Skip to main content
. 2024 Sep 13;3:e48588. doi: 10.2196/48588

Table 3.

Prediction model performance on joint data with cross-validation. For completeness, all models are included.

Candidate machine learning model Specificity, % Sensitivity, % Precision or PPVa, % NPVb, % F1-score Balanced accuracy, % Cost (US $)
Random forest model weights

1 100 4.7 c 99.5 52.35 659,016

200 77.2 78.2 1.77 99.85 0.0346 77.75d 203,659.2

300 77.1 75.9 1.7 99.83 0.0332 76.5 220,284

500 79.1 74.1 1.82 99.83 0.0355d 76.61 227,836.8

1000 79.2 71.7 1.77 99.81 0.0345 75.51 243,777.6
Decision tree model weights

1 99.3 10 99.53 54.66 623,973.6

200 73.9 75.9 1.51 99.82 0.0296d 74.87d 227,908.8

300 75 72.4 1.5 99.81 0.0294 73.66 249,696

500 59.7 83.5 1.09 99.85 0.0215 71.62 208,080

1000 68.6 74.1 1.22 99.8 0.0240 71.35 252,446.4
Logistic regression (L2) model weights

1 100 0 99.48 50 691,560

200 80.1 72.9 1.88 99.82 0.0366d 76.53 233,596.8

300 71.6 83.5 1.51 99.88 0.0296 77.6d 180,151.2

500 58.1 90.6 1.12 99.91 0.0221 74.36 162,964.8

1000 37.1 93.5 0.77 99.91 0.0152 65.33 191,757.6
Logistic regression (L1) model weights

1 100 0 99.48 50 691,560

200 80.1 72.9 1.88 99.82 0.0366 76.52 233,625.6

300 71.6 83.5 1.51 99.88 0.0296 77.59d 180,151.2

500 58.1 90.6 1.12 99.91 0.0221 74.36 162,964.8

1000 45.7 88.2 0.84 99.87 0.0166 66.99 208,180.8
SVMe

1 99.7 7 99.51 53.39 643,384.8

200 78.7 72.9 1.76 99.82 0.0343d 75.84 236,800.8

300 71.1 84.1 1.5 99.88 0.0294 77.61d 177,393.6

500 60.2 88.2 1.14 99.89 0.0225 74.21 174,456

1000 50 92.9 0.87 99.92 0.0172 68.96 177,429.6

aPPV: positive predictive value.

bNPV: negative predictive value.

cNot available.

dBest model with respect to the specific metric.

eSVM: support vector machines.