Table 3.
Candidate machine learning model | Specificity, % | Sensitivity, % | Precision or PPVa, % | NPVb, % | F1-score | Balanced accuracy, % | Cost (US $) | ||||||||
Random forest model weights | |||||||||||||||
|
1 | 100 | 4.7 | —c | 99.5 | — | 52.35 | 659,016 | |||||||
|
200 | 77.2 | 78.2 | 1.77 | 99.85 | 0.0346 | 77.75d | 203,659.2 | |||||||
|
300 | 77.1 | 75.9 | 1.7 | 99.83 | 0.0332 | 76.5 | 220,284 | |||||||
|
500 | 79.1 | 74.1 | 1.82 | 99.83 | 0.0355d | 76.61 | 227,836.8 | |||||||
|
1000 | 79.2 | 71.7 | 1.77 | 99.81 | 0.0345 | 75.51 | 243,777.6 | |||||||
Decision tree model weights | |||||||||||||||
|
1 | 99.3 | 10 | — | 99.53 | — | 54.66 | 623,973.6 | |||||||
|
200 | 73.9 | 75.9 | 1.51 | 99.82 | 0.0296d | 74.87d | 227,908.8 | |||||||
|
300 | 75 | 72.4 | 1.5 | 99.81 | 0.0294 | 73.66 | 249,696 | |||||||
|
500 | 59.7 | 83.5 | 1.09 | 99.85 | 0.0215 | 71.62 | 208,080 | |||||||
|
1000 | 68.6 | 74.1 | 1.22 | 99.8 | 0.0240 | 71.35 | 252,446.4 | |||||||
Logistic regression (L2) model weights | |||||||||||||||
|
1 | 100 | 0 | — | 99.48 | — | 50 | 691,560 | |||||||
|
200 | 80.1 | 72.9 | 1.88 | 99.82 | 0.0366d | 76.53 | 233,596.8 | |||||||
|
300 | 71.6 | 83.5 | 1.51 | 99.88 | 0.0296 | 77.6d | 180,151.2 | |||||||
|
500 | 58.1 | 90.6 | 1.12 | 99.91 | 0.0221 | 74.36 | 162,964.8 | |||||||
|
1000 | 37.1 | 93.5 | 0.77 | 99.91 | 0.0152 | 65.33 | 191,757.6 | |||||||
Logistic regression (L1) model weights | |||||||||||||||
|
1 | 100 | 0 | — | 99.48 | — | 50 | 691,560 | |||||||
|
200 | 80.1 | 72.9 | 1.88 | 99.82 | 0.0366 | 76.52 | 233,625.6 | |||||||
|
300 | 71.6 | 83.5 | 1.51 | 99.88 | 0.0296 | 77.59d | 180,151.2 | |||||||
|
500 | 58.1 | 90.6 | 1.12 | 99.91 | 0.0221 | 74.36 | 162,964.8 | |||||||
|
1000 | 45.7 | 88.2 | 0.84 | 99.87 | 0.0166 | 66.99 | 208,180.8 | |||||||
SVMe | |||||||||||||||
|
1 | 99.7 | 7 | — | 99.51 | — | 53.39 | 643,384.8 | |||||||
|
200 | 78.7 | 72.9 | 1.76 | 99.82 | 0.0343d | 75.84 | 236,800.8 | |||||||
|
300 | 71.1 | 84.1 | 1.5 | 99.88 | 0.0294 | 77.61d | 177,393.6 | |||||||
|
500 | 60.2 | 88.2 | 1.14 | 99.89 | 0.0225 | 74.21 | 174,456 | |||||||
|
1000 | 50 | 92.9 | 0.87 | 99.92 | 0.0172 | 68.96 | 177,429.6 |
aPPV: positive predictive value.
bNPV: negative predictive value.
cNot available.
dBest model with respect to the specific metric.
eSVM: support vector machines.