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This study aimed to investigate the advantages and applications of machine learning models in
predicting the risk of allergic rhinitis (AR) in children aged 2-8, compared to traditional logistic
regression. The study analyzed questionnaire data from 7131 children aged 2-8, which was randomly
divided into training, validation, and testing sets in a ratio of 55:15:30, repeated 100 times. Predictor
variables included parental allergy, medical history during the child’s first year (cfy), and early life
environmental factors. The time of first onset of AR was restricted to after the age of 1 year to
establish a clear temporal relationship between the predictor variables and the outcome. Feature
engineering utilized the chi-square test and the Boruta algorithm, refining the dataset for analysis. The
construction utilized Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and
Extreme Gradient Boosting Tree (XGBoost) as the models. Model performance was evaluated using the
area under the receiver operating characteristic curve (AUROC), and the optimal decision threshold
was determined by weighing multiple metrics on the validation sets and reporting results on the
testing set. Additionally, the strengths and limitations of the different models were comprehensively
analyzed by stratifying gender, mode of birth, and age subgroups, as well as by varying the number

of predictor variables. Furthermore, methods such as Shapley additive explanations (SHAP) and

purity of node partition in Random Forest were employed to assess feature importance, along with
exploring model stability through alterations in the number of features. In this study, 7131 children
aged 2-8 were analyzed, with 524 (7.35%) diagnosed with AR, with an onset age ranging from 2 to 8
years. Optimal parameters were refined using the validation set, and a rigorous process of 100 random
divisions and repeated training ensured robust evaluation of the models on the testing set. The model
construction involved incorporating fourteen variables, including the history of allergy-related diseases
during the child’s first year, familial genetic factors, and early-life indoor environmental factors.

The performance of LR, SVM, RF, and XGBoost on the unstratified data test set was 0.715 (standard
deviation =0.023), 0.723 (0.022), 0.747 (0.015), and 0.733 (0.019), respectively; the performance of
each model was stable on the stratified data, and the RF performance was significantly better than
that of LR (paired samples t-test: p < 0.001). Different techniques for evaluating the importance of
features showed that the top5 variables were father or mother with AR, having older siblings, history
of food allergy and father’s educational level. Utilizing strategies like stratification and adjusting the
number of features, this study constructed a random forest model that outperforms traditional logistic
regression. Specifically designed to detect the occurrence of allergic rhinitis (AR) in children aged 2-8,
the model incorporates parental allergic history and early life environmental factors. The selection of
the optimal cut-off value was determined through a comprehensive evaluation strategy. Additionally,
we identified the top 5 crucial features that greatly influence the model’s performance. This study
serves as a valuable reference for implementing machine learning-based AR prediction in pediatric
populations.
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Background

Allergic rhinitis (AR) is a chronic condition characterized by an IgE-mediated immune response to allergenic
triggers, manifesting with symptoms like nasal itching, congestion, sneezing, and a runny nose'. Globally,
AR affects an estimated 1.4 billion individuals and its prevalence is on the rise’. Predominantly observed in
children and adolescents, AR affects around 12.5% of children aged 3-6 years® and 35% of adolescents aged
13-14 years?, with a reported lifespan persistent AR prevalence of 19.93%. Symptoms such as nasal congestion,
nasal leakage, and medication use impact sleep quality and mental well-being, leading to heightened sensitivity
to triggers, reduced focus, emotional distress, and diminished quality of life in AR patients. AR also contribute
to indirect losses later in life due to school or work absenteeism, medical consultations, diagnostics, treatments,
and preventive measures, imposing a significant socio-economic burden®”. Furthermore, AR elevates the risk
of various comorbidities, including asthma in children. Early prediction and identification of AR are crucial for
exploring underlying pathologies and initiating prompt treatment®®. The development of AR is influenced by
a combination of genetic and environmental factors!?, with parental allergies and exposure to environmental
risks playing pivotal roles. Therefore, predicting AR in preschoolers based on familial genetic and early-life
environmental factors to enable screening and early intervention for high-risk populations represents a vital yet
often overlooked research focus.

Machine learning (ML) in computer science aims to discern patterns in data to enhance performance,
particularly in complex tasks!!. Recent years have seen a surge in interest and acknowledgment of machine
learning among scientists, driven by advancements in statistical theory and computer technology. Innovative
machine learning algorithms are extensively employed to develop disease prediction models, outperforming
traditional approaches!?. Concurrently, the application of machine learning in advancing children’s health has
grown, offering insights into identifying, predicting, and managing children’s health issues and related adverse
outcomes!?. For example, Sarabu C et al. used real-world survey data from a mobile research platform to predict
the occurrence and severity of symptoms related to allergic rhinitis in middle-aged and elderly individuals'.
In a different study, Yang J et al. employed a chain-integrated neural network model for multi-label prediction
of characteristics of allergic rhinitis patients, serving as a valuable resource for diagnosing clinical rhinitis and
guiding treatment!®.

However, there is a lack of research on using interpretable machine learning algorithms for the prediction
of allergic rhinitis in children .Therefore, the purpose of this study is to develop a machine learning model that
predicts the risk of allergic rhinitis in children aged 2-8 years while ensuring the temporal relationship between
predictors and allergic rhinitis. Additionally, the study aims to evaluate features using a model interpretability
method, providing insights to support population-based healthcare practices for allergic rhinitis in children.

Method and material

Study population

In this study, data from the 2019 CCHH ( China, Children, Homes, Health) cross-sectional study in Urumgi
City was utilized'®. The study included six aspects in its questionnaire: demographic characteristics, children’s
feeding status, AR illness in children and their family members, living environment, living habits, and dietary
habits. A total of 60 kindergartens in six administrative districts were selected using a stratified random sampling
strategy. The questionnaires were administered by trained teachers and completed by guardians within a week,
then submitted to the Education Bureau. All respondents provided signed informed consent forms approved by
the Ethics Committee. Questions to determine AR in children include “Has the child ever had sneezing, runny
nose, or nasal congestion in the absence of a cold or flu”, “Has the child ever been diagnosed by a doctor with hay
fever or allergic rhinitis”, and “If ‘yes) at about what age was the child first diagnosed with hay fever or allergic
rhinitis by a doctor”. We limited children AR to those with a definitive diagnosis by a physician and a first onset
age of 2-8 years. We used inherent variables such as family history of AR and environmental factors in children
aged 1 year or before as predictor variables for model construction, thus ensuring a clear time-series relationship
between prediction and outcome to improve the interpretability of the model. The inclusion exclusion process
for this study is shown in Fig. 1.

Features selection

In this study, we utilized a combination of univariate analysis and Boruta’s algorithm for feature selection. For
multiple imputation of the data, we initially employed the chi-square test to screen variables with P<0.05,
resulting in 40 features (Table S1). Subsequently, Boruta’s algorithm!” was utilized for further screening. This
is a feature selection method based on Random Forest classification. It aims to identify all relevant variables
in a dataset, focusing on understanding underlying mechanisms rather than only predictive modeling. The
Boruta’s algorithm extends the dataset with shuffled ‘shadow’ attributes as a reference for randomness. It then
calculates the importance of each feature using Z-scores, considering features with higher Z-scores than the
maximum Z-score among shadow attributes as potentially important. Finally, it categorizes features as confirmed
(important), rejected (non-important), or tentative in each iteration. While confirmed features are undoubtedly
the most relevant to AR, tentative features should also be considered to avoid loss of important information.
We implemented a 5*3 strategy, randomly dividing the data into 5 folds and repeating the operation 3 times to
return the final pool of confirmed and unrejected features. The number of features was constrained to the range
of 10-15 for “core features” and 20-30 for “more features” The term “core features” is used by default unless
explicitly stated in the following text (Fig. 1).
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Fig. 1. Flowchart for data inclusion exclusion, feature selection and model training. LR: Logistic Regression,
SVM: Support Vector Machine, RF: Random Forest, XGBoost: Extreme Gradient Boost tree.

Model construction

Under the premise of ensuring balanced and comparable outcomes across groups, we randomly divided the
original data (with missing values) into ' Training’ and testing sets in a 70:30 ratio. Both sets underwent the
Multiple Imputation by Chained Equations (MICE) method'® independently to fill in the missing values based
on the overall data distribution. Since all variables in this study were categorical, the Random Forest method
was utilized for 5 iterations and take the mode. The ‘“Training set’ was further divided into a training set and
a validation set at a 55:15 ratio to adjust hyperparameters on the validation set. To address class imbalance,
a common issue in machine learning models, we employed the Adaptive Synthetic Sampling Technique
(ADASYN) on the training set. ADASYN effectively mitigates class imbalance by generating synthetic samples
for the minority class, ensuring a balance of 40% in the training set for this study.

Next, four models, Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and
Extreme Gradient Boosting tree (XGBoost) were constructed using the training set. Optimal cut-off values and
hyperparameter tuning were conducted based on the validation set. Contrary to the conventional threshold
selection method, we introduce WeightScore:

WeightScore=0.1* Accuracy+0.15* F14+0.35 * YI+0.3 * PPV +0.1 * NPV,

Accuracy, F1, and YI emphasize model stability (60% weightage), while PPV and NPV focus on model benefits
(40% weightage). Therefore, WeightScore is used for a more comprehensive evaluation of the model’s suitability
compared to the traditional F1 value. Due to the limitation of 100 replications, parameter tuning was randomly
performed on the validation sets across three samples and used the mode.

Based on the optimal hyperparameters, we trained the four models again using the ' Training’ set (a merger
of the training and validation set), and the testing set was used to assess performance of models and optimal
cut-off points. The results were finally pooled 100 times and the metrics were expressed using mean + standard
deviation. Figure 1 displays all the procedures of this study.

Stratification analysis and interpretability of models

To further explore potential variations in model performance based on gender, mode of birth and age, we
conducted separate analyses for each of these variables. Our examination of gender and age groups (2-4, 5,
and 6-8 years) provides insights into the model’s consistency across different demographics, thus enhancing
the generalizability of our study results to a broader population. The importance of interpretability in machine
learning models is a widely discussed issue that can impact their practical utility. To address this concern, we
utilized SHAP value?® and mean decreased Gini value?! to assess the “core features” comprehensively. SHAP,
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Class Variables

Successive bouts of rash more than 6 months during cfy, Child with
food allergy

Father with AR, Mother with AR, Mother with AD, Siblings with AR,

History of allergic disease

Hereditary factor

Father smoking during mp, Paternal grandfather smoking during
mp, Feeding pats or growing plants during cfy, Father smoking
during cfy, Flowers planting during cfy

Indoor environment

Others

Father’s education, Have older siblings, Antibiotic therapy during cfy

Table 1. “Core features” by univariate analysis and 5*3 Boruta algorithm with qualifying acceptor features
repeated more than 3 times. Abbreviation: mp: maternal pregnancy, cfy: child first year, AD: atopic dermatitis.

Model Hyperparameter | Explanation Value
ntree Number of trees to grow 625
RF mtry Number of variables randomly sampled as candidates at each split 1
nodesize Minimum size of terminal nodes, increasing the nodesize leads to the growth of smaller trees and reduces the time required to fit the 4
model.
kernel Kernel functions for model training and prediction, including linear and radial kernels. linear
SVM cost Cost of constraints violation 0.4
eta The learning rate, a larger' ‘eta’ value results in a more conservative boosting process, increasing the risk of underfitting, while a smaller 0.05
value may lead to overfitting.
max_depth Maximum depth of individual learners (classification trees) 2
The subsample proportion of the training instances, when set to 0.5 means half of the training samples are randomly selected for each
XGBoost | subsample learner, aiding in preventing overfitting. 0.5
colsample_bytree | Percentage of columns selected when training individual learners 0.3
gamma Minimum loss required for further division of leaf nodes for an individual learner (classification tree) 10
nrounds Maximum number of boosting iterations 150

Table 2. Optimal value and explanation for optimal hyperparameters of machine learning algorithms on the
unstratified data with core features.

originally developed for competitive game theory, has shown promising results when applied to evaluating
traditional complex black box models in recent years. The SHAP value evaluates the importance of features and
determines the direction of predictor variables on the outcome, indicating the danger or protection effect based
on positive and negative values. As the base learner of RE, the decision tree uses Mean Decreased Gini as a crucial
criterion for node division, with a larger value indicating a more significant impact on the model’s performance
and greater importance of the feature. However, this method is limited to reflecting only the magnitude of the
feature’s importance.

Impact of feature number on model performance
The top 5 core features identified in the unstratified data feature importance assessment were categorized as “less
features,” while the variables that Boruta algorithm did not exclude as “more features.” These features underwent
50 additional training iterations to assess the stability of model performance across varying numbers of features.
All analyses were done using R program [Version 4.3.0], and the packages used in this study included gmodels,
Boruta, mice, UBL, caret, e1071, randomForest, xgboost, and ggplot2.All tests were two-sided, with P<0.05
considered to be statistical significance. Based on python 3.11 program, we publicly deployed the optimal model
incorporating the five variables via streamlit platform.

Result

Characteristics of the study population and feature engineering

In this study, a total of 7131 children aged 2-8 years participated, with 3653 (51.2%) boys and 3478 (48.8%) girls.
The age distribution was as follows: 2680 (37.6%) children aged 2-4 years, 2303 (32.3%) children aged 5 years,
and 2148 (30.1%) children aged 6-8 years. The univariate analysis revealed significant differences in distribution
for 40 variables between the healthy control and AR groups. Table S1 displays the distribution of variables
analyzed in the univariate comparisons between the control and case groups. Based on univariate analysis, the
5*3 Boruta algorithm identified 14 variables as “core features” with qualifying acceptor features repeated more
than 3 times (see Table 1), and 21 features were identified with qualifying non-rejectors repeated more than 5
times (refer to Table S2). Beside, the feature engineering, data partitioning, and model tuning training process in
this paper took approximately 50 h in total.

Evaluation of model performance
Table 2. shows the optimal value and explanation for optimal hyperparameters of machine learning algorithms
on the unstratified data with “core features”. Figure 2A displays the AUROC results (mean + standard deviation)
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Fig. 2. AUROC (mean + standard deviation) of the four models on different sampled data sets. (A)
Performance of the four models on the training and test sets of unstratified data. (B) Performance of the four
models on the test set after stratification according to gender, mode of birth and age compared to randomized
blind guessing (AUROC =0.5), and paired samples t-test between RF and LR.

for the four models, LR, SVM, RE, and XGBoost, after 100 training sessions on the unstratified training and
testing sets. The training set shows comparable performance among LR (0.763+0.01), RF (0.769+0.013),
and XGBoost (0.769+0.01), while SVM performs worse (0.741 +0.012). On the test set, RF (0.747 +0.015)
performs the best, followed by XGBoost (0.733 +0.019) and SVM (0.723 +0.022), while LR performs poorly
(0.715+0.023). Besides, Fig. 2B illustrates the model’s performance on the stratified test set based on gender,
mode of birth, and age after 100 training sessions. The performance of the four models remains relatively
stable across the stratified test sets compared to random guessing (AUROC=0.5). Overall, models for the
boy population performed poorly compared to the unstratified dataset, while the 5-year-old group’s models
performed relatively well. Additionally, RF consistently outperforms all other models across different strata, with
LR generally weaker than the machine learning models. The differences between RF and LR are all statistically
significant (paired samples t-test: p <0.001). Refer to Table S4 for the hypothesis test details.

Selection of optimal cut-off value

In this study, we evaluate the reliability of WeightScore for optimal threshold value selection from multiple
perspectives, including optimal threshold value determination and assessment for different models. Figure 3A
displays the cut-off values determined from validation set across 100 training sessions. The WeightScore-based
decision point selection shows relative stability across groups, with LR having an optimal threshold value around
0.5, XGBoost around 0.45, and SVM and RF close to 0.3. The WeightScore scores for each model are consistent
across datasets, averaging around 0.35 (Table S3). Figure 3B and C depict the model performance for both
unstratified data and the subgroup of 5-year-olds at the optimal cut-off value in Fig. 3A. The value intervals of
the polar coordinates are determined by the minimum and maximum values of the metric across all models and
sampled data sets at the optimal cut-off value. In general, the model excels in negative predictive value (NPV),
accuracy, and specificity, but falls short in positive predictive value (PPV), F1 and sensitivity. Furthermore, the
model’s stability metrics, including accuracy, F1, sensitivity, and specificity, exhibit significant fluctuations in
their values, whereas the model’s benefits metrics, such as PPV and NPV, demonstrate more consistent values.
When examining individual models, Support Vector Machine (SVM) tends to yield higher sensitivity values,
while Random Forest (RF) tends to prioritize higher PPV values.

Evaluation of features importance

Figure 4 displays the ranking of model feature importance based on SHAP values and mean decreased Gini
values for unstratified data and the subgroup of children aged 5 years, presenting the top 10 variables. There is
a high degree of consistency between the results of the two methods for evaluating feature importance. When
combined with Fig. 4A and B, it is evident that in the unstratified data, the top 5 variables are mother with AR,
father with AR, having older siblings, child with food allergy, and father’s education level. What’s more, in the
5-year age group population, the top 5 variables are mother with AR, father’s education level, father with AR,
having older siblings, and child with food allergy.
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Fig. 3. Comparison of the optimal cutoff points of the four models on different subgroups of data sets. (A)
Optimal decision values determined by the four models based on different stratified data validation sets. (B,C)
Comparison of the six metrics (PPV, NPV, Accuracy, F1, Sensitivity and Specificity) corresponding to the
optimal cut-off value taken by the four models on the unstratified data (B) and the 5-year age subgroup of the
population (C.) test sets.
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Fig. 4. Model feature importance was assessed using SHAP values and mean decreased Gini for unstratified
data and the 5-year-old subgroup of the population (top10). (A,C) The bars in the plot represent the

absolute value of SHAP, reflecting the feature importance magnitude. The scatter points represent individual
sample data, with point color indicating the variable value range, corresponding to the color bar ends for
dichotomous variables, and to the respective color for multicategorical ordered variables. For instance,
considering “Mother with AR;” a high variable value is associated with a positive SHAP value. That is, when
the mother has a history of AR (coded as 1) compared to no history of AR (coded as 0), the child has a higher
risk of developing AR between the ages of 2-8 years old. (B,D) Characteristic significance was determined
based on MeanDecreaseGini, with the mean decrease Gini value is larger, the more important the feature is.
Abbreviation: mp: maternal pregnancy, cfy: child first year, AD: atopic dermatitis.
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Stability of model performance with different features

Figure 5 illustrates the performance and hypothesis testing of the four models on the unstratified data test set after
varying the number of features. In general, increasing the number of less important features does not enhance
model performance, while reducing or selecting optimal features tends to improve performance. Specifically,
LR’s performance significantly decreases with increasing features (P <0.05), SVM appears unaffected by feature
number (P>0.05), and for RE, reducing features significantly decreases performance. Conversely, XGBoost
exhibits a similar trend to LR, with significantly improved performance when reducing features (P <0.05). Refer
to Table S5 for the hypothesis testing details. Considering the memory and time expenses of running the model,
we deployed the random forest model on unstratified data for the five most important features, online (https://
rhinitismodel-egfpa9aysjlgho8qsvlaw7.streamlit.app/).

Discussion

Evaluation of predictive models

As a classical statistical algorithm, Logistic regression is a generalized linear regression variant based on the
sigmoid function that maps any real input value to the interval [0, 1] for classification tasks. In particular, the
coeflicients of the independent variables intuitively reflect the impact of the variable on the outcome, making
this method easy to be accepted. And the algorithm automatically adjusts for the potential role of confounding
factors, and is thus a frequently used approach for analyzing the effects of potential risk factors*’. When applied
to prediction, the Logistic algorithm works well with data with few dimensions and small sample sizes, and
visualizes the odds ratios of independent variables through nomogram, and the construction of tools for
predicting disease risk. However, the method tends to underperform for complex data with many dimensions®.
Our results show that with the increase of relatively unimportant features, the performance of LR significantly
decreases with the increase of data complexity (Fig. 5). Especially when including 14 features, LR performs
worse than the RF model on both stratified and unstratified data testing sets.

The support vector machine (SVM) model aims to find a hyperplane to maximize the separation of sample
categories in the feature space for efficient outcome division. By utilizing kernel functions, this method can
effectively partition both linear and nonlinear feature spaces. SVM, as robust traditional machine learning
models, held significant popularity and played essential roles in specific tasks prior to the emergence of more
complex models like XGBoost?*. Our study revealed that the SVM model with a linear kernel function exhibits
the least sensitivity to the number of features. This characteristic may stem from the algorithm’s similarity to
data downscaling in finding the optimal hyperplane, indicating that increasing non-significant features does
not enhance the model’s classification accuracy. This observation also implies the potential nonlinearity of the
learning task in our study.

Random Forest (RF) is a bagging ensemble model based on parallel Classification And Regression Trees
(CART)?>?. Simple decision trees in early stages often suffer from excessive branching in complex data, leading
to overfitting during training and suboptimal performance during testing. RF addresses this issue by employing
bootstrap sampling to create a balanced training dataset, with the remaining samples used for testing model
performance through out-of-bag estimation®. Additionally, RF optimizes performance by using a subset of
attributes, rather than the optimal one, during node partitioning to reduce time consumption per training
iteration and prevent redundant attribute influence. This approach effectively combats overfitting by perturbing
data samples and input attributes. Through strategies like the voting method, RF consolidates outcomes from
multiple decision tree trainings, while also controlling overfitting by adjusting the random forest’s depth
and maximal number of iterations. Furthermore, RF integrates many decision trees in parallel, and the Gini
index, which reflects the dataset’s purity negatively, serves as the basis for optimal attribute selection and node
partition of CART?. The algorithm selects the attribute that yields the lowest Gini value for the child nodes,
ensuring accurate completion of the classification regression task. Therefore, the mean decreased Gini value
is an important index used by decision trees and RF to measure the importance of features. The RF model
demonstrated consistent high performance across training and testing sets, in both stratified and unstratified
data, irrespective of feature variations. Unlike the other models, RF maintains performance even with an increase
in non-significant features, highlighting its robustness to redundant features. Considering RF’s interpretability, it
emerges as a trustworthy option for predicting AR occurrence in children aged 2-8 based on early life factors.
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Fig. 5. The impact of reducing or increasing the number of features on the model’s performance on an
unstratified test