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Introduction
According to the Global Cancer Observatory (GCO, 
https://gco.iarc.fr/en) database as of 2022, kidney cancer 
accounts for over 434 thousand new cases globally, with 
more than 155 thousand deaths attributed to the dis-
ease. Despite advancements in healthcare, kidney cancer 
remains a significant public health concern, ranking 16th 
in terms of incidence and 17th in terms of cancer-related 
mortality worldwide. The urgent need to decipher the 
molecular mechanisms underlying kidney cancer pro-
gression persists.

There are three primary types of kidney cancer: clear 
cell renal cell carcinoma (ccRCC), papillary renal cell car-
cinoma (PRCC), and chromophobe renal cell carcinoma 
(chRCC). Among these, ccRCC is the most prevalent 
form of kidney cancer. Significant advancements have 
been made in understanding the pathogenesis and thera-
peutic approaches for ccRCC [1–4]. Papillary renal cell 
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Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification known for its implications in various cancer types, 
yet its role in chromophobe renal cell carcinoma (chRCC) remains largely unexplored. In this study, we performed 
m6A-SEAL-seq and RNA-seq analyses on tissues from three chRCC subjects, aiming to uncover m6A alterations in 
chRCC. Our findings revealed reduced expression levels of four m6A regulators in chRCC tissues and highlighted 
differences in m6A levels compared to normal tissues. Furthermore, we identified specific genes and cancer-related 
pathways affected by these differences, including notable candidates like NOTCH1 and FGFR1, implicated in chRCC 
development. Additionally, we developed a predictive model based on the expression level of m6A associated 
genes, demonstrating promising prognostic capabilities for patient survival prediction. Overall, our study provides 
valuable insights into the role of m6A in chRCC and its potential as a prognostic indicator.
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carcinoma (PRCC) stands as the second most common 
type of renal carcinoma and is currently a well-studied 
subtype of renal cell carcinoma (RCC) [5, 6]. Whereas 
chRCC is an uncommon renal cell carcinoma (RCC) sub-
type, accounting for 5–10% of all cases of RCC [7]. Previ-
ous studies suggest that chRCC is a malignant neoplasm 
with a mortality rate of about 10%, and aggressive clinical 
course such as metastasis [8]. While the somatic genomic 
landscape of chRCC has revealed various genomic fea-
tures [9], the understanding of the functional role of epi-
transcriptomics remains limited.

More than 170 types of modifications have been identi-
fied in the RNA molecule [10]. N6-methyladenine (m6A) 
emerges as the most abundant mRNA modification 
in eukaryotes, playing pivotal roles in various biologi-
cal functions. These functions include the regulation of 
RNA stability [11–13], 3′-end processing [14, 15], alter-
native splicing [16, 17] and translation efficiency at the 
post-transcriptional level [13, 18, 19]. m6A is dynami-
cally reversible in mammals and is governed by “writ-
ers” (methyltransferases), “erasers” (demethylases), and 
“readers” (binding proteins). The majority of m6A modi-
fications are installed by the methyltransferase complex, 
primarily composed of the METTL3-METTL14 het-
erodimer [20, 21] and other subunits like WTAP [22–24], 
and removed by demethylases like FTO and ALKBH5 
[25, 26]. m6A modification can also be recognized and 
bound by m6A binding proteins for the regulation of gene 
expression, like YTH domain family proteins [27–29]. 
The discovery of these diverse m6A regulators has sig-
nificantly contributed to a deeper understanding of the 
physiological functions of m6A.

Numerous studies have underscored the close relation-
ship between m6A modifications and tumor progression 
[30–33]. In pancreatic cancer, ALKBH5 inhibits cancer 
cell growth and progression by increasing PER1 mRNA 
levels through m6A removal, consequently inhibiting 
YTHDF2-dependent mRNA degradation [33]. In blad-
der cancer, METTL3 installs m6A on pri-miR221/222, 
expediting miRNA maturation and promoting cancer 
cell proliferation [34]. These findings highlight the pivotal 
roles of m6A modification in carcinogenesis through the 
regulation of RNA processing and metabolism, shedding 
light on new molecular mechanisms underlying cancer 
progression. m6A regulators exert significant impacts on 
clear cell renal cell carcinoma (ccRCC) [35]. METTL14, 
for instance, is downregulated in ccRCC tissue, and 
patients with lower METTL14 expression tend to exhibit 
worse prognoses [36]. Alterations in m6A regulators are 
associated with worse clinical characteristics [37]. In 
RPCC, a prognostic risk signature model incorporating 
three m6A regulatory genes, IGF2BP3, KIAA1429, and 
HNRNPC, accurately predicts survival outcomes [38]. 
The advent of high-throughput sequencing has enabled 

transcriptome-wide profiling of m6A distribution in vari-
ous human carcinomas, offering insights into the molec-
ular mechanisms underlying m6A modification and renal 
cell carcinoma (RCC). Transcriptome-wide m6A map-
ping in ccRCC has revealed the identification of unique 
m6A-related genes associated with cancer-related path-
ways and provided insights into potential mechanisms of 
m6A-mediated gene regulation [39]. However, the tran-
scriptome-wide distribution of m6A in chRCC remains 
elusive. In this study, we utilized m6A-SEAL-seq to con-
struct a landscape of m6A profiling in human chRCC 
[40], and identified novel m6A gene signature.

Methods
Patients and specimens
A total of three patients with chRCC were involved in our 
study. chRCC tissues and corresponding tumor-adjacent 
normal tissues were collected at the time of surgery from 
urology department, Peking University Third Hospital. 
All specimens were immediately separated into 1.5  ml 
RNase-free centrifuge tubes and stored at -80 ◦C before 
RNA isolation. The study was approved by The Beijing 
Haidian Hospital Medical Ethics Committee, and the 
written informed consents were obtained from all the 
participants.

RNA preparation
Total RNA was extracted from tissue specimens using 
TRIzol reagent (Magen) and poly(A)+ RNA was isolated 
from total RNA using oligo(dT) 25 Dynabeads (Thermo 
Fisher Scientific). RNA concentration was determined 
using a Nanodrop ultraviolet-visible light spectropho-
tometer (Thermo).

qRT–PCR
Poly(A)+ RNA was isolated from tissues using TRIzol 
reagent (Invitrogen) and oligo(dT)25 Dynabeads (Thermo 
Fisher Scientific). First-strand cDNA synthesis was car-
ried out using SuperScript III (Thermo Fisher Scientific) 
and oligo(dT)20 primer. Each sampling was performed 
with at least three biological replicates. The relative 
expression levels were normalized using GADPH as 
the reference gene. All the primers were designed by 
multiPrime at https://multiprime.cn [41]. All primer 
sequences are provided in Supplementary Dataset 1.

m6A-SEAL-seq and library construction
Poly(A)+ RNA for each sample was fragmented by a mag-
nesium RNA fragmentation module (NEB). In a poly(A)+ 
RNA m6A oxidation assay, the reaction was performed in 
300  µl aliquots of aqueous solution containing 300 µM 
of (NH4)2Fe(SO4)2·6H2O, 2 mM of l-ascorbic acid, 300 
µM of α-KG, 100 mM pH 7.0 HEPES, 0.2 µM FTO and 
1  µg poly(A)+ RNA. After the FTO treatment at 37  °C 
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for 5 min, RNA was purified by Oligo Clean & Concen-
trator column (Zymo Research). hm6A-modified RNA 
converted from m6A by FTO oxidation was treated by 
200 mM freshly prepared DTT at 37 °C for 3 h in acidic 
aqueous solution (100 mM HEPES, pH 4.0). The product 
RNA was purified by ethanol precipitation. After etha-
nol precipitation, DTT treated RNA was washed by 75% 
ethanol and dissolved in 200 µl biotinylation buffer that 
contained 100 µM of MTSEA-XX-biotin (Biotum), 100 
mM HEPES (pH 7.0), 1 mM EDTA and 20% DMF. The 
reaction was performed at 25 °C and 800 rpm in a Ther-
moMixer for 1 h. The product RNA was purified by phe-
nol-chloroform extraction. 50 ng biotin-labeled RNA was 
saved as input, and the rest proceeded to affinity enrich-
ment. After that, 20  µl Dynabeads MyOne Streptavidin 
C1 (Invitrogen) was washed twice by 200 µl 0.1 M NaOH 
to remove RNase contamination, and then washed with 
diethyl pyrocarbonate water to a neutral pH. The beads 
were resuspended in 100 µl binding solution containing 
10  µl of high-salt wash buffer (100 mM Tris pH 7.5, 10 
mM EDTA, 1 M NaCl, 0.05% Tween 20) and 90 µl diethyl 
pyrocarbonate water, and incubated with the biotinyl-
ated RNA for 1 h. The beads with biotinylated RNA were 
washed three times with 1 ml high salt wash buffer. 50 µl 
of 100 mM DTT was used to release the biotinylated 
RNA at 37 °C for 15 min on a ThermoMixer (800 rpm.). 
After collecting the supernatant, the second elution was 
performed with 50 µl of 100 mM DTT at 50 °C for 5 min 
to completely release the RNA. The twice-eluted RNA 
was combined and purified by ethanol precipitation. 
Library construction was performed using NEBNext 
Ultra II Directional RNA Library Prep Kit for Illumina 
according to the manufacturer’s protocol. Libraries were 
sequenced on the Illumina HiSeq XTen platform with a 
paired-end model (PE150).

Analysis of m6A-seq data
Sequencing reads were trimmed and mapped to the ref-
erence genome (GRCh38) by using Cutadapt (v1.18) 
[42] and HISAT2 (v2.1.0) [43], respectively. The m6A-
enriched regions in chRCC and normal tissues were iden-
tified using the MACS2 [44] peak-calling algorithm based 
on enrichment criteria (IP/Input) ≥ 2 and FDR < 0.05. 
Confident m6A peaks were subjected to Hypergeometric 
Optimization of Motif EnRichment tools (HOMER) [45] 
for Motif Discovery. Genes with differentially methyl-
ated m6A sites were identified by MeTDiff [46] based on 
enrichment criteria fold change ≥ 2 and FDR < 0.05. Tis-
sue analysis, Gene ontology (GO) and pathway enrich-
ment analyses were performed by using DAVID.

Analysis of RNA-seq data
Adapter and low-quality reads were trimmed by using 
Cutadapt (v1.18) [42], and trimmed reads were aligned to 

the reference genome (GRCh38) using HISAT2 (v2.1.0) 
[43]. The differential expression genes between chRCC 
and adjacent normal tissues were screened by R pack-
age (DEseq2) [47] based on a cutoff criterion of fold 
change ≥ 2 and FDR < 0.05.

Risk stratification and survival analysis
A cohort of 65 chRCC cases from The Cancer Genome 
Atlas (TCGA) database was used to illustrate the rela-
tionship between the differential expressed DMMGs and 
chRCC patients. We randomly chose 40 samples from 65 
cases as a training set to predict signature model and the 
rest samples form a testing set to verify the model (make 
sure the training set and testing set both contain tumor 
samples and normal samples). Firstly, we used least abso-
lute shrinkage and selection operator (LASSO) to select 
candidate genes (glmnet package) in training set. Sec-
ondly, we performed the multi-variates cox regression 
and removed genes not supported by PH hypothesis 
using the selected candidate genes in training set. Thirdly, 
we performed the second regression (survival package) to 
calculate the coefficients between candidate genes and 
5-years survival using the remaining candidate genes 
in training set to build a Cox model. The concordance 
index (C-index) was calculated to evaluate the prognostic 
power. Risk score of each sample was calculated through 
the sum of the product of each candidate gene fpkm-uq 
and its coefficient in training set. The patients were then 
classified into high-risk or low-risk group using the risk 
score where the difference value of true positive and false 
positive reaches to the maximum as the cutoff value. The 
Kaplan-Meier survival curve (survminer package) was 
performed to evaluate the 5-years survival, and the sen-
sitivity and accuracy of the cox model to predict clinical 
outcome were evaluated by the area under curve (AUC) 
of the receiver operating characteristic (ROC) curve (sur-
vival ROC package). At last, we test the signature model 
in the testing set, ccRCC dataset (a cohort of 602 cases 
from TCGA database) and PRCC dataset (a cohort of 318 
cases from TCGA database).

Results
The expression pattern of m6A regulators in normal and 
chRCC tissue
In order to determine whether m6A modification func-
tions in chRCC, we first analyzed the expression levels 
of 8 m6A regulators, including 3 key writer subunits, 3 
readers, and 2 erasers (m6A writer subunits: METTLE14, 
METTL3, and WTAP; m6A readers: YTHDF1, YTHDF2, 
and YTHDF3; m6A erasers: ALKBH5 and FTO) in three 
patients. The qPCR results showed that the expression 
levels of WTAP, YTHDF2, FTO, and ALKBH5 were 
downregulated markedly in chRCC tissues compared 
with corresponding tumor-adjacent normal tissues 
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(termed normal tissues) (Fig. 1A-H). Furthermore, upon 
comparison with The Cancer Genome Atlas (TCGA data-
base), we observed a notable decrease in the expression 
of the m6A writer WTAP as well (Fig. S1). The aberrant 
expression of the m6A regulators in chRCC, suggesting 
m6A might be dysregulated in chRCC.

Overview of m6A methylation feature in normal and chRCC 
tissues
To investigate whether m6A methylation landscape 
changes between the normal and chRCC tissues, we 
next constructed m6A-SEAL-seq using three samples 
and explored the distribution of m6A modification [40]. 
Approximately 87.1–13.2  million reads were gener-
ated from each library and 82.8–12.8 million reads were 
mapped to GRCh38 genome (Supplementary Dataset 
2). m6A peaks were called in each sample using MACS2, 
based on fold enrichment (IP/input) ≥ 2 and FDR ≤ 0.05). 
The m6A peaks identified in all three replicates were 
classified as “confident m6A peaks”. Finally, we identified 
15,024 confident m6A peaks corresponding to 11,396 
transcripts/genes in normal tissues, whereas 12,841 con-
fident m6A peaks corresponding to 10,102 transcripts/
genes in chRCC tissue (Fig. 2A). To evaluate the reliabil-
ity and performance of m6A-SEAL-seq, we compared 

our confident m6A peaks of normal tissues with MeRIP-
seq of normal kidney tissues from published sequencing 
data (GSE122744) [48]. 5686 out of 7261 (78.3%) of the 
m6A peaks in MeRIP-seq were identified as confident 
m6A peaks in our m6A-SEAL-seq (Fig. S2A), and the 
metagene profile results of m6A-SEAL-seq and MeRIP-
seq indicated that that our confident m6A peaks were 
highly enriched around MeRIP-seq peaks (Fig. S2B). We 
additionally computed normalized read coverages from 
m6A-SEAL-seq around MeRIP-seq peaks, revealing their 
co-enrichment (Fig. S2C, D). These findings suggest that 
m6A-SEAL-seq provides accurate and reliable results.

The metagene profiles results demonstrated that con-
fident m6A peaks in normal and chRCC tissue were 
both highly located within Coding Sequence (CDS) 
(Fig.  2B). However, the distribution pattern of m6A 
peaks in chRCC shifted from CDS region to stop codon 
and 3’UTR. To further locate confident m6A peaks, 
we divided the transcripts into five non-overlapping 
regions and assigned the confident m6A peaks into these 
regions. The fraction of confident m6A peaks of normal 
and chRCC tissues (Fig. 2C) in these five regions showed 
that they were dominantly enriched in 3′ UTR (40.46%, 
40.55%), CDS (29.01%, 26.54%) and stop codon (17.32%, 
18.59%). The motifs analysis results revealed that in 

Fig. 1  Relative expression level of known m6A-related genes in Normal and chRCC tissues by qPCR. A, METLL3, B, METTL14, C, WTP, D, YTHDF1, E, 
YTHDF2, F, YTHDF3, G, FTO, H, ALKBH5. Data are presented as means ± SE, n = 3 biological replicates. *P < 0.05 by t test (two-sided)
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both normal and chRCC tissues, the identified motifs 
are GGAYN (Y = C/U, N = U/A/C/G), AAACK (K = G/U) 
and NBNAH (N = U/A/C/G, B = G/C/U, H = C/U/A), 
RAACW (R = G/A, W = U/A). These motifs closely 
resemble the well-known m6A binding motif, RRACH 
(R = G/A, H = A/C/U).

Further we asked which RNA molecules prefer to con-
tain m6A modification. We assigned confident m6A peaks 

to GRCh38 genome and found that 76.24% and 77.78% 
were mRNA, 18.42% and 17.16% were long non-coding 
RNA (lncRNA) in normal and chRCC tissues (Fig.  2D), 
separately. We also noticed that the confident m6A peaks 
number in chRCC tissues were less than that in normal 
tissues. Then we assigned m6A peaks to chromosome, 
genes and five non-overlapping regions. We found that 
the number of confident m6A peaks in chRCC tissues 

Fig. 2  Characterization of m6 A modification in Normal and chRCC tissues reveals that decreased methylation number in chRCC Tissues. A, overlap of 
three biological replicates of m6A-SEAL-seq peaks identifying ~ 15,000 high-confident m6A peaks corresponding to 11,396 unique transcripts in normal 
tissues (left); Overlap of three biological replicates of m6A-seal peaks identifying ~ 12,800 high-confident m6A peaks corresponding to 10,102 unique 
transcripts in chRCC tissues (right). B, Metagene profile illustrating the region distribution of m6A peaks across the indicated mRNA segments. C, Pie chart 
depicting the fraction of the confident m6A peaks in each of the five non-overlapping transcript segments (5’UTR, start codon, coding sequence [CDS], 
stop codon and 3’UTR) in normal tissues (left); Pie chart depicting RNA types of m6A peaks in normal tissues (right). D, Pie chart presenting the fraction 
of the confident m6A peaks in eCRCC tissues (left); Pie chart depicting RNA types of m6A peaks in chRCC tissues (right). E, The number of m6A peaks in 
human chromosomes. F, The number of m6A peaks per gene. G, The number of m6A peaks in five non-overlapping transcript segments
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decreased globally among each chromosome (Fig.  2E). 
By analyzing the distribution of m6A peaks per gene, 
we found that most of m6A-motified mRNAs contained 
one or two m6A peak, while a small number of them 
contained three or more (Fig.  2F). Furthermore, m6A 
number per gene in chRCC tissues was all less than that 
in normal tissues. We also counted the number of m6A 
peaks among the five non-overlapping regions in nor-
mal and chRCC tissues (Fig. 2G) and found the number 
of m6A peaks decreased in chRCC tissues (except start 
codon) too. These results suggested that m6A modifica-
tion level decreased in cancer tissues.

Differentially methylated m6A genes (DMMGs) participate 
in multi-cancer related pathways
To dissect the role of m6A modification, we subsequently 
identified DMMPs between normal and chRCC tissues. 
Compared to the normal tissues, the hyper- and hypo-
methylated peaks were respectively regarded as hyper 
and hypo group. As to hyper group, we identified 644 
shared differentially hyper-methylated m6A peaks corre-
sponding to 593 genes in the three biological replicates. 
While as to hypo group, we identified 1304 shared differ-
entially hypo-methylated m6A peaks representing 1137 
genes (Fig.  3A). We further identified the m6A motif in 
hyper- and hypo- methylated m6A peaks within chRCC 

Fig. 3  Tissue analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of coding genes containing hypomethyl-
ation m6A peaks in chRCC tissues. A, Overlap of three biological replicates of hypermethylation m6A peaks identifying ~ 644 high-confident hypermeth-
ylation m6A peaks corresponding to 593 unique transcripts in chRCC tissues (left); Overlap of three biological replicates of hypomethylation m6A peaks 
identifying ~ 1,304 high-confident hypomethylation m6A peaks corresponding to 1,137 unique transcripts in chRCC tissues (right). B, Metagene profile 
illustrating the region distribution of hypermethylation and hypomethylation m6A peaks across the indicated mRNA segments. C, Pie chart presenting 
the fraction of the confident hypomethylation m6A peaks five non-overlapping transcript segments; D, Pie chart presenting RNA types (that is, transcript 
species) of the confident hypomethylation m6A peaks identified in chRCC. E-G, UP_TISSUE (E), Gene ontology (GO) (F), KEGG (G) analysis of the confident 
hypomethylation m6A genes
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tissues by HOMER, and it revealed that the top consen-
sus motifs in the hyper- and hypo-methylated m6A peaks 
were both similar to RRACH (Fig. S4).

Then we examined the distribution profiles of DMMPs 
across the transcripts, and found that the density of 
DMMPs tended to be around the stop codon in both 
hyper and hypo group. In hypo group, the m6A peaks 
were especially enriched in the CDS and 3’ UTR near the 
stop codon; whereas in the hyper group, m6A peaks were 
enriched in the 3’ UTR near the stop codon (Fig.  3B). 
Further examination revealed that the m6A peaks in 
both groups were dominantly enriched within 3′ UTR 
(54.6% and 56.68%), CDS (25.92% and 23.14%) and 
around stop codon (13.19% and 11.02%) (Fig. 3C and Fig. 
S3A). Almost all of the transcripts containing DMMPs 
were mRNA (80.44% and 70.61%), only ~ 14–18% were 
lncRNA and a small proportion were other RNAs 
(Fig. 3D and Fig. S3B).

To explore the potential role of hypo-methylated m6A 
peaks in chRCC, we took advantage of DAVID to exam-
ine the most preferential expression tissues of genes with 
hypo-methylated peaks. The results showed that genes 
containing hypo-methylated m6A sites preferentially 
expressed in epithelium, followed by brain, placenta and 
renal cell carcinoma (RCC) (Fig. 3E), indicating the cor-
relation between these genes and RCC. Furthermore, 
we performed GO enrichment analysis to uncover the 
functions of these genes. The results revealed that genes 
with hypo-methylated m6A peaks were enriched in many 
biological processes involved in kidney development and 
cancer pathogenesis, including transcription, androgen 
receptor signaling pathway, GTPase activity and cell-cell 
adhesion (Fig.  3F). Pathway analysis showed that genes 
with hypo-methylated m6A peaks were mainly enriched 
in pathways in cancer (Fig. 3G). These results suggested 
that genes with hypo-methylated peaks may participate 
in various pathophysiologic aspects of kidney cancer 
through different pathways.

Subsequently, we explored the potential function of 
hyper-methylated m6A peaks using the same method. 
The results showed that genes containing hyper-meth-
ylated m6A sites preferentially expressed in brain, fol-
lowed by epithelium, duodenum, fetal kidney and ovary 
(Fig. S3C) which also indicating these genes is important 
in kidney development. GO biological process analysis 
revealed that genes with hyper-methylated m6A peaks 
were significantly associated with cancer-related biologi-
cal processes, including protein phosphorylation, positive 
regulation of cholesterol efflux, ubiquinone biosynthetic 
process, regulation of mitophagy and so on (Fig. S3D). 
Pathway analysis showed that genes with hyper-methyl-
ated m6A peaks were mainly enriched in ubiquitin medi-
ated proteolysis, metabolic pathways and adherents’ 

junction (Fig. S3E). These results further illustrated that 
gene with DMMPs played crucial roles in kidney cancer.

Differentially expressed genes involved in kidney 
development and cancer occurrence
We next identified the global mRNA expression patterns 
in normal and cancer groups. The results showed that a 
total of 3,911 mRNAs were significantly dysregulated in 
cancer group compared with normal group, including 
2,344 down-regulated mRNAs and 1,567 up-regulated 
mRNAs (fold change ≥ 2, P < 0.05) (Fig.  4A). Hierarchi-
cal clustering depicted differential expression profiles in 
all the samples. (Fig. 4B). We then took advantage of the 
DAVID to examine the preferentially expressed tissues 
of these genes. The results showed that the dysregulated 
genes preferentially expressed in kidney, followed by liver 
and plasma (Fig.  4C). Then we performed GO analysis 
and KEGG pathway analysis. GO enrichment analysis 
demonstrated that dysregulated genes were significantly 
enriched in kidney development and cancer related bio-
logical processes involving metabolic process, cell adhe-
sion and kidney development (Fig. 4D). While the KEGG 
pathway analysis revealed that dysregulated genes were 
significantly associated with metabolic pathways and 
protein metabolism (Fig. 4E).

Novel m6A gene signature identified by m6A-SEAL-seq and 
RNA-seq data
We comprehensively analyzed m6A-SEAL-seq and RNA-
seq data in normal and chRCC tissues. The results dem-
onstrated that among the 593 hyper-methylated genes 
detected by m6A-SEAL-seq, 44 targets tended to be 
down-regulated and 68 targets tended to be up-regulated 
(Fig.  5A, left); among the 1,137 hypo-methylated genes, 
123 targets tended to be down-regulated and 51 targets 
tended to be up-regulated (Fig. 5A, right). Further, a sig-
nificant increase of RPKM was observed in the hyper 
group compared to the hypo group (Fig. 5B).

To further analyze the role of DMMGs in cancers, we 
intersected DMMGs with Cancer Gene Census (CGC) 
database [49], a database consists of genes with strong 
indications of a role in cancer, and found 73 and 23 genes 
were annotated in hypo-methylated and hyper-methyl-
ated genes separately (Supplementary Dataset 3 and 4). 
Among these cancer related genes, 10 genes were differ-
entially expressed genes, including NOCH1 and FGFR1. 
According to Integrative Genomics Viewer (IGV) soft-
ware, the m6A modification level of NOTCH1 decreased 
significantly (Fig. 5C, left), then we measure the expres-
sion level of NOTCH1 and found in chRCC tissue, 
the expression level of NOTCH1 reduced significantly 
(Fig. 5C, right), suggesting NOTCH1 acts as a tumor sup-
pressor gene in chRCC. Fibroblast growth factor recep-
tor 1 (FGFR1) is a well-known oncogene. We found the 
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m6A modification level of FGFR1 decreased significantly 
(Fig. 5D, left) and the expression level of FGFR1 increased 
in chRCC tissue (Fig. 5D, right). We observed differences 
in the expression patterns of these two genes, with both 
showing hyper-methylation in their modification levels 
but opposite expression patterns. This discrepancy indi-
cates potential differences in m6A regulation pathways.

Thus, we conducted principal component analysis of 
the differential expressed DMMGs in 65 chRCC cases 
from The Cancer Genome Atlas (TCGA) database. 
Based on the expression of these genes, we could com-
pletely distinguish chRCC samples from normal sam-
ples (Fig.  5E). Cox regression screen and least absolute 
shrinkage and selection operator (LASSO) identified 
three m6A-dependent signatures (Supplementary Dataset 

5) and defined a m6A-dependent cox model in the train-
ing set (Fig. S5A). Concordance index (C-index = 0.96) 
showed that the proposed model has a high prognostic 
power. In this model, we separated patients into high-
risk or low-risk group according to their risk score, and 
patients with different 5-years survival could be distin-
guished completely between the two groups (Log-rank 
p < 0.0001) (Fig. 5F). AUC of ROC curve also confirmed 
the prognostic power of the m6A-dependent model (Fig. 
S5B). Then the proposed model was applied to the test-
ing set for prediction. We calculated risk score of each 
patient in the testing set and assigned to high-risk or 
low-risk group according to the cut off value in the train-
ing set. The Kaplan-Meier survival curve and log-rank 
between the two groups showed significant difference 

Fig. 4  Differential expression genes in chRCC tissues compared with adjacent normal tissues. A, Volcano plots showing the differentially expressed genes 
in chRCC tissues compared with those in adjacent normal tissues. B, Heatmap plots showing the differentially expressed genes in chRCC tissues vs. those 
in adjacent normal tissues. C-E, UP_TISSUE (C), Gene ontology (GO) (D), KEGG (E) analysis of the differential expression genes
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(Fig. 5G), which demonstrated the high predictive ability 
of the m6A-dependent model. Furthermore, we also test 
the m6A-dependent model in ccRCC samples (a cohort 
of 602 cases from TCGA database) and PRCC dataset (a 
cohort of 318 cases from TCGA database). The results 
indicated that the m6A-dependent model is also suitable 
for ccRCC, but not PRCC (Fig. S5C, D).

Discussion
Despite having the lowest incidence and mortality rates 
among the three main types of kidney cancer, chRCC still 
contributes to thousands of deaths worldwide, according 

to statistics from the GCO in 2022. Over the past few 
years, there has been a growing effort to elucidate the 
mechanism of m6A modification in RCC, resulting in 
extensive accumulation of knowledge regarding the cor-
relation between m6A modification and RCC. However, 
chRCC has been overlooked. Here, we demonstrated that 
m6A writer WTAP and m6A erasers FTO and ALKBH5 
were downregulated in chRCC tissues, which may result 
in a different m6A modification pattern in chRCC tissues. 
By m6A-SEAL-seq, we confirmed that m6A modification 
pattern in chRCC tissues is distinct from that in nor-
mal tissues. The m6A peaks number and m6A peaks per 

Fig. 5  Conjoint analysis of m6A-SEAL-seq and RNA-seq data. A, Overlap of hypermethylation genes with up-regulation genes and down-regulation 
genes (left). Overlap of hypomethylation genes with up-regulation genes and down-regulation genes (right). B, Cumulative distribution displaying the 
expression level changes in mRNAs with hypermethylation or hypomethylation m6A modification. C-D, Integrative genomics viewer (IGV) tracks show-
ing the indicated m6A-seal reads distribution on target transcripts and the relative expression level in Normal and chRCC tissues. (C) NOTCH1, (D) FGFR1. 
F-G Survival analyses in the training set (F) and testing set (G). Log-rank p < 0.0001 showed a significant survival difference between the two sub-groups
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gene in chRCC decreased and the distribution pattern of 
m6A peaks shifted to 3’UTR orientation in chRCC. Fur-
ther functional studies showed that genes with hyper- or 
hypo-methylated peaks were mainly enriched in kid-
ney development and cancer pathogenesis related path-
way, which is a further proof of the fundamental role of 
m6A modification in chRCC. We also found m6A reader 
YTHDF2 were downregulated in chRCC tissues. The role 
of YTHDF2 in m6A-dependent gene regulation, particu-
larly its impact on RNA stability, suggests the existence 
of m6A-dependent RNA degradation and gene dysregula-
tion in chRCC. The down-regulation of NOTCH1 may be 
attributed to the down-regulation of YTHDF2. Addition-
ally, the observed discrepancy in the expression pattern 
of FGFR1 indicates potential differences in m6A regula-
tion pathways. Cumulative fraction of genes with hyper-
methylated peaks and genes with hypo-methylated peaks 
indicated that these two group gene sets have different 
expression pattern in chRCC tissues, which may result 
from the dysregulation of m6A readers, such as YTHDF2.

In the present study, we depicted transcriptome-
wide m6A profiling in normal and chRCC tissues by an 
antibody-free method. By comparing the m6A peaks in 
normal tissues and chRCC tissues, we revealed a total 
of 1730 DMMGs including 593 hyper- and 1137 hypo-
methylated genes in chRCC tissues, which may be impor-
tant factors in chRCC. For example, RARA, one of the 
hypo-methylated genes, has been demonstrated as a tar-
get of FTO in acute myeloid leukemia (AML). The m6A 
on RARA at UTRs influences the stability of RARA. The 
decreased m6A modification level of RARA destabilizes 
RARA mRNA, and then promotes tumorigenesis [50]. 
By CGC database analysis [49], we found 96 genes were 
causally implicated in cancers, such as ZEB1, which acts 
as an oncogene in ccRCC, PBRM1, ASXL2 and SETD2, 
which act as tumor suppressor genes in ccRCC. These 
results indicate m6A modification has a major influ-
ence on ccRCC, implying the roles of m6A modification 
in chRCC. Combined with our RNAseq data, we found 
10 genes were differential expressed genes, including 
NOTCH1 and FGFR1. The level of m6A on NOTCH1 
at 3’UTR and the expression level of NOTCH1 reduced 
significantly, which are similar to PER1 in pancreatic 
cancer and RARA in AML [33, 50]. PER1’s degradation 
is YTHDF2-dependent manner, while the mechanism 
underlying the degradation of NOTCH1 and RARA 
remains unknown. The level of m6A on FGFR1 at 3’UTR 
also decreased, but the expression level of FGFR1 
increased significantly. It is reported that m6A reader 
IGF2BP3 enhances mRNA stability in an m6A-dependent 
manner [13, 51], which may account for the upregula-
tion of FGFR1 in chRCC. Further functional studies are 
needed to clarify the molecular mechanisms of above-
mentioned genes in the development of chRCC.

Despite the insights gained from our study, it is impor-
tant to acknowledge a significant limitation: the small 
sample size. Our findings are based on data obtained 
from only three chRCC patients, which may not be suf-
ficient to draw definitive conclusions about m6A modifi-
cations in chRCC. While the observed patterns in m6A 
regulation provide valuable initial insights, larger cohorts 
are needed to validate these results and ensure that they 
are broadly applicable to the wider chRCC patient popu-
lation. Future studies with expanded sample sizes will be 
essential for confirming the role of m6A modifications in 
chRCC and for elucidating the underlying mechanisms 
with greater accuracy.
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