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Abstract

Purpose of Review—The following review discusses the therapeutic potential of targeting the 

autonomic nervous system (ANS) for osteoarthritis (OA) treatment and encourages the field to 

consider the candidacy of bioelectronic medicine as a novel OA treatment strategy.

Recent Findings—The study of OA pathogenesis has focused on changes occurring at the 

joint level. As such, treatments for OA have been aimed at the local joint environment, intending 

to resolve local inflammation and decrease pain. However, OA pathogenesis has shown to be 

more than joint wear and tear. Specifically, OA-related peripheral and central sensitization can 

prompt neuroplastic changes in the nervous system beyond the articular joint. These neuroplastic 

changes may alter physiologic systems, like the neuroimmune axis. In this way, OA and related 

comorbidities may share roots in the form of altered neuroimmune communication and autonomic 

dysfunction.

Summary—ANS modulation may be able to modify OA pathogenesis or reduce the impact 

of OA comorbidities. Moreover, blocking chronic nociceptive drive from the joint may help to 

prevent maladaptive nervous system plasticity in OA.
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Introduction

Individuals suffering from osteoarthritis (OA) experience a lower quality of life, chronic 

pain, and greater healthcare expenses. Developing treatment strategies for OA begins by 

understanding the pathophysiology of the disease. While the etiologic causes of OA vary, 

the pathophysiology of chronic OA is well characterized as maladaptive joint remodeling 

in response to changing mechanical loads [1], cellular stress [2], and chronic low-grade 

joint inflammation [3]. These maladaptive changes result from the joint’s attempt to restore 

homeostasis; however, healthy homeostasis never returns to the OA-affected joint due to 

the limited capacity of cartilaginous structures for self-repair [4]. The destruction of the 

OA-affected joint first produces peripheral sensitization due to both chronic inflammation 

and shifting joint mechanics. Here, in the early stages of OA, activation thresholds in joint 

nociceptors are altered by joint inflammation and other pathologic factors, and joint loading 

causes movement-evoked pain [5]. Over time, prolonged peripheral sensitization can result 

in lower thresholds in dorsal horn neurons [6–8] (central sensitization) or damage to joint 

innervation (neuropathic pain) [9–11]. These known neuroplastic components relating to 

OA pain raise the question of whether OA also prompts functional shifts in other neural 

communication axes. Specifically, do neuroplastic changes in OA extend to neuroimmune 

communication involving the autonomic nervous system (ANS)?

Recent reviews have suggested that dysfunction of the ANS occurs with OA 

pathophysiology [12, 13•, 14•]. Moreover, recent evidence has suggested crosstalk occurs 

between the joint and ANS [15]. While the physiological links between OA and ANS 

crosstalk are not yet fully characterized, the ANS has a known role in controlling peripheral 

inflammation via the neuroimmune axis. As such, shifts in ANS balance could increase 

susceptibility to inflammatory insult or make it more difficult for inflammatory pathologies 

to resolve [16–18]. Therefore, ANS dysfunction could act as a risk factor for OA by 

increasing susceptibility to and/or speeding OA pathogenesis. Such relationships imply that 

therapies targeting ANS function could alter OA pathophysiology.

Therapies that target the ANS include non-pharmacologic physiotherapy [19] and 

exercise[20], as well as the use of vagus nerve stimulation (VNS). In VNS, electrical 

stimulation of the vagus nerve is used to increase parasympathetic tone and produce 

systemic (e.g., circulating cytokines and monocytes) and local (e.g., joint inflammation) 

anti-inflammatory effects. The anti-inflammatory effects of VNS have been shown in 

rheumatic joint diseases such as RA [21], introducing the question of whether VNS could 

be effective for related, but less inflammatory diseases, like OA. These anti-inflammatory 

effects may be especially therapeutic in the later stages of OA, when inflammation is 

more pronounced and patient mobility and activity is more affected, limiting access to 

rehabilitative- and exercise-based therapies. In addition to VNS, bioelectric modification 

of nociceptive signals has been used as a pain-targeting therapy in OA [22]. Bioelectric 

blockade or modification of nociceptive signals could have protective effects on neuroplastic 

shifts in the peripheral and central nervous systems. As such, this review serves to discuss 

the potential disease-modifying effects of neuromodulation in the context of OA and 

encourage the field to consider neuro-modulation as a treatment strategy for OA.
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OA and Autonomic Dysfunction

OA involves a vicious cycle of progressive joint damage and inflammation, chronic pain, 

limited mobility, and the onset of chronic comorbid disease (blue/solid lines in Fig. 1). 

In parallel, autonomic dysfunction occurs at high rates in conditions that are prevalent in 

patients with OA (e.g., hypertension, obesity, diabetes, and aging), and a dysfunctional ANS 

could contribute directly to OA pathogenesis (orange/dashed lines in Fig. 1).

Autonomic Dysfunction with Common OA Comorbidities

The relationship between ANS dysfunction and a patient’s susceptibility to OA is 

highlighted by common OA comorbidities and risk factors. For example, the incidence 

of OA in patients with obesity [23–25], hypertension [26–28], and diabetes [29, 30] are 

significantly high; in all three diseases, attenuated parasympathetic function has also been 

noted. Furthermore, attenuated parasympathetic function is seen in OA risk factors such 

as aging [31, 32] and physical inactivity [33–36]. Due to the role of the parasympathetic 

nervous system in regulating peripheral inflammation, ANS dysfunction may present a risk 

factor for OA.

Figure 1 describes how a dysfunctional ANS may contribute to OA pathogenesis. 

Specifically, the immune ramifications of low vagal tone may simultaneously worsen 

OA and exacerbate comorbidities. For example, moderate exercise may both increase 

parasympathetic activity [36] and decrease joint swelling and symptoms in OA [34]. On 

the other hand, obese individuals also show a dysfunctional ANS through lower vagal tone 

[23–25] and corresponding increases in systemic inflammation [37]. Importantly, autonomic 

dysfunction in obese individuals is reversible with weight loss [38], and obese OA patients 

who have lost at least 10% of their body weight also show improvement in OA symptoms 

[24]. While the parallel improvement in ANS function and OA symptoms does not prove a 

definitive link between the ANS and OA, comorbidities that tend to lead to ANS dysfunction 

(e.g., aging, obesity, diabetes) also tend to increase the incidence of OA; and therapies 

that tend to improve ANS function (e.g., exercise, weight loss) also tend to improve OA 

symptoms.

Therapeutic avenues that rebalance the ANS might achieve similar OA symptom relief as 

seen with exercise and weight loss. For example, bioelectronic stimulation of the vagus 

nerve can address low vagal tone. This could be especially beneficial for OA patients who 

lack mobility, may not be able to engage in physiotherapy or physical exercise, or may 

need initial assistance in implementing a lifestyle change to incorporate more exercise and 

activity. As with the selection of any therapeutic, the benefits of VNS must outweigh the 

known side effects [39, 40]. Therefore, additional studies are needed to evaluate the utility of 

VNS and justify its usage for OA management.

Crosstalk Between the Autonomic Nervous System and the Joint

Joint-level changes in OA are hypothesized to shift ANS function through the brain-joint 

axis, as depicted by Fig. 2. First, joint-level changes such as cartilage breakdown [41], 

synovial inflammation [42–44], and bone remodeling [4] occur in early OA. Following 
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these joint-level changes, chronic joint inflammation fails to resolve, causing sensitization 

of peripheral nociceptors. Following the sensitization of peripheral nociceptors, altered 

neuroimmune communication occurs between the OA joint and the nervous system, which 

may lead to pathologic shifts in brain-joint axis function.

The brain-joint axis is simple to describe, yet the driving mechanisms are complex: Afferent 

sensory stimuli from the joint serve as input to the axis, while feedback is relayed back 

to the joint through multiple, indirect mechanisms. These mechanisms include modulation 

of systemic cortisol levels via the hypothalamic–pituitary–adrenal (HPA) axis [45, 46], 

alteration of gut function [47], and systemic cytokine production [48] and monocyte 

trafficking [49] from the spleen, among others. In the context of OA, pathologic shifts 

in the brain-joint axis likely commence once joint inflammation fails to resolve. Specifically, 

inflammatory mediators within the OA-affected joint (such as TNF-α, IL-1ß, IL-17, and 

IL-6) sensitize joint nociceptors [50]. Such sensitization produces chronic signaling of 

peripheral nociceptors, which leads to central sensitization [6, 7]. As nociceptive signals 

increase from the joint to the brain, functional shifts may occur in other regions of the 

nervous system, including brain regions that influence ANS balance. Alterations in ANS 

balance could then derail the healthy function of the brain-joint axis, further exacerbating 

OA pathogenesis.

For dysfunction of the brain-joint axis to occur, crosstalk between the joint and the central 

autonomic network must occur, which has been shown for ANS and nociceptive inputs. 

For example, negative feedback between nociception and vagal tone has been shown in rats 

[51]. Moreover, in a limited patient cohort, indirect measures of ANS function (galvanic 

skin response) and changes in the central autonomic network were associated with chronic 

musculoskeletal pain [52]. In addition, nociception and cardiac autonomic activity, as well as 

activity in the pain matrix and central autonomic network, have been functionally correlated 

[53]. Therefore, functional shifts in the ANS and the brain’s pain centers could explain 

why ANS dysfunction is noted in multiple OA-related risk factors and common comorbid 

conditions. Unfortunately, an understanding of the mechanisms governing plastic changes to 

the brain-joint axis during OA is lacking. However, these limited findings suggest potential 

therapeutic opportunities for rebalancing the ANS in chronic musculoskeletal disease, such 

as OA.

Targeting the Autonomic Nervous System for OA Treatment

Modulating parasympathetic nervous system activity may serve as a potential treatment 

strategy for OA. Specifically, vagus nerve stimulation (VNS) can increase parasympathetic 

activity and activate various anti-inflammatory pathways that ameliorate peripheral 

inflammation [54–58, 59••]. VNS works by depolarizing vagal nerve fibers, causing nerves 

to fire and transmit both afferent and efferent signals. As shown in Fig. 2 (blue/dashed 

lines), afferent vagal signals can activate the splanchnic anti-inflammatory pathway, HPA 

axis, and other regions of the central nervous system, such as sympathetic control centers. 

On the other hand, efferent vagal signals can activate the cholinergic anti-inflammatory 

pathway and modify gut health, as shown in Fig. 2 (orange/solid lines). As a result, VNS can 
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modulate activity in multiple neuroimmune pathways that may drive a combined therapeutic 

effect in OA, as will be detailed below.

Targeting the Cholinergic and Splanchnic Anti-inflammatory Pathways

VNS can reduce peripheral inflammation, which could potentially decrease joint 

inflammation in OA. For example, VNS can decrease systemic levels of TNF-α and 

IL-1ß, while increasing levels of an anti-inflammatory cytokine (IL-10) [60]. Although OA 

alone often does not have a significant impact on systemic inflammatory levels, reducing 

systemic pro-inflammatory cytokines may relieve OA-related pain, joint damage, and joint 

inflammation [61–63]. Moreover, VNS can modify immune cell phenotypes, where VNS 

alters cell surface ligands on neutrophils and thereby decreases their ability to migrate to 

a peripheral inflammatory site [64]. Since circulating immune cells can infiltrate synovium 

to produce synovitis and synovitis is correlated to clinical OA pain, lowering immune cell 

recruitment to the OA-affected joint could be therapeutic [65, 66]. In addition, following 

collagen-induced arthritis, 15 days of VNS resulted in reduced pannus formation, less 

cartilage damage, and decreased bone resorption in the ankle [67].

Immune cells migrating to the joint environment play a critical role in the OA pathogenesis 

[68]. As such, employing therapies that can decrease the buildup of immune cells in 

the joint may be effective in treating OA. Interestingly, VNS can reduce the number of 

circulating immune cells that may migrate to a peripheral site of inflammation, such as 

the OA-affected joint. Here, VNS decreases serum levels of pro-inflammatory CD11b 

+ /Ly-6c + monocytes in mice, while keeping levels of anti-inflammatory CD11b + / 

Ly-6c − monocytes unchanged [55]. As such, VNS may reduce the levels of circulating 

pro-inflammatory monocytes that can migrate to joint tissues. VNS can also decrease the 

accumulation of inflammatory cells in peripheral inflammatory sites and alter their cellular 

phenotype. For example, VNS decreases CD11b levels on neutrophils, a beta-2 cell-surface 

ligand that assists with immune-cell chemotaxis and adhesion to tissues [64]. Chemical VNS 

produces similar anti-inflammatory results, where the accumulation of inflammatory cells 

decreased in mice ears following inflammatory lipopolysaccharide challenge [69]. Chemical 

VNS also lowered chemokines such as IL-8, CCL2, and RANTES in TNF-α-challenged 

human microvascular endothelial cells [69]. Chemokines, such as CCL2 and IL-8, play an 

important role in immune cell chemotaxis to an inflammatory site and have been implicated 

in the pathophysiology of OA [70]. However, to date, no studies have evaluated the impact 

of VNS on immune cell trafficking to the OA joint. As such, determining if VNS can alter 

joint inflammation in OA is an important next step.

Targeting the Sympathetic Nervous System

Crosstalk between the two branches of the ANS (the parasympathetic and sympathetic 

nervous system) occurs regularly to promote body-wide homeostasis. Specifically, afferent 

vagal fibers relay signals to the nucleus tractus solitarius in the brainstem, the region 

where afferent vagal signals terminate. Following the activation of the nucleus tractus 

solitarius, signals can be relayed to other regions of the nervous system, such as sympathetic 

control regions. In the case of ANS dysfunction, parasympathetic-sympathetic crosstalk 

may become dysfunctional, shifting healthy peripheral immune homeostasis. As such, better 
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characterization of the relationship between parasympathetic-sympathetic balance and the 

OA-affected joint could yield new knowledge on OA pathophysiology and encourage new 

therapeutic approaches to treat OA.

Indirect activation of the sympathetic nervous system via VNS has shown to impact 

joint inflammation; this highlights the potential for functional relationships between the 

sympathetic nervous system and OA pathophysiology. Mechanistically, afferent vagal 

signals via VNS terminate at the nucleus tractus solitarius, where they can be relayed to 

subcortical and cortical regions of the brain via ascending pathways [71•, 72•, 73–75]. 

Following the activation of ascendingpathways by VNS, activity in sympathetic control 

regions of the brain can be modulated. For example, VNS can alter activity in various 

sympathetic control regions such as the paraventricular hypothalamic nucleus [72•], locus 

coeruleus [72•], parietal cortex [71•], and cingulate cortex [71•]. Following the modulation 

of these sympathetic control regions, joint-innervating sympathetic nerve fibers can release 

norepinephrine into the joint environment [76]. Here, increases in joint norepinephrine 

levels have coincided with decreased joint inflammation following VNS in a rat model 

of arthritis [71•, 72•]. Mechanistically, increases in joint norepinephrine levels may drive 

changes to chondrocyte metabolism and result in anti-inflammatory effects. For example, 

norepinephrine decreases the production of catabolic factors in chondrocytes which promote 

cartilage degradation, a hallmark of OA that results in joint inflammation [77–79]. Apart 

from the various anti-inflammatory pathways that VNS activates to resolve peripheral 

inflammation, the information reviewed here suggests the sympathetic nervous system may 

regulate joint-level inflammation and bone remodeling under OA conditions. As a result, 

future studies that characterize the relationship between the sympathetic nervous system, 

joint inflammation, and joint structure could produce new findings on OA pathophysiology.

Dysfunction between parasympathetic-sympathetic crosstalk may increase susceptibility to 

OA or exacerbate preexisting OA. For example, both sympathetic [52] and parasympathetic 

[80, 81] dysfunction has been noted in patients suffering from chronic musculoskeletal 

disease. Moreover, in a preclinical model of OA, sympathectomy resulted in worsened 

subchondral bone remodeling [82]. Since both the parasympathetic and sympathetic nervous 

systems work in concert to promote peripheral immune homeostasis, shifts from their 

normal function may dysregulate neuroimmune homeostasis at the joint level. As a result, 

these physiological links encourage future preclinical and/or clinical studies that can clarify 

the relationship between sympathetic dysfunction and joint-level changes within the context 

of OA.

Targeting the HPA Axis

The HPA axis and the sympathetic and parasympathetic components of the ANS share 

functional relationships [45, 83]. Specifically, crosstalk between the HPA axis and ANS 

helps to coordinate stress responses, circadian rhythm [13•], immunity [84], and metabolism 

[85], among other tasks. In the case of a dysfunctional ANS, the HPA axis may also become 

dysfunctional, or vice versa. For example, physiological stressors associated with OA such 

as joint inflammation [86] and pain [87, 88] can chronically alter HPA axis homeostasis. 
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As a result, ANS dysfunction can take place in the form of parasympathetic withdrawal and 

overcompensation by the sympathetic nervous system [45, 89].

Since the HPA axis can produce strong immunomodulatory effects via control of 

endogenous glucocorticoids, dysfunction of the HPA axis via the ANS may worsen an 

already inflammatory joint environment [84]. Here, defective HPA axis coordination in 

humans and animals can increase the organism’s susceptibility to inflammatory disease [90, 

91]. These same systems also play a role in peripheral tissue circadian clocks, which have 

been suggested to be involved in OA pathogenesis [13•]. Finally, because several studies 

have reported altered cortisol levels in OA patients, a dysfunctional HPA axis may occur in 

chronic OA [92–94].

Therapies that rebalance the HPA axis may help restore immune homeostasis and reduce 

the risk of chronic comorbid disease in OA, including bioelectronic modalities such as 

VNS. For example, increasing vagal tone through VNS may alter HPA axis function in rats 

[95, 96]. However, evidence of HPA axis modulation within the context of OA is lacking. 

Nonetheless, the pathophysiological links between the ANS, HPA-axis, and VNS are clear 

enough to warrant more study.

Rebalancing the Gut-Brain-Joint Axis in OA

The ANS also plays a role in the maintenance of gut health. Specifically, the 

parasympathetic and sympathetic branches work in concert to regulate intestinal blood flow, 

intestinal permeability, and gut microbiome diversity, among other characteristics [47]. As 

such, chronic conditions that include a dysfunctional ANS could prompt pathological shifts 

in gut health. For example, a loss of gut microbiome homeostasis has been reported to 

coincide with obesity-related OA [97, 98]. Both obesity and gut dysbiosis coincide with 

common OA comorbidities and risk factors where ANS dysfunction is noted, such as 

physical inactivity [99]. Moreover, since vagal tone influences gut microbiome diversity and 

intestinal permeability, a shift in vagal function could alter gut health homeostasis.

Since the ANS influences gut wall permeability, therapies that rebalance the ANS could 

potentially help restore gut health. Specifically, decreasing intestinal wall permeability 

through VNS may reduce the amount of bacteria and toxins that leak from the gut 

into the systemic circulation, as shown in Fig. 2. For example, mice challenged with 

bacterial lipopolysaccharide showed less intestinal permeability along with lower damage 

and inflammation to the small intestine following VNS [100]. Moreover, these shifts in 

intestinal permeability were ameliorated with chemical block of acetylcholine receptors, 

demonstrating a mechanistic link between VNS, the ANS, and the gut [100]. Other groups 

have evaluated links between the gut microbiome and OA [97]. For example, animals fed 

a high-fat diet display significantly worse histological scores of knee OA, greater synovial 

fluid inflammation, greater serum lipopolysaccharide levels, and greater pathological shifts 

in gut microbiome diversity [97]. Interestingly, increased joint damage was correlated to 

decreases in Lactobacillus spp., a probiotic that protects the gut barrier [97, 101]. Since 

altered gut health correlates with OA severity, evaluating whether VNS can rebalance the 

gut-brain-joint axis is an important next step for evaluating VNS as an OA therapy.
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Clinical Applications of VNS for OA

In the clinic, VNS has achieved successful therapeutic results in other joint diseases. For 

example, VNS has been able to lower inflammation and clinical scores in patients with 

rheumatoid arthritis [58]. For OA, similar studies are still undergoing preliminary trials; 

however, one study did clinically evaluate VNS in OA patients. Here, VNS decreased 

swelling, tenderness, and joint pain in patients presenting erosive hand OA [59••]. Although 

such data is promising, erosive hand OA is generally more severe than primary OA and 

may associate with high inflammatory activity. As a result, evaluating whether the reported 

therapeutic effects of VNS occur in other OA patient populations are needed, as well as 

determining the optimal stimulation parameters for OA treatment [102].

Damping Nociceptive Input from the OA Joint into the Brain-Joint Axis

Chronic joint inflammation in OA leads to sensitization of joint nociceptors and results 

in peripheral and central sensitization. Initially, peripheral sensitization of joint-innervating 

nociceptors occurs, resulting in the increased and repetitive firing of action potentials to the 

dorsal horn of the spinal cord [5]. Moreover, prolonged peripheral sensitization can lead 

to central sensitization [6–8], resulting in the amplification of nociceptive input from the 

OA joint to the central nervous system. Sensitization of nociceptors results in chronic pain, 

but can also result in neuroplastic shifts to other physiological axes, such as the ANS. For 

example, individuals suffering from central sensitization show a dysfunctional ANS [16, 

80, 103, 104]. Since the ANS plays a key role in maintaining a healthy brain-joint axis, 

perturbations in ANS function may exacerbate OA or be a risk factor for developing OA. 

As shown in Fig. 2, a decrease in nociceptive signals from the OA joint could protect 

against neuroplastic shifts in the brain-joint axis. Several bioelectric modalities could be 

used to decrease nociceptive joint signaling, including peripheral nerve block and spinal 

cord stimulation.

Targeting peripheral nociceptive signals from the OA joint could help manage chronic 

pain and potentially protect against central sensitization. Some bioelectric therapies 

transcutaneously stimulate the joint, such as pulsed electromagnetic stimulation [105]. 

These therapies may be able to decrease nociceptive joint signaling, but they do not 

specifically target the nervous system, may not have sufficient stimulation parameters to 

directly affect the nerve, and will also apply stimulation to surrounding tissues [22, 105]. 

Bioelectric modalities that directly stimulate the nervous system could involve the use of 

high-frequency alternating current stimulation to induce a nerve conduction block [106–

109]. Here, peripheral high-frequency block has been successful in treating neuropathic pain 

in humans [110] and rats [111]. Additionally, dorsal root ganglia stimulation has been used 

as a treatment for chronic pain [112, 113] and has been successful in treating preclinical 

arthritic conditions [114, 115]. However, it is unknown whether these bioelectric pain 

treatments could also reduce maladaptive ANS plasticity resulting from chronic nociceptive 

inputs in OA. Therefore, evaluating if peripheral bioelectric stimulation could alleviate 

sensitization and protect against maladaptive ANS changes in OA should be further studied.

Beyond the peripheral nervous system, spinal cord neurons are another potential site for the 

modification of nociceptive signals related to OA. When OA causes central sensitization, 
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neurons in the dorsal horn are sensitized and interneuron circuits are modified [116]. 

Some of these neurons synapse onto ANS neurons and control ANS spinal reflexes [117]. 

Since spinal cord pain processing interacts with the ANS, these maladaptive changes at 

the dorsal horn may both exacerbate OA pathogenesis and further sensitize nociceptive 

circuits [117]. Spinal cord stimulators are thought to treat pain partially by inhibiting 

neurons in the spinal cord that control signaling related to the intensity and location of 

pain, called wide dynamic range neurons [118–121]. Additionally, spinal cord stimulation 

could inhibit the development of chronic neuropathic pain [122]. Therefore, preventing 

central sensitivity development in OA could prevent ANS dysfunction [16, 80, 103, 104]. 

Bioelectric stimulation may also directly or indirectly modulate ANS function in OA; this 

interaction warrants more examination of how central nervous system networks relate to OA 

pathogenesis.

Conclusions

Characterizations of OA pathophysiology have emphasized changes to the local joint 

environment such as cartilage loss, synovial inflammation, and bone remodeling. However, 

OA pathogenesis also involves maladaptive neuroplasticity, in the form of peripheral and 

central sensitization, which helps to drive chronic OA symptoms. In this review, we explored 

how local pathologic factors may modulate systemic ANS function and how disrupted ANS 

function may propagate both OA-related pain and pathology. Further, OA does associate 

with other common diseases and risk factors that have known autonomic dysfunction, 

including aging and obesity.

Unfortunately, while functional changes in the ANS could cause dysfunction of various 

physiological systems, such as the neuroimmune axis and/or by increasing the body’s 

susceptibility to OA, studies of the bidirectional relationship between the OA joint and 

ANS dysfunction remain limited. Bioelectronic medicine modalities such as VNS could 

potentially modulate ANS functions and activate various neuroimmune pathways such as the 

cholinergic anti-inflammatory pathway, the splanchnic anti-inflammatory pathway, and the 

HPA axis. Moreover, the parasympathetic component of the ANS could regulate gut health, 

which may also relate to OA susceptibility. Thus, VNS could both reduce OA progression or 

reduce chronic comorbid conditions with OA. Further, bioelectric strategies to block chronic 

nociceptive signals from sensitized joints in OA might also reduce the risk of pathologic 

functional shifts to the ANS. To better evaluate the potential of these therapeutic strategies in 

OA, crosstalk between the ANS and OA joint needs to be explored in more detail, including 

how neuromodulation influences OA.
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Key Points

• Dysfunction of the autonomic nervous system may be a key driver of OA 

comorbidities and thus may be a critical component of OA’s effects on overall 

health.

• Vagus nerve stimulation could activate the neuroimmune axis to decrease OA 

pathogenesis or reduce the risk of OA pathogenesis.

• Blocking chronic OA pain could protect against pathologic shifts in the brain-

joint axis and decrease the risk of chronic comorbid disease.
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Fig. 1. 
OA as a systemic disease. The traditional vicious cycle is highlighted in blue (solid lines), 

while the influence of autonomic dysfunction is highlighted in orange (dashed lines)
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Fig. 2. 
Various therapeutic pathways in which bioelectronic medicine could treat OA pathogenesis. 

Neuroimmune pathways activated via afferent vagal fibers are highlighted in blue/dashed 

lines and pathways activated via efferent vagal fibers are highlighted in orange/solid lines 

(created using BioRender.com)
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