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Abstract 

This study investigated the possible mechanisms of microRNA-124a on the differentiation of bone marrow mesenchy-
mal stem cells (BMSCs) and its underlying mechanism. β-Thiol ethanol induced Notch1 mRNA expression, microRNA-
124a inhibitor reduced the effects of β-thiol ethanol on Notch1 mRNA expression in BMSCs. Baicalin induced Hes1 
mRNA expression, and microRNA-124a inhibitor reduced the effects of baicalin on Hes1 mRNA expression in BMSCs. 
Si-Notch1 suppressed Hes1 mRNA expression in BMSCs. Baicalin increased the effects of Notch1 on Hes1 mRNA 
expression in BMSCs. Si-Notch1 increased cell growth of BMSCs. Baicalin reduced the effects of si-Notch1 on cell 
growth and the differentiation of BMSCs. We demonstrated that microRNA-124a promoted the differentiation 
of BMSCs into neurons through Notch/Hes1 signal pathway.
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Introduction
Ischemic stroke is a serious threat to human health 
because of its high incidence rate, high disability rate, and 
high mortality [1]. Therefore, the treatment of ischemic 
stroke is widely concerned by society [2]. In clinic, the 
treatment of stroke is mainly drug therapy, while inter-
ventional therapy and stem cell therapy are relatively few 
[3].

Biological characteristics of bone marrow mesenchy-
mal stem cells (BMSCs): bone marrow mesenchymal 
stem cells (BMSCs) are seed cells commonly used in tis-
sue engineering research [4]. Through in vitro culture, it 

is found that progenitor cells with multidirectional differ-
entiation ability can be isolated from bone marrow. The 
bone marrow was isolated, expanded in vitro, and some 
of the cells adhered to the surface of the culture dish 
could be highly expanded in  vitro [5]. The multidirec-
tional differentiated cell group was named bone marrow 
mesenchymal stem cells. Until 1999, Pittinger uniformly 
named bone marrow mesenchymal stem cells (BMSCs) 
in Science magazine [6]. At present, bone marrow mes-
enchymal stem cells can be summarized as a subset of 
cells derived from non-hematopoietic cells, which origi-
nate from mesenchymal tissue and mainly exist in the 
connective tissue and organ interstitium of the whole 
body, and are the most abundant in bone marrow and 
have the ability of self-renewal and multidirectional dif-
ferentiation [7]. They can be expanded in vitro, and can 
differentiate into chondrocytes, adipocytes, neuroid cells, 
matrix supporting hematopoietic stem cells and other 
cells after induction in vitro [8].
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MicroRNA (miRNA) is a kind of small endogenous 
non-coding single-stranded RNA, which can negatively 
regulate the stability of mRNA and/or inhibit the trans-
lation of mRNA by combining with the complementary 
sequence in the 3′-untranslated region of the target 
gene, and most miRNAs play a role in ischemic stroke in 
a tissue-specific manner [9–11]. Its imbalance is closely 
related to the occurrence and progression of ischemic 
stroke [12].

Neural stem cells have a wide range of therapeutic 
potential in stroke, spinal cord injury and other neuro-
logical diseases [13]. There are neural stem cells with the 
ability of self-proliferation and differentiation in adult 
hippocampal dentate gyrus and subventricular area [14]. 
After cerebral ischemia, neural stem cells in these regions 
are activated to participate in the nerve regeneration 
after cerebral ischemia, thus improving the nerve func-
tion [15]. However, due to the influence of the local envi-
ronment after ischemia, neural stem cells are not enough 
to fully repair the brain tissue damage, so improving the 
survival rate of neural stem cells after cerebral ischemia, 
regulating their proliferation and differentiation has 
become an urgent problem to be solved [16, 17].

Materials and methods
Isolation and identification of BMSCs
Bone marrow MSCs were harvested from Sprague–Daw-
ley rats, aged 10 weeks and weighing 180–250 g, housed 
in a controlled environment (24 ± 1  °C, 12  h light/12  h 
dark cycle) and allowed food and water ad  libitum [18, 
19]. All procedures were conducted according to the 
guidelines of the Animal Care Committee. Bone marrow 
cells were flushed out and collected from the femur and 
tibia of rats, plated in T25 flasks, and cultured overnight 
in a 37 °C incubator with 5% CO2. BMSCs were incubated 
with alpha minimum essential medium (α-MEM, Gibco, 
CA, USA) containing 20% fetal bovine serum (FBS), 
2  mM Glutamax, and 1% penicillin and streptomycin 
(PS) in a 5% CO2 atmosphere at 37 °C. BMSCs were incu-
bated with PE-conjugated anti-CD29 (BD Biosciences, 
USA), anti-CD34 (BD Biosciences, USA), PE-conjugated 
anti-CD90 (BD Biosciences, USA), and then analyzed via 
flow cytometry (BD Biosciences, USA).

Cell culture and transfection
BMSCs were incubated in a 5% CO2 atmosphere at 37 °C. 
Si-Notch1 plasmid and microRNA-124a inhibitor plas-
mid was transfected into BMSCs cell lines, respectively, 

Fig. 1  Baicalin induced Hes1 mRNA expression and β-thiol ethanol induced Notch1 mRNA expression in the differentiation of BMSCs into neurons 
by microRNA-124a. Hes1 (A) and Notch1 (B) mRNA expression. *p < 0.01 compared with inhibitor NC, #p < 0.01 compared with microRNA-124a 
inhibitor
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by using Lipofectamine 2000 (Thermo Fisher Scien-
tific, Waltham, MA, USA). Transfection was performed 
according to the manufacturer’s instructions. Specifically, 
the plasmid was mixed with Lipofectamine 2000 and 
allowed to rest for 30 min. Subsequently, it was added to 

the cells, and 24 h after transfection, the cells were cul-
tured using a fresh medium. Transfection was completed 
48 h later and cultured for subsequent experiments. The 
experiment was performed in triplicate. The cells used in 
this study were within 10 passages.

Quantitative polymerase chain reaction (qPCR)
Total RNAs were isolated with RNA isolator total RNA 
extraction reagent (Takara, Tokyo, Japan), and cDNA was 
synthesized using PrimeScipt RT Master Mix(Takara, 
Tokyo, Japan). qPCR were performed with the ABI Prism 
7500 sequence detection system according to the Prime-
ScriptTM RT detection kit. The reaction mixtures were 
incubated at 50  °C for 15  min, followed by 95  °C for 
5 min; then, 35 PCR cycles were performed with the fol-
lowing temperature profiles: 95 °C for 15 s, 60 °C for 30 s 
and 72 °C for 1 min. Relative levels of the sample mRNA 
expression were calculated and expressed as 2-DDCt. 
The experiment was performed in triplicate.

Proliferation assay
For Cell Counting Kit-8 (CCK-8), after 48 h of transfec-
tion, a total of approximately 5 × 103 cells/well was seeded 
in 96-well plate. After culturing at indicated time (0, 1, 2, 
3 and 4 day), the cellular proliferation was detected using 
CellTiter-GloR Luminescent Cell Viability Assay (Pro-
mega, Madison, WI, USA) according to manufacturer’s 
instructions. The experiment was performed in triplicate.

Cellular induction and treatment
For cellular induction and treatment, 5 × 105 cells/
well was seeded in 6-well plate. Cells which the cellular 

Fig. 2  Hes1 and Notch1 protein expression. Hes1 and Notch1 protein expression (Western blot, A) and (statistical analyses, B). *p < 0.01 compared 
with inhibitor NC, #p < 0.01 compared with microRNA-124a inhibitor

Fig. 3  Notch1 mRNA expression. *p < 0.01 compared with NC
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density reaches 70% were treated by si-Notch1, miRNA-
124a inhibit or miRNA-124a mimc. After 48 h of trans-
fection, a total of approximately, cells were induced by 
β-thiol ethanol and baicalin for 6 h. The experiment was 
performed in triplicate.

Immunofluorescence detection
Cells treated after crawling tablets, were fixed with 4% 
paraformaldehyde for 30  min, permeated with 0.5% 

Triton X-100 for 20  min, and sealed with 5% BSA at 
37 °C for 30 min. They were incubated with NSE (1:200), 
MAP-2 (1:200) and GFAP (1:200) at 4 °C overnight. After 
washing, fluorescent secondary antibody was added, the 
film was sealed with DAPI and observed under fluores-
cence microscope (CKX53, Olympus).

Western blot
Tissue or cells samples were lysed with ice-cold RIPA 
buffer with complete protease and phosphatase inhibi-
tors. The protein concentrations were measured using 
BCA protein assay kit. Total proteins were separated by 
SDS–PAGE and transferred onto polyvinylidene dif-
luoride (PVDF) membranes. The membranes were incu-
bated with primary antibodies after blocking with 5% 
BSA in TBS, followed by incubation with peroxidase-
conjugated secondary antibodies (Santa Cruz Biotech-
nology). The signals were detected with the ECL system 
and exposed by the ChemiDoc XRS system with Image 
Labsoftware (Bio-rad).

Statistical analyses
Graphad Prism 6 was used for the statistical analysis. 
p < 0.05 was considered statistically significant. Compari-
sons of data between groups were followed using Stu-
dent’s t test or one-way analysis of variance (ANOVA), 
followed by Tukey’s post hoc test.

Results
Baicalin induced Hes1 mRNA expression and β‑thiol 
ethanol induced Notch1 mRNA expression 
in the differentiation of BMSCs into neurons 
by microRNA‑124a
This study explored that the mechanism of microRNA-
124a on the differentiation of BMSCs into neurons. 
Baicalin induced Hes1 mRNA expression, and micro-
RNA-124a inhibitor reduced the effects of baicalin on 

Fig. 4  Notch1 protein expression. Notch1 protein expression (Western blot, A) and (statistical analyses, B). *p < 0.01 compared with NC

Fig. 5  Notch1 is one target for the baicalin on Hes1 mRNA 
expression. #p < 0.01 compared with si-Notch1 group
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Hes1 mRNA expression in BMSCs (Fig. 1A). β-Thiol eth-
anol induced Notch1 mRNA expression, microRNA-124a 
inhibitor reduced the effects of β-thiol ethanol on Notch1 
mRNA expression in BMSCs (Fig. 1B). However, baicalin 
or β-thiol ethanol did not affect Hes1 and Notch1 protein 
expressions in BMSCs (Fig. 2).

Notch1 is one target for the baicalin on the differentiation 
of BMSCs into neurons
Next, Si-Notch1 plasmid reduced the Notch1 mRNA 
and protein expression in BMSCs (Figs. 3, 4). Si-Notch1 
suppressed Hes1 mRNA expression in BMSCs (Fig.  5). 
Baicalin increased the effects of Notch1 on Hes1 mRNA 
expression in BMSCs (Fig. 5). However, baicalin did not 
affect Hes1 protein expression in BMSCs (Fig.  6). We 

found that si-Notch1 increased cell growth of BMSCs 
(Fig. 7). Baicalin reduced the effects of si-Notch1 on cell 
growth of BMSCs (Fig. 7).

MicroRNA‑124a regulated the cell growth and neuronal 
differentiation of BMSCs
Lastly, the results of qPCR showed that microRNA-124a 
mimic treatment could increase microRNA-124a expres-
sion in BMSCs (Fig.  8). MicroRNA-124a increased cell 

Fig. 6  Notch1 is one target for the baicalin on Hes1 protein expression

Fig. 7  Notch1 is one target for the baicalin on cell growth of BMSCs 
into neurons. *p < 0.01 compared with si-NC

Fig. 8  MicroRNA-124a mimic increased microRNA-124a expression 
in BMSCs. The qPCR results of microRNA-124a expression. *p < 0.05 
compared with NC group
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growth of BMSCs (Fig.  9). Baicalin and β-thiol ethanol 
reduced the effects of microRNA-124a on cell growth 
of BMSCs (Fig.  9). MiRNA-124a inhibitor reduced the 
effects of β-ME and baicalin induced neuronal differen-
tiation of BMSCs, and decreased expression of neuronal 
markers NSE and MAP-2. Conversely, MiRNA-124a 
mimic increased the effects of β-ME and baicalin induced 
neuronal differentiation of BMSCs, and promoted 
expression of neuronal markers NSE (Fig.  10A) and 
MAP-2 (Fig. 10B).  

Discussion
BMSCs, also known as pluripotent stem cells, are stem 
cells derived from the mesoderm and have the ability of 
multidirectional differentiation and self-renewal to oste-
oblasts, chondrocytes, adipocytes and other multidirec-
tional differentiation, and can differentiate into neural 
cells and glial cells in vivo and in vitro under specific con-
ditions [20, 21]. Studies have confirmed that compounds, 
growth factors, gene modification, co-culture and in vivo 
transplantation can induce bone marrow mesenchymal 
stem cells to differentiate into neurons, which indicates 
that the neural differentiation process of BMSCs may 
involve multiple signal pathways, which require various 
signal pathway conduction and information integration 
to promote the reconstruction of cell structure [22–24]. 

In this study, baicalin induced Hes1 mRNA expression, 
and microRNA-124a inhibitor reduced the effects of 
baicalin on Hes1 mRNA expression in BMSCs. β-Thiol 
ethanol induced Notch1 mRNA expression, microRNA-
124a inhibitor reduced the effects of β-thiol ethanol on 
Notch1 mRNA expression in BMSCs. Both of these show 
that microRNA-124a regulates Notch signaling pathway 
during MSCs differentiated into neurons. As in the case 
with these, Xu et  al. showed that microRNA-124a pro-
tected against ischemia reperfusion injury through Notch 
signaling pathway [25]. However, the mechanism of the 
effects of baicalin on the promoting Hes1 mRNA expres-
sion in BMSCs was not clear.

NOTCH signal transduction pathway is one of the 
most important pathways that determine the fate of 
cells and plays an important role in cell differentiation, 
proliferation and apoptosis [26]. At present, it has been 
reported that cerebrovascular disease are sensitive to 
ferroptosis inducers, and its occurrence and develop-
ment are closely related to ferroptosis [27, 28]. Notch1/
Hes1 signal transduction plays an important role in cell 
differentiation, proliferation and apoptosis, and is also an 
important regulatory signal of ferroptosis. In the study 
of human small cell lung cancer, it was found that cMyc 
activated NOTCH signaling pathway can promote the 
sensitivity of small cell lung cancer cells to ferroptosis, 
suggesting that NOTCH signaling pathway is a potential 
regulatory molecular mechanism of ferroptosis [29–31]. 
In the present study, si-Notch1 increased cell growth of 
BMSCs. Baicalin reduced the effects of si-Notch1 on cell 
growth of BMSCs.

MicroRNAs, a short non-coding single-stranded RNA 
with a length of about 20–24 nucleotides, combine with 
mRNA through the principle of base complementary 
pairing to directly target the cleavage of mRNA or inhibit 
the translation of target genes to regulate the expression 
of post-transcriptional genes [32–34]. MicroRNAs can 
regulate the development and function of the nervous 
system by combining with mRNA [35]. Brain-specific 
microRNA-124 plays a regulatory role in the develop-
ment stages of neurite generation [36]. MiR-124 affects 
the cell fate of glial cells, and induces their differentia-
tion into neurons [37]. We found that microRNA-124a 
increased cell growth of BMSCs. Baicalin and β-thiol 
ethanol reduced the effects of microRNA-124a on cell 
growth of BMSCs. Underexpression of MiRNA-124a 
reduced the effects of β-ME and baicalin induced neu-
ronal differentiation of BMSCs, and decreased expression 
of neuronal markers NSE and MAP-2. Conversely, over-
expression of MiRNA-124a increased the effects of β-ME 
and baicalin induced neuronal differentiation of BMSCs, 
and promoted expression of neuronal markers NSE and 
MAP-2.

Fig. 9  MicroRNA-124a regulated the cell growth of BMSCs 
into neurons. *p < 0.01 compared with Control group
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This study has some limitations. First, the molecular 
mechanism of how baicalin impacts on Hes1 mRNA 
expression in BMSCs requires in-depth investiga-
tion. Second, it needs to be explored more deeply how 

MiRNA-124a regulates Notch signaling pathway. Third, 
the experimental conclusion will need to be confirmed 
in vivo.

Fig. 10  Overexpression of MiRNA-124a promoted expression of neuronal markers NSE and MAP-2 of BMSCs into neurons
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On the basis of these findings, we conclude that 
microRNA-124a promoted the differentiation of 
BMSCs into neurons through Notch signal pathway. 
The observations that microRNA-124a plays a broad 
role in the differentiation of BMSCs, and microRNA-
124a might benefit the treatment of the differentiation 
of BMSCs into neurons. Also, baicalin might induce 
neuronal differentiation of BMSCs by regulating Notch 
signal pathway.
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