical risk assessment of patients with
neuroblastoma, as these germline risk factors were independent of
knownclinical risk factors andhadan impact onpatient outcomes.Our
approach of using WES to investigate a broader range of pFGVs in
patients with neuroblastoma may be generalizable to patients with
other pediatric cancers and could have a broad impact.

Methods
Ethics statement
This study adheres to all applicable ethical regulations. The Samsung
Medical Center InstitutionalReviewBoard approved the study (IRBNo.
2015-11-053-014). Written informed consent for germline and tumor
sequencing, as well as for the review of medical records for demo-
graphic, clinical, and pathological information, was obtained from the
parents or legal guardians of all patients. Participants were not com-
pensated, as their participation did not incur any additional costs. The
study design did not take sex and gender into account.

Patient cohort and sequencing
We analyzed blood and tissue DNA from 125 neuroblastoma patients
diagnosed between 2012 and 2021, initially identifying 145 patients
with peripheral neuroblastoma tumors. After excluding gang-
lioneuroma cases (n = 6), tumors obtained post-relapse (n = 9),
patients with unmatched DNA pairs confirmed by NGSCheckMate546

(n = 1), and non-primary site tumors (n = 4), our analysis focused on the
remaining 125 cases. Most patients (82%) underwent prospective
clinical sequencing. However, 23 patients (18%) were also included in
this study using samples deposited at the SMC BioBank. This study
included high-risk patients (n = 54) enrolled in theNB-2014 clinical trial
(NCT02771743) designed to evaluate the potential benefits of
response-adapted strategies in consolidation therapy. The trial design
and clinical trial protocol have been previously documented47. The

Fig. 7 | Added predictive value of germline risk factors (germline variant bur-
den and/or presence of pFGVs in CPGs). a Training group. b Internal validation
group. The box plots represent the C-index values calculated from 500 bootstrap
samples, with a 6:4 training to validation split for each iteration. For all the box
plots, the central line represents the median value, the top and bottom of the box

represent the 25th and 75th percentiles, and the whiskers extend to points within
1.5 times the interquartile range. All P values are two-sided t-test results with Bon-
ferroni correction for multiple comparisons. Source data are provided as a Source
Data file.
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clinical outcomes were reported according to the trial’s objectives,
includingOS, PFS, and adverse events. In this analysis,we incorporated
extended follow-up and survival data, which differs from the original
trial that initiated follow-up after the induction period, as the original
trial focused on the effects of consolidation treatment. Here, we cal-
culated survival time starting from the time of diagnosis. Conse-
quently, the outcome analysis used here includes non-prespecified
exploratory outcomes for the NB-2014. These analyses, though not
originally included in the NB-2014 trial specifications, were crucial for
identifying the significance of germline variants. Genomic sequencing
was performed on tumor and normal DNA extracted from fresh frozen
(74%) or formalin-fixed paraffin-embedded tissues (26%) and mono-
nuclear cells fromperipheral blood, respectively, using a QIAampDNA
Mini Kit (Qiagen, Valencia, CA, USA). Tumor and matched DNA were
enriched for exon regions using the SureSelectXT Human All Exon V5
kit (Agilent Technologies Inc., Santa Clara, CA, USA). All tumor speci-
mens were reviewed by a pathologist to determine the percentage of
viable tumors and their adequacy for sequencing. Patient samples
were sequenced with pair-end 100-bp reads using the Illumina HiSeq
2500 platform (Illumina, Technologies Inc., San Diego, CA, USA). This
study included only tumors obtained from the primary site.

Putatively functional germline variants
Illumina WES data were mapped to hg19 using Burrows-Wheeler
Aligner (BWA)48 v0.7.17. Picard v2.17.5 (http://broadinstitute.github.io/
picard/) and the genome analysis toolkit (GATK)49 v 4.0.2 was used for
indel realignment, duplicate removal, and base- and quality-score
recalibration. HaplotypeCaller in GATK was used for variant calling of
SNVs and short indels. We removed variants with low quality (geno-
type quality-score <50) or inadequate read coverage (<10×), variants
with a variant allele frequency (VAF) less than 30%, and variants com-
monly observed in healthy populations (>1% in ExAC50 or >1%
KRGDB110051). The functional impact of missense germline variants
was predicted using the REVEL score and annotated using theClinVar52

(03-20-2022) database when available. We considered a missense
variant tohave ahigh functional impact if theREVEL score35was≥0.7 or
listed as P/LP in ClinVar. PTVs, including frameshift indels, stop gain,
stop loss, and splice-site variants, were also considered as pFGVs.
Variants annotated asbenign or likely benign inClinVarwere excluded.
The deleterious variant burden in a sample was calculated as the total
number of pFGVs in the coding regions. To remove platform-related
artifacts, variants commonly observed (>10%) in the entire SMCcohort
were also removed. Rare synonymous variants were defined as
synonymous variants with an allele frequency <1% in the ExAC and
KRGDB100 databases and as well as occurring in <10% of the cohort.
The sameQC filters were applied to both pFGVs and rare synonymous
variants.

TARGET dataset
We obtained FASTQ files for germline and tumor samples from 222
patients using data from the Database of Genotypes and Phenotypes
(dbGaP), accession phs000218.v24.p8 via the SRA Toolkit. We only
retained individuals whose tumor sequencing was carried out on pri-
mary rather than metastatic tumors (220 patients). We then applied
our variant calling pipeline to convert TARGET-NBL FASTQ files into a
variant calling format (VCF) using the same methodology employed
for our SMC cohort. The variants were then pre-filtered using pre-
viously reported QC steps29 for the TARGET data. We only retained
variants with a read-depth coverage of at least 15 and a VAF of at least
0.2. Subsequently, we applied the same annotation steps and removed
common variants within the TARGET cohort (>1% in ethnic-matched
ExAC and >10% of the samples) to retrieve pFGVs, except KRGDB1100
(a variant resource specific to Koreans). Ethnicity was determined by
using the R package EthSEQ53 (version 3.0.2) with a single-nucleotide
polymorphism call rate threshold of 98% (Supplementary Fig. 8).

TCGA dataset
We downloaded the filtered variant calls (VCF) from 10,389 patients
released by TCGA pan-cancer germline study21 (https://gdc.cancer.gov/
about-data/publications/PanCancerAtlas-Germline-AWG). We acquired
pFGVs fromTCGAdata using the sameQC and annotation steps applied
to our SMC cohort. We also removed common variants in ExAC (<1%)
and variants found in >10% of the TCGA cohort. Children (age at diag-
nosis <18 years) and patients with hematological malignancies were
excluded from the study. We also limited the analysis to individuals of
self-reported white ethnicity in the TCGA pan-cancer cohort and com-
pared it to the self-reported white ethnicity group in the TARGET
cohort. As a result, we included 7482 patients with 31 types of solid
cancers.

KOREA1K
The Korea1K22 dataset comprises the whole-genome data of 1094
healthy individuals. We downloaded the VCF files released by Korea1K
and included 916 unrelated individuals. The variants were initially
called on the hg38 genome assembly and lifted to the hg19 genome
assembly using LiftoverVcf in the Picard package. We then extracted
the pFGVs using our variant filtering pipeline.

Somatic mutational analysis
For the SMC and TARGET data, we called SNPs and small indels using
Mutect254 and Manta55/Strelka256. We excluded common variants
(VAF >0.001 in gnomAD v.2.0), low variant allele fractions (VAF <
0.05), variants that did not have a minimum read-depth coverage of
30 reads, and those with fewer than three reads supporting the altered
allele. Filtered variants were annotated using Variant Effector
Predictor57 from the Ensembl database. In the TARGET data, we further
filtered potential oxoG artifacts by removing G >T or C > A mutations
with VAF <0.15, as suggested for the TARGET data in previous
reports6,58. The somatic mutational burden was calculated as the
number of nonsynonymous variants. Somatic mutations in the TCGA
were obtained from TCGA PanCancer Atlas MC3 set59, which is the
result of applying an ensemble of seven mutation-calling algorithms,
complete with scoring and artifact filtering60. Then we applied the
same somatic mutation call pipeline used in the SMC cohort.

CPG and DDR gene sets
Among the 733 genes listed in the COSMIC database23 (CGC) (Sup-
plementary Data 1), we compiled a list of 109 knownCPGs according to
their annotations. To account for their roles, we classified genes with
only TSG annotations as TSG in our analysis. Eighty core DDR genes
were obtained from Knijnenburg et al.61 (Supplementary Data 4).

MYCN amplification status
MYCN amplification status was determined primarily by fluorescence
in situ hybridization (FISH). In cases where FISH data were unavailable,
CNVKit (v.0.9.6)62 was used to determine MYCN amplification status.
According toCNVKit analysis,MYCNwas considered to be copy-gained
when there were gains with log2 fold changes greater than 2.0 relative
to the normal.

Statistical analysis
Normality of the data distribution was determined using the
Shapiro–Wilk test. Differences in continuous traits between the two
groups were determined using independent t-tests or non-parametric
equivalent Wilcoxon rank-sum tests. Pearson or Spearman correlation
coefficients were used to assess the relationship between germline
variant burden and somatic mutational burden. We used the log10-
transformed somatic mutational burden to increase normality. In the
down-sampling analysis of synonymous variants, we incrementally
reduced their count in 1% increments, starting from 10% and pro-
gressing to 100%. At each step of this process, the correlation between
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the number of rare synonymous germline variants and the total
somaticmutationburdenwas recalculated. Toassess trends across age
groups in the TCGA, we used the Jonckheere-Terpstra trend test for
continuous variables and the Cochran–Armitage trend test for cate-
gorical variables. Two-sided Fisher’s exact test was used to compare
the enrichment of pFGVs in neuroblastomas to controls, and odds
ratios with 95% intervals were reported. Kaplan–Meier analysis of PFS
and OS were performed to compare the outcomes of patients with or
without germline risk factors. The log-rank test was used to compare
PFS and OS between groups. Univariable and multivariable Cox
proportional-hazards regressionmodels were used to assesswhether a
higher germline variant burden or the presence of pFGVs in CPGs were
independently predictive of survival. A subgroup analysis between the
presence of pFGVs in CPGs and MYCN status was also performed to
evaluate any heterogeneous associations. Differenceswere considered
statistically significant at P ≤0.05, and the tests were 2-tailed unless
otherwise specified. For internal validation of our predictivemodel, we
performedpermutation testing over 500 iterations, randomly dividing
the dataset into development (60%) and internal validation (40%) sets
for each cycle. The model’s discriminatory power was quantitatively
assessed using Harrell’s C-index, conducted with 500 bootstrap
replicates to ensure robustness. All analyses were performed in R
version 4.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study are available in the
NCBI Sequence Read Archive Repository under accession number
PRJNA592880 and are publicly available. The TARGET neuroblastoma
WES data files were downloaded from dbGaP under accession number
phs000467. These data are available under dbGaP-controlled access
for general research purposes. Approved users will receive access to
the data for a period of 12 months, after which they will need to either
renew their access or close out the project. The TCGA germline var-
iants can be accessed at [https://gdc.cancer.gov/about-data/
publications/PanCanAtlas-Germline-AWG], and these data also
require dbGaP authorization (accession number phs000178.v11.p8).
The publicly available TCGA somatic mutations are accessible at
[https://gdc.cancer.gov/about-data/publications/mc3-2017]. KOREA1K
data available through [http://koreangenome.org/], and access is
subject to approval from the committee, with the process detailed at
[http://1000genomes.kr/]. The remaining source data are available
within the Article, Supplementary Information, or Source Data
file. Source data are provided with this paper.

Code availability
All analyses were performed using standard publicly available soft-
ware. Our custom code for analysis and figures is available at https://
github.com/SGIlabes/NBL_Germline/ and a persistent copy of this
repository is available via Zenodo (https://doi.org/10.5281/zenodo.
13324781)63.
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