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Abstract 

Background: The interpretation of large datasets, such as The Cancer Genome 
Atlas (TCGA), for scientific and research purposes, remains challenging despite their 
public availability. In this study, we focused on identifying gene expression profiles 
most relevant to patient prognosis and aimed to develop a method and database 
to address this issue. To achieve this, we introduced Luo’s Optimization Categoriza-
tion Curve (LOCC), an innovative tool for visualizing and scoring continuous variables 
against dichotomous outcomes. To demonstrate the efficacy of LOCC using real-world 
data, we analyzed gene expression profiles and patient data from TCGA hepatocellular 
carcinoma samples.

Results: To showcase LOCC, we demonstrate an optimal cutoff for E2F1 expression 
in hepatocellular carcinoma, which was subsequently validated in an independent 
cohort. Compared to ROC curves and their AUC, LOCC offered a superior description 
of the predictive value of E2F1 expression across various cancer types. The LOCC score, 
comprised of factors representing significance, range, and impact of the biomarker, 
facilitated the ranking of all gene expression profiles in hepatocellular carcinoma, aid-
ing in the evaluation and understanding of previously published prognostic gene sig-
natures. We also demonstrate that LOCC does not have the same assumptions required 
of Cox proportional hazards modeling for accurate analysis. Repeated sampling 
demonstrated that LOCC scores outperformed ROC’s AUC in discriminating predictors 
from non-predictors. Additionally, gene set enrichment analysis revealed significant 
associations between certain genes and prognosis, such as E2F target genes and G2M 
checkpoint with poor prognosis, and bile acid metabolism and oxidative phosphoryla-
tion with good prognosis.

Conclusion: In summary, we present LOCC as a novel visualization tool for the analy-
sis of gene expression in cancer, particularly for understanding and selecting cutoffs. 
Our findings suggest that LOCC scores, which effectively rank genes based on their 
prognostic potential, represent a more suitable approach than ROC curves and Cox 
proportional hazard for prognostic modeling and understanding in cancer gene 
expression analysis. LOCC holds promise as an invaluable tool for advancing precision 
medicine and furthering biomarker research. Further research regarding multivariable 
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integration and validation will help LOCC reach its full potential and establish its utility 
across diverse cancer types and clinical settings.

Keywords: LOCC, Cutoff, Prognosis, Gene expression, Score

Graphical abstract

Background
In the field of medicine, continuous markers play a crucial role in assessing an indi-
vidual’s health status, offering valuable information through a range of continuous 
values rather than discrete categories. These markers find extensive application in 
medical practice, aiding in diagnosis, prognosis, and treatment planning [1]. Exam-
ples of such markers include blood glucose levels, cholesterol levels, white blood cell 
count, and various biomarkers like gene expression and tumor size in cancer patients 
[1, 2].

Currently, there are clinical tests that utilize gene expression for cancer prognostic 
interpretation and treatment planning, such as Oncotype DX and Mammaprint [3, 4]. 
However, despite the excitement surrounding gene profiling for hepatocellular carci-
noma, gene signatures face challenges related to their functional connections and valida-
tion in independent cohorts, preventing their adoption in clinical settings [5–10].

Interpreting continuous markers, especially new biomarkers, can be challenging, pri-
marily when determining the optimal threshold to divide groups [11, 12]. In the clinical 
setting, knowing that variables affect outcomes is not enough as it is critical to identify 
relevant cut-offs that can be used for clinical decision-making. Traditional methods, like 
using median or quartiles, and more recent computational methods using significant p 
values, often result in a loss of information and fail to convey the full picture [1, 11, 13].

Current calculation methods, such as receiver operating characteristic (ROC) curves, 
have limitations in evaluating prognosis and outcome models effectively [14–17]. While 
ROC is useful for definitive diagnoses, it lacks discrimination and calibration in most 
prognostic studies, demanding better calculations for continuous variables and their 
outcomes [14, 15]. Moreover, interpreting the meaning of the ROC area under the curve 
(AUC) for prognosis, where values are typically around 0.6, remains unclear.
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Another commonly referenced methodology for examining the relationship between 
continuous variables and their associated outcomes is the Cox proportional hazard (Cox 
PH) model [18]. The Cox PH model is a powerful tool to analyze survival data and estab-
lish the effects of a continuous variable across an entire distribution; however, it relies on 
assumptions of proportionality and linearity [19]. As a result, its applicability to prog-
nostic studies needs to be validated as it may not always hold true [19, 20].

To address these challenges, we have developed Luo’s Optimization Categorization 
Curves (LOCC), an innovative tool that visualizes more information for improved cut-
off selection and understanding the significance of continuous variables in relation to 
measured outcomes. LOCC visualizes and uses information from the entire dataset to 
create a graph and score to explain the prognostic cutoffs and significance of the bio-
marker of interest. In this paper, we present the process of generating and interpreting 
LOCC using practical survival curve examples with real data from The Cancer Genome 
Atlas [21]. We compare LOCC with ROC curve analysis and demonstrate how LOCC 
scores better represent prognostic value in the context of gene expression, using E2F1 
as an example. Cox PH modeling was also included for comparison which highlighted 
the potential issues with assumptions of proportional hazard and linearity. Meanwhile, 
LOCC investigates the prognostic value of gene expression through categorically eval-
uating cut-offs within a continuous gene expression distribution with little reliance on 
proportionality hazards and better illustrated biomarker prognostic potential compared 
to Cox PH numbers. As a result, while the Cox PH model is often invaluable for survival 
analysis, its methodological constraints and assumption requirements make it a less 
direct comparison for LOCC and less accurate for cancer biomarker analysis. ROC AUC 
is a standard and widely accepted metric for assessing the performance of diagnostic 
tests and predictive models across various thresholds, making it a more relevant com-
parison for our LOCC approach but still we demonstrate LOCC has significant advan-
tage in interpretability and robustness compared to ROC.

Additionally, we reanalyze several published gene signatures, illustrating how LOCC 
scores effectively rank each gene’s prognostic value. Moreover, we showcase how opti-
mizing a gene signature with LOCC scores can simplify the model without compro-
mising predictive power. The consistency and robustness of LOCC scoring are further 
validated through various sampling of the TCGA dataset. Finally, we explore pathways 
associated with prognosis in hepatocellular carcinoma.

We firmly believe that LOCC can revolutionize the analysis and understanding of con-
tinuous variables in various biological settings, providing an invaluable contribution to 
medical research and biomarker analysis. Through LOCC’s enhanced visualization and 
scoring capabilities, medical professionals can better understand biomarkers and form 
hypotheses to solve medical issues.

Methods
Data sources

Our study utilized two primary data sources: The Cancer Genome Atlas (TCGA) 
data from cBioportal.com [22] and LIRI-JP (Liver hepatocellular carcinoma – Japan) 
data from the International Cancer Genome Consortium (ICGC). The TCGA data 
was processed using z-scores of gene expression analyzed by RNA-Seq by Expected 
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Maximization (RSEM). On the other hand, the LIRI-JP data was processed using Frag-
ments Per Kilobase of transcript per Million mapped reads (FPKM), which was then 
converted to transcripts per million (TPM). Subsequently, z-scores for each sample were 
computed by subtracting individual expression by mean expression and dividing by the 
standard deviation. For TCGA data, mutation data was considered as a mutant for any 
non-silent mutation, which is defined as a mutation that results in different amino acids.

LOCC visualization

To generate the LOCC ranking graphs, data was processed in R. We ordered samples by 
expression z-scores and graphed them using ggplot. As necessary, a line representing the 
selected or ideal cutoff was added.

To determine the LOCC cutoff, we considered every possible categorization that 
would result in a distinct grouping of patient samples. We then calculated the corre-
sponding hazard ratio (HR) and p values using the survival package in R. The HR was 
calculated using a Cox proportional hazard regression model, with p values evaluated 
via a log-rank test in R using survdiff function. The HR and p values were computed 
for each cutoff which resulted in at least 10% of the total population in each group. We 
selected the optimal cutoff with the lowest p value where each group had at least 10% 
of the population. We restricted the cutoffs to be at least 10% of the dataset because 
we wanted to reduce bias on the extremes from impacting the LOCC score. The cutoff 
was further verified with cutpointR [11]. For evaluation, we considered genes that were 
expressed in at least 20% of tumor samples.

In instances where numerous samples exhibited no gene expression, we applied a dec-
rement of 0.1 to both the HR value and the − log (p value) for every such sample, contin-
uing this adjustment until the HR value reached 1 and the − log (p value) reached 0. This 
adjustment served as a penalty for genes with widespread lack of expression, ensuring a 
more balanced assessment. We used these penalty numbers as they applied some reduc-
tion to the LOCC scores to these genes but not to the worst case scenario. The LOCC 
algorithm code is accessible in the data availability section.

LOCC score

The LOCC score is composed of three numeric components: a significance aspect, 
a range aspect, and an impact aspect. The three factors were chosen as they illustrate 
important insights about the data set. The significance aspect is denoted by − log (p 
value), which illustrates the greatest statistical significance possible within the data; the 
range aspect is the percentage of cutoffs with a p value below 0.01 to exemplify the gen-
eral strength of the relationship between the variables in the data set; the impact is the 
highest HR, which showcases the peak predictive power of the continuous variable. A 
p value of 0.01 was chosen for the range aspect as a p value less than 0.01 is a com-
monly used cut-off for significance in biomedical research. For significance and impact, 
the numbers are restricted to cutoffs such that at least 10% of the population is in each 
group. This restriction is to ensure that all cutoffs continue to include a substantial 
proportion of the population and to minimize the possibility of extremes and outliers 
portrayed by a nominal proportion of the sample, as these outliers are not representa-
tive of the population and can substantially skew HRp and pl values. Through extensive 
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observation of the data, we identified that 10% is the optimal restriction to ensure sta-
tistical robustness while also minimizing biases by including a substantial proportion of 
patients.

The LOCC incorporates significance, range, and impact and is calculated by multiply-
ing these three components together, represented by the equation:

where pl is the highest value of − log (p value), Rs is the percentage of cutoffs that have 
a highly significant p value (p < 0.01), and HRp is the HR at the most significant point. 
The resulting LOCC score allows for ordering of variables from lowest to highest or vice 
versa, ensuring the most significant HR is above one, or its reciprocal if the most signifi-
cant HR is below one.

For segregating poor prognostic markers from good prognostic markers, we assigned 
negative scores to all poor prognostic markers when ranking all gene expressions by 
LOCC score. Thus, the most positive LOCC scores were linked with good prognosis, 
while the most negative scores corresponded to poor prognosis. Genes expressed in at 
least 20% of tumor samples were evaluated. In the absence of gene expression in any 
tumor samples, we followed the same incremental decrease approach as mentioned in 
the LOCC visualization section.

LOCC cutoff estimated p value and q value

Traditional methods of estimating and interpreting p values would not work well for 
significance values since they are the lowest p value from a range of p values that are 
related to each other. To estimate a p value and q value for the most significant cutoffs 
for all the gene expression profiles, we applied Monte Carlo methods to estimate signifi-
cance values, pl, from randomly generated data. The randomly generated data used the 
TCGA LIHC data but instead of being ordered by gene expression values, it was ordered 
through a random number generator in R. Thus, although the data had the same sam-
ples and survival times, the order was random which made it comparable to the exist-
ing results. We then calculated the LOCC scores for this randomly generated data and 
recorded it. We did this 10,000 times to have a large enough dataset to compare to the 
existing results.

Using these 10,000 random simulations, we can estimate the p value according to the 
empirical p values calculations [23]. Afterward, we used the empirical p values generated 
to calculate q values using the qvalue package in R. These q values are False Discover 
Rate (FDR) adjusted p values.

Cox PH modeling

We employed Cox proportional hazards (Cox PH) regression modeling to assess the 
association between gene expression levels and overall survival in patients. The analysis 
was performed using the R programming language with the survival package.

We constructed Cox PH models for each gene by treating the gene expression level as 
the predictor variable.

The primary Cox PH model assumed a linear relationship between gene expression 
and the hazard of death. To test for non-linearity, we also fit a secondary Cox PH model 

LOCC Score = pl ∗ Rs ∗HRp
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that included a quadratic term for gene expression. We then performed a likelihood ratio 
test to compare the linear and quadratic models, calculating a p values to evaluate the 
evidence for non-linearity.

To verify the proportional hazards assumption, we conducted a Schoenfeld residuals 
test using the cox.zph function, which provides a p values indicating whether the pro-
portional hazards assumption holds for each gene. If the p value from this test was less 
than 0.05, it suggested a violation of the proportional hazards assumption.

For each gene, we stored the following statistics in a global summary table: the regres-
sion coefficient, the exponentiated coefficient, the standard error of the coefficient, the 
z-value, the p value for the gene’s effect on survival, the p value from the non-linearity 
test, and the p value from the proportional hazards test. The analysis was performed for 
each gene across the entire dataset, resulting in a comprehensive evaluation of the poten-
tial prognostic significance of gene expression levels with respect to overall survival.

ROC curve

Upon processing the patient and tumor data, Receiver Operating Characteristic (ROC) 
curves were constructed using the ROCR package in R. The Area Under the Curve 
(AUC) was estimated using ROCR, which took into account overall survival, excluding 
patients with incomplete survival or expression data. For comparative purposes, a red 
line representing sensitivity = (1− specificity) was included. To align with LOCC score 
ranking, we associated the highest AUC with good prognosis and the lowest AUC with 
poor prognosis. However, individual gene expression profiles or gene sets were required 
to have an AUC above 0.5. We evaluated genes that were expressed in at least 20% of 
tumor samples.

RISK gene signature

We applied the risk score analysis for hepatocellular carcinoma from a previous study 
[24] using the same gene expression and weight coefficients. Cox regression analysis was 
performed with the Cox proportional hazard package in R, and ROC analysis was con-
ducted using the ROCR package. The proportionality assumption was verified using the 
function cox.zph. We selected patients who survived at least one month for ROC calcu-
lations. We used the Akaike information criterion (AIC) to assess the relative quality of 
models during Cox regression modeling, calculating AIC using extractAIC. In particu-
lar, for the original RISK gene signature and the 8-gene RISK gene signature, we used 
cox regression proportional hazard modeling of patient survival with gene expression 
profiles of the original RISK or the 8-gene RISK. We then used extractAIC to find the 
AIC of this modeling. This AIC is the relative quality of the model with a lower number 
being higher quality relative to the number of variables. Gene expression correlations 
were derived from cBioportal.com [22].

2‑Fold cross validation of TCGA dataset

For the twofold cross validation, the TCGA hepatocellular data set was randomly split 
into two random halves; one half was used to calculate the relevant cut-offs, whereas the 
other half was used for validation. The procedure is as follows: first, we randomly sam-
pled half of the TCGA hepatocellular carcinoma data. With this half, we processed the 
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data and calculated LOCC scores, cutoffs, and ROC c-statistics. The ROC c-statistic is 
equivalent to the ROC AUC. We then examined the generalizability of our calculations 
by examining its validity within the other half of the dataset. This twofold cross valida-
tion procedure was replicated 100 times for each gene under evaluation. The cutoff with 
the lowest p value was chosen and tested in the validation set. The validation p value was 
recorded and deemed significant if it fell below 0.05.

Gene set enrichment analysis (GSEA)

After we ranked all genes by their LOCC score in hepatocellular carcinoma, we analyzed 
these genes and LOCC scores using pre-ranked GSEA to understand what pathways are 
associated with prognosis. Utilizing pre-ranked GSEA, we investigated hallmark gene 
sets and ranked them by their false discovery rate (FDR). FDR is a proven method to 
identify and minimize false positives; compared to its alternatives, FDR has been shown 
to be a more powerful and consistent approach, and its applicability to computational 
biology and genomics has been illustrated in prior research [25]. Additionally, the nor-
malized enrichment score (NES) and p values were recorded.

To evaluate gene sets without overlapping genes, we identified and removed all over-
lapping genes between the gene sets. Then we used a custom gene set in pre-ranked 
GSEA to evaluate the FDR, NES, and p values. This will reduce the chance that a gene set 
is significant only due to other genes from another significant gene set.

We also evaluated gene sets of randomly selected genes to ensure p values followed 
a uniformed distribution. We generated 100 gene sets of 200 randomly selected genes 
from the TCGA expression list. We used GSEA preranked with LOCC scores to evaluate 
the p values from these gene sets. We compiled the p values and graphed them in Micro-
soft Excel and used a line of best fit to evaluate uniformity.

Results
LOCC demonstrates E2F1 expression is associated with a poor prognosis in hepatocellular 

carcinoma

To demonstrate the utility of LOCC, we used TCGA data to showcase how LOCC can 
help analyze the role of transcription factor E2F1 in liver hepatocellular carcinoma 
(TCGA LIHC). E2F1 is an important transcription factor that has roles in cell cycle, 
DNA repair, and even apoptosis [26, 27]. E2F1 can bind p53 to induce apoptosis and 
can also be inhibited by the retinoblastoma protein (Rb) to arrest the cell at the G1/S 
checkpoint [26, 27]. As such, E2F1 is an important target in cancer where it is often 
overexpressed.

LOCC offers a comprehensive visualization of multiple parameters for continuous 
variables (refer to Supplemental Fig. S1 for detailed LOCC labeling). The initial graph, 
the LOCC ranking, presents the values of the continuous variable versus the ranking 
of all samples. In our instance, we plotted E2F1 z-score expression in the tumor sam-
ples on the y-axis, and the sample rankings on the x-axis (Fig. 1A). We employed the 
z-score because various datasets adopt different standardization methods for RNA-Seq 
data, hence, we used a normalization method to approximate the distribution. We also 
highlighted gene mutations in different colors to observe if they affect gene expression.
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The LOCC cutoff selection graph, which plots the hazard ratio at every single cutoff 
(Fig.  1B), reveals that the hazard ratio (black line) is nearly always above 1 (red line), 
suggesting that higher E2F1 expression consistently correlates with a worse prognosis in 
LIHC.

The critical inquiry is whether E2F1 expression is truly significant at any point. To 
address this, we supplemented a second line, defined by its own y-axis scale, − log (p 
value), on the hazard ratio graph (Fig. 1C). When the yellow line (representing − log (p 
value)) lies above the green line, it is statistically significant (p < 0.05), and above the red 
line is very significant (p < 0.01). Hence, the ideal cutoff should be within the top 50% to 
75% of E2F1 expression. Using the lowest p value approach, a cutoff at 61.6% is calcu-
lated to produce the lowest p value. The appropriateness of this cut-off can be confirmed 
via visual inspection. Simultaneously, the precise E2F1 expression (z-score = − 0.305) at 
this cutoff can be visualized using the first graph shown in Fig. 1A. We also generated a 
Kaplan–Meier curve at that cutoff to evaluate its appropriateness and calculate median 
survival (Fig. 1D, E). Previous literature corroborates the prognostic marker role of E2F1 
gene expression in hepatocellular carcinoma using a median expression cutoff [28].

We have also developed a LOCC score to help judge significance and overall impact of 
any single or group of predictors. Three factors are multiplied together to get the LOCC 
score: the significance, the range, and the impact. The significance value is calculated 
by taking the − log (lowest p value). The range is the percentage of LOCC significance 
line (yellow line) that is above the red line (p < 0.01). Finally, the impact is the HR at the 
most significant cutoff (if HR is below 1, use the reciprocal). We also limit group sizes for 
significance and impact to be at least 10% of the population to minimize extreme effects 
from small samples. Thus, the higher the LOCC score, the more critical and predictive 
the expression is for prognosis. In our evaluation of E2F1, the LOCC score was calcu-
lated to be 2.58 (Fig. 1C), signifying there is some prognostic value in this dataset. In the 
following sections, the scale of the LOCC score will be established.

We generated a ROC curve using E2F1 expression and survival status (Fig. 1F). With 
an area under the curve (AUC) of 0.578, this implies a heightened risk of death with 
increasing E2F1 expression. Interestingly, we observed that the red line for LOCC 
(HR = 1) and ROC (True Positive Rate = False Positive Rate) are derived from the same 
underlying equation (Supplemental Fig. S2A–E). If the HR line remains above the red 
line throughout the graph, then the ROC curve will also be above the red line of random 

(See figure on next page.)
Fig. 1 LOCC demonstrates E2F1 is associated with a poor prognosis in TCGA hepatocellular carcinoma A The 
z-score expression of E2F1 from TCGA hepatocellular carcinoma patient samples was ordered in descending 
order and plotted against the ranking of the samples. Samples with mutations of E2F1 that modify the 
characteristics of their corresponding amino acids (non-silent mutations) are colored in orange while samples 
with wildtype E2F1 are colored turquoise. B A black line depicting the hazard ratio is plotted for every cutoff 
for E2F1 expression. A red horizontal line is placed at HR = 1.0. C A yellow line depicting the − log (p value) 
is added to the graph to display the significance of each cutoff. The red horizontal line is also aligned with 
p = 0.01 while the green horizontal line is aligned with p = 0.05. The cutoff with the lowest p value is selected 
to be the ideal cutoff, indicated by the arrow which corresponds to a z-score of − 0.305. D A Kaplan–Meier 
overall survival curve is plotted at the ideal cutoff to separate patients into high or low E2F1. E A data table 
of the details of the groups is shown. Patients’ survival times are expressed in months. P values are calculated 
using log-rank test. HRs are calculated using Cox proportional hazard regression. F A ROC is plotted for E2F1, 
and the AUC was calculated
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classifier. Thus, the relative positions (above/below) of the black and red lines should be 
similar in both LOCC and ROC curves.

Fig. 1 (See legend on previous page.)
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Validation of E2F1 as prognostic biomarker in the LIRI‑JP hepatocellular dataset

Following the identification and establishment of a significant cutoff in the TCGA data, 
validation in another hepatocellular carcinoma cohort is necessary. To achieve this, 
we utilized data from the International Cancer Genome Consortium (ICGC), which 
includes a large Japanese cohort of liver hepatocellular carcinoma (LIRI-JP). The LIRI-JP 
data provides normalized read counts, represented as Fragments Per Kilobase of tran-
script per Million mapped reads (FPKM), which differ from the RNA-Seq by expectation 
maximization (RSEM) used by TCGA. While it is feasible to reprocess both dataset’s raw 
data with the same programs to achieve a consistent expression format, this would be a 
highly demanding process. Therefore, we opted to use the normalized z-score to approx-
imate the cutoff, despite its imperfections, which should give us a relative comparison of 
expression between patients.

Taking the E2F1 cutoff of -0.305 z-score established in the TCGA training, we applied 
this to the validation cohort (Fig. 2A). Employing LOCC, we evaluated the significance 
and appropriateness of this cutoff (Fig. 2B). Despite the TCGA cutoff not being the low-
est p value of this dataset, the cutoff remains highly significant, indicating the cutoff is 
still appropriate. We then generated a Kaplan–Meier plot using the TCGA cutoff, to 
compare the survival curves of the two groups (Fig. 2C). Given the significant survival 
differences observed in both TCGA and LIRI-JP cohorts using the same cutoff (Fig. 2D), 
it’s reasonable to propose that E2F1 is a prognostic biomarker for LIHC, associated with 
poor prognosis. The LOCC score, calculated to be 18.9 (Fig. 2B), implies strong prognos-
tic potential of E2F1 in this dataset.

The ROC curve indicates an AUC of 0.614, suggesting increased death risk associated 
with higher E2F1 expression. However, determining the significance of this predictor or 
the optimal, significant cutoffs is challenging through the ROC curve alone. Therefore, 
the utility of ROC in evaluating E2F1 expression as a prognostic biomarker is limited 
compared to LOCC.

Comparison of ROC and LOCC in evaluating prognostic biomarkers

The use of ROC curves and their corresponding Area Under the Curve (AUC) is ubiq-
uitous in biomarker studies and prognostic modeling [14, 15]. However, the application 
and interpretation of ROC graphs and the c-statistic (or AUC) for prognostic purposes 
raise questions. In diagnostics, the c-statistic is akin to the probability that a randomly 
selected subject who experienced the event will have a higher test score than a subject 
who did not [29]. For prognosis, it represents the likelihood that a patient who suc-
cumbed to the disease had a higher test score than a patient who survived. Although 
appropriate for diagnosis, the interpretation of c-statistics is challenging for prognosis, 
as the binary classification of patients as alive or dead is oversimplistic for overall sur-
vival and unsuitable for censored and time-dependent data. Even the time-dependent 
ROC, designed to address this issue, still struggles with censoring [30].

LOCC, on the other hand, utilizes a cox regression model and examines hazard ratios 
between groups. Patients are classified into two categories based on the biomarker, ena-
bling us to evaluate the hazard ratio and associated p values. Similar to ROC, LOCC 
is applied across all potential cutoffs and the resulting hazard ratios and p values are 
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Fig. 2 Validation of E2F1 as prognostic biomarker in the LIRI-JP hepatocellular dataset A The z-score 
expression of E2F1 from LIRI-JP hepatocellular carcinoma patient samples was ordered in descending order 
and plotted against the ranking of the samples. A horizontal line is graphed at -0.305 to separate patients 
into high and low E2F1 groups using the TCGA dataset cutoff. B The LOCC cutoff selection was graphed for 
LIRI-JP samples. The cutoff from TCGA data was used to separate patients into high and low E2F1 groups. 
C A Kaplan–Meier overall survival curve is plotted at the validation cutoff to separate patients into high or 
low E2F1. D A data table of the details of the groups is shown. Patients’ survival times are expressed in days. 
P values are calculated using log-rank test. HRs are calculated using cox proportional hazard regression. E A 
ROC is plotted for E2F1 and the AUC was calculated
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plotted to identify the optimal cutoff. This process aids not only in the selection of the 
cutoff but also enables us to assess changes in the hazard ratio across the biomarker’s 
range.

To compare LOCC’s and ROC’s ability to evaluate prognostic biomarkers in various 
cancers, we investigate E2F1 cut-offs within LIHC, Sarcoma (SARC), pancreatic ductal 
adenocarcinoma (PAAD), kidney renal papillary cancer (KIRP), and lower grade glioma 
(LGG). Different cancer types should presume different cut-offs since their gene expres-
sion and prognostic distributions differ; what is considered “high” or “low” expression 
for each cancer type is expected to vary based on intrinsic differences between the 
cancers.

The TCGA SARC dataset [31] presents an ROC curve for E2F1 expression with an 
AUC of 0.576 (Fig. 3A). While the AUC for E2F1 expression in LIHC appears similar, 
the LOCC graph reveals notable differences, with a LOCC score for sarcoma E2F1 of 
only 0.11 (Fig.  3B), much lower than the 2.58 for E2F1 in LIHC. The main difference 
lies in the p values and significant ranges, whereas the hazard ratios (HR) were com-
parable. Once the most significant cutoff was chosen, a Kaplan–Meier curve was plot-
ted (Fig. 3C). Despite the low LOCC score, the prognosis value of E2F1 in sarcoma is 
less robust than E2F1 in hepatocellular carcinoma, in stark contrast to the similar ROC 
c-statistics.

In the TCGA PAAD dataset [32], we plotted the ROC curve for E2F1, yielding an AUC 
of 0.646 (Fig.  3D). With a comparably high AUC and a LOCC score of 3.00 (Fig. 3E), 
both indices increased from the SARC data. However, the HR for both cancers at the 
most significant cutoffs was approximately 2.0, with the difference in p values across the 
LOCCs leading to discrepancies in scores. Using the most significant cutoff, a Kaplan–
Meier plot showed significant stratification using E2F1 expression (Fig. 3F).

In the TCGA KIRP dataset [33], the ROC curve for E2F1 revealed an AUC of 0.623 
(Fig. 3G). While the KIRP ROC curve appears similar to the PAAD curve at first glance, 
LOCC provides a contrasting view, identifying a high-risk group among the top 20% of 
E2F1 expression, while cutoffs near the median were marginally significant (Fig.  3H). 
With a LOCC score of 9.04, this indicates a high prognostic potential for E2F1 in this 
dataset, if the correct cutoff is employed. The Kaplan–Meier curve confirms that a small 
proportion of KIRP patients exhibit significantly higher risk with increased E2F1 expres-
sion (Fig. 3I).

Lastly, the TCGA LGG data [34], was evaluated with the ROC curve for E2F1, result-
ing in an AUC of 0.614 (Fig. 3J). Despite a lower AUC compared to PAAD and KIRP, 
the LGG LOCC score of 32.5 was significantly higher, demonstrating that most cutoffs 
were highly significant (Fig. 3K). This is evident in the Kaplan–Meier curve, which iden-
tifies two distinct patient groups based on E2F1 expression (Fig. 3L). Consequently, E2F1 
expression is a significant prognostic predictor in LGG, a finding that has prompted fur-
ther research into targeting this pathway [35].

While cancer types vary, ROC AUC values remain relatively similar, whereas LOCC 
values vary. These variabilities in LOCC correctly exemplify differences in the gene 
expression distributions between these cancer types. ROC AUC values seem to fluctu-
ate minimally and somewhat randomly with no clearly defined meaning within its fluc-
tuations, whereas LOCC scores vary based on prognostic potential. Notably, E2F1 HR 
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Fig. 3 Comparison of ROC and LOCC in evaluating prognostic biomarkers A A ROC curve is plotted and 
the AUC was calculated for TCGA SARC E2F1. B LOCC was plotted and scored for SARC E2F1. C The most 
significant cutoff was selected and a Kaplan–Meier plot was graphed to illustrate the best stratification 
according to E2F1 in SARC. D A ROC curve is plotted and the AUC was calculated for TCGA PAAD E2F1. E LOCC 
was plotted and scored for PAAD E2F1. F The most significant cutoff was selected and a Kaplan–Meier plot 
was graphed to illustrate the best stratification according to E2F1 in PAAD. G A ROC curve is plotted and the 
AUC was calculated for TCGA KIRP E2F1. H LOCC was plotted and scored for KIRP E2F1. I The most significant 
cutoff was selected and a Kaplan–Meier plot was graphed to illustrate the best stratification according to 
E2F1 in KIRP. J A ROC curve is plotted and the AUC was calculated for TCGA LGG E2F1. K LOCC was plotted 
and scored for LGG E2F1. L The most significant cutoff was selected and a Kaplan–Meier plot was graphed 
to illustrate the best stratification according to E2F1 in LGG. Abbreviations and symbols: TCGA – The Cancer 
Genome Atlas, SARC – Sarcoma, PAAD – Pancreatic ductal adenocarcinoma, KIRP – Kidney renal papillary cell 
carcinoma, LGG – low grade glioma, pl is − log (p value) at most significant cutoff, Rs is percentage of cutoffs 
that have a highly significant p value (p < 0.01), HRp is the HR at the most significant cutoff
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values were all greater than 1 across the entire distribution of all 5 cancer types mean-
ing that higher E2F1 is associated with worse prognosis at all points though of different 
statistical significance and hazard ratios. As a result, LOCC not only correctly identifies 
that E2F1 is associated with poor prognosis in all of these cancers but it also provides 
additional insight into the gene expression distribution and prognostic power through 
the absolute value of its score.

LOCC score helps rank prognostic importance of predictors

First, we applied LOCC analysis and scoring to all gene expression profiles in TCGA 
LIHC (Supplemental Table 1). Furthermore, we demonstrate that the top prognostic cut-
offs identified by LOCC are statistically significant even after adjusting for multiple test-
ing through Monte Carlo methods of simulation of random permutations of the dataset 
to estimate empirical p values and q values (Supplemental Table  1 and Supplemental 
Table 2).

Next, we demonstrate the Cox PH analysis in cancer biomarker analysis has a few crit-
ical flaws which limit its appropriateness in ranking predictors. We performed Cox PH 
analysis for all gene expression of LIHC (Supplemental Table 3). Some of the top ranked 
genes by Cox PH p value include GAGE family genes which are aberrant expressed genes 
in cancers [36]. However, only a minority of tumor samples have expression of GAGE 
genes and many other aberrant expressed genes and this is not clear on the Cox PH anal-
ysis summary (Supplemental Fig. S3A, B). LOCC analysis also rank many of these genes 
near the top of the list but not nearly as high due the limitation that it is only expressed 
in a minority of samples (Supplemental Table  1). Furthermore, LOCC analysis clearly 
show that these genes have duplicate gene express levels, a sign of non-expression.

The larger issue with Cox PH analysis is that it has two major assumptions which can 
lead to skewed results if they are violated [20, 37]. In the situation of cancer biomark-
ers, this is a significant issue as 52 of the top 100 significant genes by Cox PH p value 
for LIHC have violation of at least one assumption of proportional hazard or linearity 
(Supplemental Table  3). To demonstrate how this can affect accurate portrayal of the 
prognostic value of predictors, we compare two gene expression, POLR2H and TBP, 
which have similar Cox PH p values of 0.049 but differing LOCC scores of 0.0097 and 
1.1, respectively.

For POLR2H, both assumptions of proportional hazard and linearity are not being vio-
lated (p > 0.05) and thus the Cox PH p value is appropriate (Supplemental Fig. S3C, D). 
However, using LOCC, we can see that this biomarker has little very significant cutoffs 
and a small portion in the significant range (Supplemental Fig. S3E). As such, its LOCC 
score is very low at 0.0097 suggesting this gene has little prognostic potential.

For TBP, both assumptions of proportional hazard and linearity are violated (p < 0.05) 
in this dataset which suggest the Cox PH p value may not be accurate (Supplemental 
Fig. S3F, G). Violation of the proportional hazard means that the relationship between 
the covariate and the hazard rate is not constant over time, which can lead to incorrect 
or misleading estimates of hazard ratios in the Cox PH model. Violation of the linearity 
assumption indicates that the relationship between a continuous covariate and the log 
hazard is non-linear which can lead to biased estimates of hazard ratios and incorrect 
conclusions about the effect of the covariate. However, it is not clear if this will lead to 
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overestimation or underestimation of the p value but simply that Cox PH analysis may 
be inaccurate. Using LOCC, we can visualize what is happening with TBP that is causing 
problems with Cox PH analysis. Violation of the proportional hazard leads to varying 
hazard ratios over time which may be seen in highly fluctuating hazard ratios on the 
LOCC graph seen in Supplemental Fig.  S3H. Similarly, violation of linearity is visual-
ized in LOCC when hazard ratios show significant inflection points. In this scenario, 
the LOCC is better in assessing the prognostic potential of the predictor since certain 
portions of the gene expression range are useful for prognostic evaluation while other 
portions are not. Cox PH uses the entire range which is not appropriate in this sce-
nario when only a certain portion is prognostic significant. Biologically, this can occur 
for many reasons such as needing a threshold for pathway activation or where overex-
pression of a gene has diminishing effects. LOCC visualization show TBP is significantly 
associated with poor expression at high expression but that low expression is not associ-
ated with good prognosis. Cox PH modeling only show that the assumptions are violated 
and thus fails to provide accurate commentary regarding the prognostic potential of this 
biomarker.

LOCC scores also have better prognostic interpretability and understanding compared 
to ROC score. With the LOCC score, a marker scoring zero signifies a lack of prognostic 
value; an AUC of 0.5 in the ROC score system also implies no predictive value. Yet, the 
threshold for the ROC AUC is nebulous as almost all genes register an AUC above or 
below 0.5.

We utilize TCGA hepatocellular carcinoma data to compare the prognostic value of 
LOCC scores vs AUC scores and confirm their validity by comparing identified prog-
nostic biomarkers with previous literature. The following thresholds were established 
for this analysis; LOCC scores > 0.1, > 1, and > 8. An LOCC score above 0.1 means there 
exists some highly significant prognostic cutoff; an LOCC score greater than 1 means 
that the corresponding cancer biomarker has a sizable range of highly significant cutoffs 
(> 10%) along with other appropriate significance values and hazard ratios for biomarker 
consideration; an LOCC score above 8 represents the top 1% of LOCC scores in this 
TCGA LIHC dataset and these biomarkers have the highest potential prognostic value.

We evaluated 18,789 genes within TCGA hepatocellular carcinoma. 5398 (28.7%) 
showed LOCC scores above 0.1 or below − 0.1, 2455 (13.1%) had LOCC scores above 
1 or below − 1, and 214 (1.1%) had LOCC scores above 8 or below − 8 (Fig. 4A, Sup-
plemental Table  1, Table  1). With these percentages, we identified ROC AUC cutoffs 
that pinpointed a similar proportion of genes. An ROC AUC above 0.54 or below 0.46 
encompassed 6301 (33.5%) genes; an ROC AUC above 0.56 or below 0.44 included 
2731 (14.5%) genes; an ROC AUC above 0.60 or below 0.40 contained 203 (1.1%) genes 
(Fig.  4B, Supplemental Table  1, and Table  1). Absolute AUC cutoffs of 0.54, 0.56, and 
0.60 corresponded most closely to absolute LOCC scores of 0.1, 1, and 8; these thresh-
olds were utilized to compare the predictive power of LOCC scores vs AUC scores and 
assess the potential for enrichment.

Notably, LOCC has a clear correlation between absolute value and predictive power 
and a clear score cut-off for delineating prognostic potential. A LOCC score of zero 
suggests no cutoffs can achieve highly significant prognostic importance (p < 0.01). A 
LOCC score of 1 may indicate potential prognostic value, as this score corresponds to 
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a substantial proportion (~ 0.1–0.2) of highly significant cutoffs (Supplemental Table 1). 
In contrast, the literature lacks a clearly defined set AUC for prognosis, which is instinc-
tively challenging to establish as evidenced in the example above.

Four recent publications describe prognostic gene signatures using the TCGA hepato-
cellular carcinoma dataset [24, 38–40]. These works identify 34 distinct genes potentially 
useful as hepatocellular carcinoma predictors. However, the predictor overlap between 
the four publications is minimal, with only two genes (SPP1 and LECT2) found common 
in two of the datasets.

We believe this discrepancy stems from the use of Least Absolute Shrinkage Selector 
Operator (LASSO) regression, which selects good predictors without offering a holistic 
view of the disease landscape. The variability among different publications indicates a 
need for a better approach to understand the full picture of hepatocellular carcinoma 
predictors. To help better understand the full picture of hepatocellular carcinoma pre-
dictors and their importance, we identified these 34 genes by their ranking by LOCC 
score and ROC AUC to investigate any trends.

We summarize the categorization of scores of all ranked genes and the 34 different 
genes in Table 1 and the full data regarding individual predictor genes in Supplemental 
Table 4. The trend is that 34 predictor genes are clustered at the top of LOCC scores and 
ROC AUC. However, it appears that the LOCC score better explains the selection of 
gene predictors. Using a cutoff of absolute LOCC score greater than 1, there were 2455 
genes (13.1% of all genes) fitting that condition and contain 28 of the 34 predictor genes 
(Table 1). Meanwhile, using a cutoff of absolute ROC AUC greater than 0.56, there were 
2731 genes (14.5% of all genes) fitting that condition and also contain 28 of the 34 pre-
dictor genes (Table 1). Using a cutoff of absolute LOCC score greater than 8 or absolute 
ROC AUC over 0.60 yields 214 genes (1.1% of total). Of the top 214 LOCC score genes, 
14 of them were from the 34 gene predictors (Table 1). On the other hand, of the top 
203 genes by ROC AUC (AUC > 0.6) there were only 9 out of the 34 predictors (Table 1). 
Finally, the average percentile of gene predictors in each gene signature was lower using 
LOCC score ranking compared to ROC AUC ranking (Supplemental Table 4).

Thus, while it appears that the gene predictors were clustered near the top of both 
scores, the LOCC score consistently better explained the selection of the gene predic-
tors. In particular, we compare the ROC AUC and LOCC visualization and score for the 
KIF20A, a predictor in one of the published gene signatures [24] (Fig. 4C–E ). The ROC 
AUC of KIF20A is 0.60, which is in the top 200 but its LOCC score is 46.8, the highest of 
all ranked genes. From the LOCC visualization, there is one very distinct peak and there 
is a very significant survival difference between the groups using that cutoff (Fig. 4D, E).

Next, we demonstrate even among the predictors in the gene signatures, LOCC score 
can help select which genes are contributing significantly or not as significantly. We 
used LOCC scoring to rank the 12 individual genes from a previously published prog-
nostic gene signature (RISK) in hepatocellular carcinoma [24]. We found the top eight 
gene expression by LOCC score (KIF20A, TTK, TPX2, LCAT, SPP1, HMMR, CYP2C9, 
ANXA10) had a significantly higher LOCC score than the other 4 genes (LOCC 
Score < 0.05 and  log10 LOCC p value < 0.05, Table 2). ROC AUC of the 12 genes were all 
between 0.57 and 0.62 with 10 genes between 0.59 and 0.62 though the top 8 were signif-
icantly higher in ROC AUC than the bottom 4 genes (p < 0.05, Table 2)[24]. Meanwhile, 
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cox regression analysis also found a significant difference in the − log (p value) between 
the 8 genes from LOCC analysis and the other 4 genes (p = 0.0007, Table 2).

We tested if this new gene signature (8-gene RISK) would be as useful as the original 
12 as it contained the most significant genes according to LOCC, ROC, and cox regres-
sion. To do this, we used the same weight coefficient as the original article and used it to 
calculate the 8-gene RISK score [24]. Indeed, we found that the optimized gene signature 

Fig. 4 LOCC score helps rank prognostic importance of predictors A Genes were evaluated and ranked 
by ROC AUC. B Genes were evaluated and ranked by LOCC score. C The ROC curve is shown for TCGA 
hepatocellular carcinoma KIF20A expression and the AUC is calculated. D The LOCC cutoff selection is 
graphed for TCGA hepatocellular carcinoma KIF20A expression. E A Kaplan–Meier curve is plotted for KIF20A 
at the most significant cutoff. Patients’ survival times are expressed in days. P values are calculated using 
log-rank test. HR are calculated using Cox proportional hazard regression
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had a similar p value and HR between the high and low risk groups compared to the 
original 12 gene signature (Supplemental Fig.  S4A–E). Furthermore, the LOCC score, 
AUC of the ROC curves, and cox regression analysis of the 8-gene RISK and original 
12-gene RISK produced very similar numbers. (Supplemental Fig. S4D–G). Finally, the 
Akaike information criterion (AIC), a number to measure relative model quality, shows 
that the 8-gene RISK score is a similar if not better predictor model (Supplemental 
Fig. S4E). Overall, from the extensive analysis and comparisons, we believe the gene sig-
nature from the top 8 genes by LOCC score is non-inferior to the original 12 gene signa-
ture demonstrating LOCC score ability to decipher the key predictors.

While the LOCC score is correlated with the cox regression p values and ROC AUC 
(Supplemental Fig. S4A, B), we believe LOCC score provides more information, particu-
larly for prognosis. One example of the difference between the cox regression p value 
and LOCC score is the rankings of KIF20A, TTK, and TPX20. Although the three gene 
expression profiles are strongly correlated (Supplemental Fig.  S4D, E), LOCC scoring 
values very significant cutoffs while cox regression and ROC AUC favor having a more 
consistent HR (Table 2). While the LOCC score does favor significant cutoffs, it is not as 
singular as using only the most significant cutoff as required by some established meth-
ods [11, 13]. Instead as a hybrid score, LOCC is more holistic and can function with-
out adjustment, though future studies will be needed to evaluate LOCC score utility in 
more gene expression prognosis analysis. However, we argue that LOCC score better 
represents the overall gene signature. This can be seen as KIF20A and TTK are ranked 
higher by LOCC score than TPX2 while TPX2 has higher ROC AUC and cox regression 
p value than both KIF20A and TTK (Table 2). When we compare the LOCC visualiza-
tion of the original 12-gene or 8-gene RISK signature (Supplemental Fig. S3A, B), both 
the HR and significance lines more closely resemble the LOCC visualization of KIF20A 
and TTK compared to TPX2 (Fig. 4D, Supplemental Fig. S4F, G). This suggests that the 
contribution of KIF20A and TTK are likely more significant than TPX2 in shaping the 
overall prognostic gene signature.

Variability and reproducibility of LOCC scores and ROC AUC 

To scrutinize the consistency and reproducibility of LOCC scores and ROC AUC, we 
explored the gene expression of three distinct prognostic markers within a diverse sam-
pling of the TCGA dataset. The markers selected include KIF20A, which has the highest 
LOCC score and is a critical predictor in the RISK score[24] (Fig. 4C–E), E2F1, a verified 
prognostic indicator presented in Fig. 1 and 2; and MTHFR, a marker previously identi-
fied in a hepatocellular carcinoma prognostic gene set [38] (Supplemental Fig. S6A, B). 
The LOCC scores and ROC AUC of KIF20A, E2F1, and MTHFR respectively are 46.7, 
2.58, 0.01 and 0.604, 0.578, 0.528 (Supplemental Table 5). The trends revealed by these 
scores suggest a coherent pattern among the three genes, a pattern that we aim to sus-
tain and clarify in random samples from the dataset.

twofold cross-validations were utilized to examine the generalizability and variabil-
ity of the data set. Upon conducting a 100 twofold cross-validation, we discerned that 
the general trend was maintained across all features investigated, yet the degree of 
variability differed by feature (Fig. 5A–F). Significant HR, highest − log (p value), and 
percent highly significant each demonstrated a preserved trend with non-overlapping 
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Fig. 5 Variability and Reproducibility of LOCC Scores and ROC AUC A The 8-gene modified RISK score was 
ordered in descending order and plotted against the ranking of the samples. A horizontal line is graphed at 
2.00 to separate patients into high and low risk groups using ideal LOCC cutoff. B The LOCC cutoff selection 
was graphed for the 8-gene RISK score using TCGA hepatocellular data. The most significant cutoff was 
chosen to separate patients into two groups. In addition, another cutoff at 1.077 was selected for dividing 
patients into three groups. C A Kaplan–Meier overall survival curve is plotted at the validation cutoff to 
separate patients into high or low risk score. D A comparison of the RISK score of 8 leading genes by LOCC 
score and the original 12 gene RISK score is shown. The lowest p value and hazard ratio (HR) are selected 
with a minimum of at least 10% of the total samples in each group. E Low risk patients are further stratified 
using the LOCC cutoff selector into middle and low risk. A corresponding Kaplan–Meier graph is plotted for 
the three different risk group. Patients’ survival times are expressed in months. P values are calculated using 
log-rank test. HR are calculated using Cox proportional hazard regression
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interquartile ranges (Fig. 5A–C and Table 2). The best cut, determined by the cutoff 
with the most significant p value, exhibited considerable variability for MTHFR, mini-
mal for E2F1, and virtually none for KIF20A (Fig. 5D and Supplemental Table 5). The 
LOCC scores effectively differentiated between the three genes though with signifi-
cant variability for KIF20A (Fig. 5E and Table 2). Finally, ROC AUC exhibited consid-
erable variability but also had considerable overlap between E2F1 and KIF20A AUC 
(Fig. 5F and Table 2).

Comparison of features between the full dataset and individual samples reveals 
several patterns (Table  2). The significant HR is relatively consistent between the 
full dataset and the samples. However, the highest − log (P value) and percent highly 
significant are considerably lower in the samples, a foreseeable outcome given the 
dependency of p values on the number of samples. Consequently, the LOCC scores 
are on average lower in the samples as compared to the full dataset. The ROC AUC 
was similar on average between the samples and the full dataset but demonstrated 
substantial variability among individual samples. The optimal cutoffs were similar for 
the full dataset and individual samples, with the exception of MTHFR, which exhib-
ited three distinct clusters of points, leading to the discrepancy (Fig.  5D). Further, 
leveraging the twofold cross validation, we were able to investigate the “validation 
success rate” of our data set. The validation success rate represented the percentage of 
the twofold cross-validation that exhibited p < 0.05 when using the full data best cut-
off. This percentage represents the probability that the calculated LOCC cutoff can 
be replicated or validated in miniature cohort; if the twofold cross-validation success 
rate is high, then the likelihood of validation using similar methods is high as the vari-
ance within the data set is low, and if the twofold cross-validation success rate is low, 
then the likelihood of validation using methods is low due to high variance within 
the data set. With this approach, we examined the validation success rate of KIF20A, 
E2F1, and MTHFR. Their validation success rates were 100%, 62%, and 1%, respec-
tively. Notably, KIF20A successfully passed every twofold cross-validation while E2F1 
passed the majority, but MTHFR only managed 1% of the twofold cross-validations, 
suggesting its limited utility as a prognostic predictor (Supplemental Table 5).

To better illustrate certain samples, we chose three from MTHFR and KIF20A for 
further investigation using LOCC (Supplemental Fig. S6C, D). By comparing the visu-
alization of the full dataset MTHFR and the three samples of MTHFR, we observed 
both similarities and distinctions (Supplemental Fig.  S6A, C). The most dramatic 
changes occur at the edges, yet each sample bears resemblance to the full data-
set. KIF20A, on the other hand, showcases a distinct peak at the high score group 
(Fig.  5D), a feature retained in all its samples (Supplemental Fig.  S6D). High peaks, 
marked by the yellow significant line, imply that the cutoff is more resilient to sam-
pling bias, offering another interpretation of p values. However, we did notice edge 
noise, particularly in sample 3 of KIF20A. Despite the high HR at the right edge, the 
yellow line does not surpass the red line. As such, the optimal cutoff remains the same 
as the original where the yellow line peaks around 0.20. In conclusion, we believe 
LOCC visualization and scoring effectively upheld their integrity during the variabil-
ity and reproducibility sampling, underscoring their utility as computational tools for 
the analysis and comprehension of cutoffs and prognostic predictors.
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Individual gene expression and gene signatures associated with prognosis 

in hepatocellular carcinoma

While individual gene expression profiles are interesting biomarkers for diseases, it is 
of greater biological relevance to understand which pathways are of prognostic signifi-
cance, which can be achieved through LOCC analysis. Leveraging LOCC scores, we 
can rank each gene based on its prognostic potential. Then, by utilizing GSEA, we can 
determine the key physiological pathways and gene sets associated with the individual 
genes identified by LOCC. While LOCC classifies the prognostic value of individual 
genes, further examining LOCC scores with GSEA allows us to discern which gene 
sets and pathways are crucial for prognosis. We applied this approach to hepatocellular 
carcinoma, scoring 18,789 genes with LOCC, out of which 10,145 genes exhibited non-
zero LOCC scores. Employing these LOCC scores (Supplemental Table 1), we utilized 
GSEA pre-rank enrichment to identify their associated prognostic pathways and gene 
clusters. A handful of hallmark pathways emerged as significantly relevant (Fig. 6A, B, 
Supplemental Table 6). In particular, G2M checkpoint and E2F targets correlated with 
poor prognosis, while bile acid metabolism and oxidative phosphorylation were linked 
to good prognosis (Fig. 6C–F). These findings align with previous research [39], further 
confirming the validity of the LOCC scores. However, our method also flagged oxidative 
phosphorylation, which was likely overlooked in the prior study as they focused on con-
trasting gene expression patterns between two groups, rather than examining all genes 
in a continuous manner.

To ensure the robustness of our GSEA model, we also examined possible redundancy 
and overlap between gene signatures. Between bile acid metabolism and oxidative phos-
phorylation, we identified only 4 overlapping genes and over 100 distinct genes within 
each gene set. As such, its redundancy is negligible and will have minimal to no impact 
on GSEA. On the contrary, hallmark E2F targets and G2M checkpoints have significant 
overlap with 73 overlapping genes and 127 distinct genes in each gene set (Supplemen-
tal Fig. S7A). We conducted a secondary GSEA to determine whether overlapping gene 
signatures would meaningfully impact our GSEA results. When overlapping genes are 
removed, we observe very similar NES, p values, and FDR values for each gene set (Sup-
plemental Fig. S7B, C), illustrating that the overlapping portion of genes does not signifi-
cantly alter the overall analysis and confirming that G2M checkpoint and E2F targets are 
associated with poor prognosis.

We also performed validation that the p values from preranked GSEA of randomly cre-
ated gene sets followed an expected uniform distribution of p values. We generated 100 
gene sets of up to 200 genes per set and performed preranked GSEA using LOCC scores 
which did demonstrate an uniform distribution of p values (Supplemental Fig. S7D, Sup-
plemental Table 6). As such, the very low p values for the top Hallmark pathways associ-
ated with prognosis are unlikely to due to pure chance.

Discussion
In this study, we introduce LOCC, an innovative visualization tool that depicts the dis-
tribution, significance, and hazard ratios associated with a continuous variable. This ena-
bles the selection of an optimized cutoff or multiple cutoffs while surveying the entire 
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Fig. 6 Individual gene expression and gene signatures associated with prognosis in hepatocellular 
carcinoma A The most significant poor prognosis gene sets from GSEA are shown. Gene sets are sorted by 
FDR (False Discovery Rate). B The most significant good prognosis gene sets from GSEA are shown. Gene sets 
are sorted by FDR (False Discovery Rate). C The enrichment plot of the hallmark G2M checkpoint is shown. 
D The enrichment plot of the hallmark E2F targets is shown. E The enrichment plot of the hallmark bile acid 
metabolism is shown. F The enrichment plot of the hallmark oxidative phosphorylation is shown
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range of potential cutoffs. While this study investigates hepatocellular carcinoma, LOCC 
is not limited to analysis within cancer. LOCC can analyze any data set containing a con-
tinuous variable and its corresponding prognostic outcomes. In this study, we’ve dem-
onstrated the applicability of LOCC towards elucidating the relationship between gene 
expression and hepatocellular carcinoma prognosis. However, we anticipate that LOCC 
may be applied towards a broad spectrum of carcinomas and even other diseases as a 
tool to examine the relationship of a continuous variable and its prognostic outcomes.

LOCC offers several advantages over prior methods, especially ROC curve and Cox 
PH model analysis for prognosis. By fusing the hazard ratio and p value into a single 
graph, the significance and impact of a variable can be comprehended simultaneously. 
We established that LOCC holds more informative content compared to ROC curves 
through direct comparison. In the context of prognosis, sensitivity, specificity, and the 
c-statistic are challenging to interpret, while HR and p values are straightforward. LOCC 
analysis is not also limited by the assumptions that are required by Cox PH to have accu-
rate results. Thus, we propose the LOCC visualization and scoring tool as a valuable 
resource for the analysis of many continuous variables to outcome analyses, potentially 
outperforming ROC curves and Cox PH analysis [17].

We suggested the LOCC score as a representative metric for ranking variables by sig-
nificance, range, and impact. Using a combination of three variables, we can generate a 
score to help pinpoint the most significant variables related to the outcome. This score 
represents our attempt to numerically encapsulate the comprehensive LOCC visualiza-
tion for ease of understanding and sorting. The LOCC score outperforms ROC for prog-
nostic studies, as the AUC has a relatively small range and large variability in sampling 
tests. Even though both LOCC score and ROC AUC assist in enriching prognostic gene 
predictors, the LOCC score demonstrated superior enrichment performance for gene 
predictors. A notable difference is LOCC’s incorporation of significance into its scor-
ing, which aids in determining valuable predictors of outcome, while ROC AUC cut-
offs appear arbitrary. The inclusion of significance, range, and impact into the LOCC 
score allows LOCC to more effectively portray the prognostic value of a biomarker; a 
biomarker with no prognostic value will always score a low LOCC score and vice versa. 
Additionally, biomarkers with an LOCC score of zero can easily be categorized as having 
little to no prognostic value; the ROC AUC approach does not clearly delineate what is 
considered a significant vs insignificant prognostic number. As noted previously ROC 
AUC cutoffs are arbitrary at best, and ROC AUC cutoffs are not always correlated with 
prognostic potential. As a result, the LOCC score better characterizes the relationship 
between a gene set and prognostic outcomes. All in all, LOCC is a more practical, robust 
approach for prognostic evaluation.

As discussed previously, the Cox PH model has also been utilized to characterize prog-
nostic studies, but its reliance on the assumption of proportionality and linearity across 
an entire distribution within a data set limits its practicality and feasibility. The Cox PH 
model often overlooks cutoffs identified by LOCC as the Cox PH model is unable to 
account for non-proportional associations within datasets [41]. In many cases, particu-
larly in complex biological prognostic studies, continuous variables hold predictive value 
at certain ranges but do not hold linearity and proportionality across an entire data dis-
tribution, which can cause biased estimates and misleading information when relying on 
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the Cox PH model [19, 37]. This can be seen in our specific examples of when assump-
tions of Cox PH model was violated leading to misleading p values. The LOCC model 
resolves this limitation by employing an alternative approach; by identifying specific cut-
offs within the data set that hold significant prognostic value, we can measure the pre-
dictive power of a data set with or without an assumption of proportionality. Further, the 
LOCC is able to pinpoint specific cut-offs with the greatest prognostic relevance. As a 
result, LOCC provides a more practical realistic methodology to accurately examine the 
prognostic power of continuous variables and their associated outcomes.

There are still challenges in the bioinformatics field regarding the categorization of 
continuous variables. Within the context of cancer and gene expression, LOCC can 
assist in ranking variables and visualizing the relevance of the variable and outcome, but 
its multi-variable integration needs refinement. In our example, we utilized weighted 
coefficients from the original study that applied LASSO (Least Absolute Shrinkage 
Selector Operator) regression. Given that many models like LASSO employ single 
weight approaches, novel methods might be necessary for selecting and weight variables 
for optimal LOCC score and prognosis prediction [42]. This notion stems from the fact 
that LASSO regression may omit potentially active predictors, especially if predictors 
are correlated or if the number of predictors isn’t significantly larger than the number of 
samples [42, 43]. We saw this kind of issue where several studies used LASSO regression 
to select prognostic gene signatures for hepatocellular carcinoma with minimal overlap-
ping genes. Furthermore, these prognostic gene signatures often lack biological signifi-
cance or understanding, leading others to ignore them. Ideally, a gene signature should 
be prognostic and contain elements that can be interpreted individually or as a group. In 
addition, we plan to integrate other aspects of cancer data such as cancer stage and age 
of the patient to better characterize prognostic markers. Therefore, the challenge of find-
ing a superior method for integrating these variables remains [44].

A notable advantage of LOCC is its ability to visualize the selection process and haz-
ard risks, comparable to showing one’s work in mathematics. This allows the audience 
to understand which cutoffs are selected, how they were chosen, and how the valida-
tion process succeeded or faltered. Despite many calculations being computer-based, it 
becomes easier to validate others’ work by checking if LOCC graphs align. Moreover, 
when validation doesn’t proceed as expected, it is possible to visualize what went wrong, 
such as the absence of a peak or a weaker than expected signal. Consequently, LOCC 
can supplement existing and future prognosis studies by presenting a complete overview 
of the predictor or biomarker, increasing the audience’s confidence.

Limitations

One main limitation of LOCC is that there is while cut-offs are ranked in order, this 
could be of very minor numerical difference in the continuous variable. A small change 
in the continuous variable could lead to large relative ranking changes and some effects 
on the overall LOCC graph and score. However, with large samples and internal sam-
pling, this limitation will likely be minor. Additionally, future methods could include a 
noise validation test to introduce a noise multiplier to simulate noisy measurements in 
the real-world though additional experiments should be performed to determine how 
much noise to signal is present in the model.
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LOCC does heavily rely on the best specific cutoff for its rankings which can be prob-
lematic. However, the LOCC score includes a range component, helping to counteract 
overfitting at a specific cutoff. One aspect of LOCC that is both a limitation and ben-
efit is the dependency on the p value, meaning that large datasets can perform better 
with significance. However, it is also an advantage to incorporate p values to assist in our 
understanding and selection of prognostic predictors. Ultimately, the best way to verify a 
predictor is through external validation with another separate dataset.

Finally, this work is primarily focused on the univariate analysis of LOCC. We know 
that univariate analysis using gene expression has limitations in understanding and pre-
dicting prognosis in the big picture of cancer; however, we do demonstrate that LOCC 
has advantages over ROC and Cox PH in our univariate analysis, a good sign for future 
development of LOCC. Multivariable visualization and integration will be helpful in bet-
ter understanding and prognostic modeling of cancer biomarkers but extensive work 
and comparisons will be required to incorporate these aspects.

Conclusion
LOCC serves as a powerful visualization and prognostic tool, adept at representing the 
extensive data of continuous variables in relation to survival or prognosis. It facilitates 
the selection of optimal cutoffs and provides a comprehensive analysis of the relation-
ship of the variable with a particular outcome. The LOCC score excels in pinpointing 
variables that correlate with survival, and its capacity to rank predictors has proven 
instrumental in elucidating prognostic genes and pathways. Further, when paired with 
GSEA, it can be used to identify key physiological pathways which may substantiate our 
understanding of the biological underpinnings of prognosis and survival. Serving as a 
viable alternative to ROC curves and Cox PH for prognosis, LOCC brings forth superior 
visualization and scoring capabilities, consequently providing a deeper insight into pre-
dictors and outcomes with better reliability and clarity.
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