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Abstract 

Background  Fusobacterium nucleatum (F. nucleatum) is one of the key tumorigenic bacteria in colorectal cancer 
(CRC), yet how F. nucleatum is involved in colorectal cancer carcinogenesis remains unknown.

Results  In the present study, we carried out PathSeq analysis on RNA sequencing data from the 430 primary colon 
adenocarcinomas in TCGA database to assess the relationship between patients’ survival and F. nucleatum abundance. 
Among patients with cecum and ascending colon tumors, we found that F. nucleatum transcriptome abundance 
is positively correlated with mutation load. We further demonstrated that patients with both high tumoral abundance 
of F. nucleatum and high mutation load exhibited poorer survival and DNA damage. We furthermore determined 
that F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in both in vitro and in vivo studies. In addi-
tion, two F. nucleatum-secreted mutagens, namely DL-homocystine and allantoic acid, were identified to lead to DNA 
damage.

Conclusions  Our finding delineates the genotoxicity of F.nucleatum-secreted mutagens, which provides a basis 
for further work to investigate the role of F. nucleatum in the pathogenicity of CRC.
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Introduction
The cancer-associated microbiota is known to influ-
ence many types of cancer development and progression 
[1–5], most notably in colorectal cancer (CRC) [6–10]. 
Unbiased genomic analyses have revealed an enrichment 
of F. nucleatum in human colon cancers and adenomas 
relative to non-cancerous colon tissues [11–13]. Stage-
specific analyses showed that the relative abundance of 
F. nucleatum exhibited a progressive increase from early 
to late stages of carcinogenesis [11, 13]. These observa-
tions have been confirmed in studies of multiple CRC 
patient cohorts from different parts of the world [13–17]. 
Although F. nucleatum was first recognized as a pas-
senger bacterium [18], emerging experimental findings 
supported a mechanistic role of F. nucleatum in driving 
tumorigenesis rather than acting as a microbial ‘pas-
senger’ in CRC [19, 20]. Suggested the mechanisms 
included enhanced tumor cell metabolism, proliferation 
and metastasis [21–24], induced inflammation and sup-
pressed the host immunity [25, 26], activated autophagy 
to confer resistance to chemotherapy [27] and reduced 
the efficiency of chemotherapy via the Toll-like receptor 
4 (TLR4) pathway [28].

In the past few years, the understanding of the inter-
play between bacterial infection and genomic DNA 
damage has greatly increased [29–35]. Recent studies 
have demonstrated that pro-tumorigenic gut bacteria 
are associated with CRC development, and it has been 
postulated that some of these bacteria could contribute 
to enhanced mutagenesis [11, 12, 30]. Bacterial geno-
toxins could increase genome instability, result in DNA 
adducts [29, 35] and affect the host histone modification 
[36], which is critical to DNA repair after the DNA dam-
age, ultimately promoting tumorigenesis. A well-known 
example is colibactin, a potent genotoxin that has cap-
tured the attention of both biologists and chemists due to 
its significant effect on human health and its potentially 
causative role in CRC initiation and progression [31, 32, 
34]. New studies demonstrated a direct link between 
exposure of human intestinal epithelial cells to colibac-
tin and two unique mutational signatures, single-base 
substitutions (SBS) and deletion [37, 38]. Furthermore, a 
significant step further by utilizing organoids to observe 
transformation has shown that cells exposed to colibac-
tin-producing Escherichia coli (E. coli) for three hours 
could proliferate independently of the Wnt signal, a pre-
cursor to cancer and the mechanism is related to chro-
mosomal restructuring [39].

Epidemiological studies demonstrated that F. nuclea-
tum-high colonic lesions (either malignant or pre-malig-
nant) bear certain mutations (BRAF, kirsten rat sarcoma 
virus (KARS), tumor protein p53 (TP53) and others) 
[16]. FadA, a novel adhesin of F. nucleatum, is shown to 

promote DNA damage and progression of F. nucleatum-
induced CRC [40], indicating that F. nucleatum may pro-
mote genome instability and mutation. Chromosomal 
instability (CIN) is a major type of genomic instability, 
in which either the whole or parts of chromosomes are 
duplicated or deleted, leading to a range of karyotypic 
abnormalities and playing a complex role in cancer pro-
gression [41, 42]. One main form of CIN, the recurrent 
missegregation of whole chromosomes during cell divi-
sion, leads to aneuploidy, a hallmark of most solid tumors 
[43], and a high level of CIN phenotype showed signifi-
cantly poorer survival than the low in CRC [44]. These 
data and researched mice experiments support that there 
are links between F. nucleatum and chromosomal insta-
bility [45]. Although scientists have long reported that 
F. nucleatum is involved in CRC development, underly-
ing mechanisms of how F. nucleatum leads to CRC ini-
tiation and development remained unknown as none of 
the mutagens or genotoxins has been identified from F. 
nucleatum.

With the completion of The Cancer Genome Atlas 
(TCGA) program, the amount of sequencing and expres-
sion data of different cancer types is gradually increas-
ing. Our previous work in metagenomic profiling in CRC 
revealed an interacting network of oral pathogens [46, 
47], which could serve as non-invasive markers for the 
early detection of CRC [48]. Pertinent to clinical practice, 
faecal microbe F. nucleatum is a non-invasive marker for 
colorectal adenoma and cancer [49]. In this study, we 
combined the TCGA dataset analysis, untargeted metab-
olites, and experiments in vitro and in vivo to analyze and 
identify the components of DNA damage secreted by F. 
nucleatum.

Results
F. nucleatum abundance in CRC tumor is correlated 
with poor survival and DNA damage
A total of 430 primary colon adenocarcinoma samples in 
TCGA cohort were included in the PathSeq analysis. We 
first explored the relationship between the abundance 
of bacteria and mutation load (Supplementary Fig. 1). F. 
nucleatum transcriptome abundance is positively corre-
lated with mutation load (log10 number of non-synon-
ymous somatic mutation per samples, Spearman’s test, 
R = 0.25, p = 0.0051) (Fig. 1A). Among the identified bac-
teria, F. nucleatum ranked among the top five in correla-
tion with mutation load (Supplementary Fig. 1). Patients 
with both high tumoral abundance of Fusobacterium and 
high mutation load exhibited poorer survival (Fusobac-
terium relative abundance > 50th & mutation load > 2, 
p = 0.015) (Fig.  1B). Characteristics of colorectal cancer 
patients with high or low F. nucleatum relative abundance 
were summarized in Supplementary Table  1, indicating 
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that patients with high F. nucleatum abundance are more 
likely to exhibit microsatellite instability (MSI), CpG 
island methylation abnormalities (CIMP-high and CIMP-
low), as well as CMS1 (CIMP-high and MSI) and CMS2 
(high somatic copy number alterations) phenotypes. 
Notably, three patients exhibited an abundance exceed-
ing 10% in F. nucleatum, coupled with a mutation rate 
surpassing 2.5. The characteristics of these patients were 
summarized in Supplementary Table  2. To mitigate the 
impact of these outliers, we conducted a sensitivity analy-
sis by excluding these three patients. The remaining data 
still exhibited a significant positive correlation between 
F. nucleatum abundance and mutation load (Spearman’s 
Rho = 0.17, p-value = 0.03). Additionally, the survival 

rate was notably lower for patients with higher levels of 
F. nucleatum and mutation load (Log-rank Mantel-Cox 
test, p-value = 0.02) (Supplementary Fig.  2), indicating a 
potential impact of F. nucleatum on the host’s DNA insta-
bility. There are total 3571 genes that are differentially 
expressed between F. nucleatum-high (above the median) 
and F. nucleatum-low groups (below the median) (Wil-
coxon test, p < 0.05). By KEGG pathway analysis (Fig. 1C), 
high F. nucleatum relative abundance-associated genes 
enriched in DNA damage-related pathways (homologous 
recombination). A distinct gene expression profile was 
identified in colorectal cancer samples with high levels 
of Fusobacterium nucleatum. Specifically, we observed 
an upregulation of 11 genes, namely HUS1B, CCNB3, 

Fig. 1  F. nucleatum abundance in CRC tumors is correlated with poor survival and DNA damage A Spearman’s correlation of F. nucleatum relative 
abundance (RA) with mutation load (log10 number of non-synonymous mutation per sample) in TCGA colon adenocarcinomas (COAD). B 
Kaplan–Meier curves of patient’s overall survival from TCGA-COAD based on F. nucleatum load (determined by PathSeq analysis) and mutation 
load. P values were determined by the Log-rank Mantel-Cox text. High F. nucleatum load: F. nucleatum RA values (> 50 percentile); low F. nucleatum 
RA values (< 50 percentile). High mutation load: log10 number of non-synonymous mutation per sample > 2: low mutation load: log10 number 
of non-synonymous mutation per sample < 2. C High F. nucleatum RA-associated genes enriched in DNA damage-related pathways. D Differential 
gene expression in High- and Low F. nucleatum samples
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FOSL1, BCL6, PLAU, RAC3, CDK2, BIK, RAD52, KRAS, 
and MIR374B. These genes are known to be involved in 
the DNA damage response or are recognized as onco-
genes, highlighting their potential role in tumorigenesis 
[50–60].

Conversely, we found that 7 genes, including FOXO3, 
WNT2B, TCF7, MAPK10, BAX, WNT5B, and SESN1, 
were downregulated in samples with high levels of 
Fusobacterium nucleatum. Intriguingly, these genes 
are reported to have functions related to DNA damage 
repair [61–67], suggesting that their downregulation 
could impair the cell’s ability to repair DNA damage, 
thereby contributing to the progression of the disease 
(Fig.  1D). Taken together, our results showed that F. 
nucleatum in primary CRC tissues is associated with 
DNA damage and patients’ survival.

F. nucleatum induces DNA damage in vitro and in vivo
We then investigated whether F. nucleatum could 
induce DNA damage by comet assay in  vitro, which 
is a useful technique in the detection of DNA dam-
age, particularly DNA strand breaks [43] (Fig. 2A, B). 
Colonic epithelial cells co-cultured with F. nucleatum 
showed a significant increase in the % of DNA tail 
(Fig.  2C, E) and DNA tail moment (Fig.  2D, F) com-
pared with those without bacteria co-incubation or 
co-cultured with the non-pathogenic strain of E. coli 
as controls. Quantification of integrated intensities 
from single cells or Western blots with whole-cell 
lysate showed that F. nucleatum infection caused an 
elevation of γ-H2AX immunofluorescence intensity, 
foci number per cell (Fig.  2G–J), and protein levels 
(Fig. 2K, L, Supplementary Fig. 3). Further, we adopted 
a mouse intestinal loop model [29] to assess whether F. 
nucleatum could induce DNA damage in  vivo. Colon 
loops were infected with F. nucleatum (1 × 109  CFU/
per 300  µl) or brain heart infusion (BHI) broth as 
control for 6  h (Fig.  2  M), separately. Western blot 
analyses of colonocytes indicated increased γ-H2AX 
in the intestinal loops infected with F. nucleatum as 
compared with BHI (Fig.  2N). To substantiate these 
results, a second in  vivo mouse experiment was then 
conducted to evaluate the mutagenic role of F. nuclea-
tum on CRC initiation. In the mouse chronic infection 
model, 6-week-old C57BL/6 male mice infected with F. 
nucleatum by oral administration for 30 weeks showed 
a significant DNA damaging effect than the BHI con-
trol group (Fig. 3A). During the experiment, the abun-
dance of F. nucleatum increased following oral gavage 
from the 8th week onwards. Notably, at the 20th and 
30th weeks, the F. nucleatum group exhibited a signifi-
cant elevation in abundance compared to the control 

Fig. 2  Exposure to F. nucleatum induces host DNA DSBs. Colon 
cancer cell lines SW480 and HCT116 were exposed to F. nucleatum 
(MOI = 50) or E. coli (MOI = 100) for 4 h per day under anaerobic 
conditions for 3 consecutive days. Cell lines SW480 and HCT116 
were then harvested and subjected in neutral comet assay A, 
B and DSBs were quantified by DNA in tail C, E and DNA tail 
moment D, F γ-H2AX immunofluorescence stain was visualized 
by the confocal images of γ-H2AX (green) and DNA (blue) in cell 
line SW480 G and cell line HCT116 (I). H, J Fold change of γ-H2AX 
were compared by Wilcoxon rank-sum test. K, L γ-H2AX protein level 
was performed by Western blots. M C57BL/6 mice were anesthetized 
by intraperitoneal administration of ketamine and xylazine and their 
abdomen were disinfected with ethanol immediately before surgery. 
A midline laparotomy was performed, and a ligation was performed 
under the caecum and the other ligation was performed 
around 3 cm away from the first ligation. BHI, F. nucleatum, Fn.CM 
and metabolites were injected into the colon loop. After inoculation, 
the incision was closed. Mice were euthanized 6 h after surgery. 
The fraction of colon between two ligations were collected for DNA 
damage assay. N DNA damages were assayed by Western Blot. 
***p ≤ 0.001; **p ≤ 0.01; *p < 0.05; NS, not significant. Results of A-L 
were derived from three independent experiments
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group (Supplementary Fig.  4). We then set out whole 
genome sequencing to explore the potential specificity 
of F. nucleatum-induced DNA damage by determining 
the characteristics of somatic structural variation in 
the mouse colon tissue (Fig.  3B). It is interesting that 
we identified signatures of somatic alterations conse-
quential to double-strain breaks, including insertion, 
deletion, and inversion, in mouse colon tissues with F. 
nucleatum infection but not that from the BHI group 
(Fig.  3C). These results indicate that F. nucleatum 
could induce DNA damage in colonic epithelial cells, 
in the colon loop model and in mice.

F. nucleatum‑conditioned medium (Fn. CM) induces DNA 
damage in vitro and in vivo
To understand more precisely how F. nucleatum induces 
DNA damage, we next explored whether such an effect 
could be attributed to F. nucleatum itself or its secreted 
products. Fn. CM was obtained by removing F. nuclea-
tum with a 0.22  μm syringe filter and subsequently 
exposed to CRC cells. Comet assay and Western blots 
for γ-H2AX indicated that CM of F. nucleatum (Fn. 
CM) but not the control medium induced DNA damage 
(Fig. 4A–H). To test whether Fn. CM exhibits DNA dam-
age in vivo, we used a mouse colon loops model. Again, 
Western blot results showed elevated γ-H2AX in the 
intestinal loops in Fn. CM group than that from BHI con-
trol group (Fig. 2N), suggesting that the DNA damaging 

effect of F. nucleatum was mainly mediated by the bacte-
ria-secreted molecules.

Identification of the F. nucleatum‑secreted mutagen in Fn. 
CM
To determine the characteristics of the mutagen(s), 
the DNA-damaging effect of the digested or heat-
inactivated Fn.CM was then assessed by comet assay 
and γ-H2AX protein expression in both SW480 and 
HCT116 cells. As shown in Fig.  5, DNA damage was 
still increased in cells exposed to Fn. CM with or with-
out protease K digestion (Fig. 5A) or heat inactivation 
(Fig. 5B), indicating that the mutagen(s) in the Fn. CM 
was non-protein and heat stable. To determine the 
molecular weight of the mutagen(s), the Fn. CM was 
separated using 3-kDa MWCO membranes. Western 
blots and comet assay showed that < 3  kDa fractions 
exhibited the DNA-damaging effect compared with the 
control group (Fig.  5C–E). These data indicated that 
molecules of < 3 kDa in size that were released from F. 
nucleatum induced DNA damage in colon cells.

To further identify the F. nucleatum-secreted muta-
gen in < 3-kDa fractions of Fn. CM, we performed 
untargeted metabolomic analysis (using LC–MS/MS). 
A significantly higher levels of 9 metabolites, includ-
ing DL-homocystine, allantoic acid, diketogulonic 
acid, butyrylcarnitine, L-acetylcarnitine, ornithine, 
3-hydroxyvaleric acid, D-ornithine, and ascorbala-
mic acid were identified by volcano plot (Fig.  6A) and 

Fig. 3  F. nucleatum induces DNA damage in vivo. C57BL/6 mice were administered with antibiotics through drinking water for 2 weeks. Then mice 
were administered with 108 CFU F. nucleatum or PBS 5 times per week for 30 weeks by gavage. A DNA of colon tissue was extracted and performed 
whole genome sequence. B Pipeline of whole genome sequencing analysis. C Comparison of the number of different structure variations 
between F. nucleatum samples and control samples. BND: break-end; DEL deletion, DUP Duplication, INS Insertion, INV Inversion. ***p ≤ 0.001; 
**p ≤ 0.01; *p < 0.05; NS, not significant; Wilcoxon rank-sum test
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heatmap (Fig. 6B). Among these, DL-homocystine and 
allantoic acid were associated with F. nucleatum from 
KEGG pathway enrichment and were found to ele-
vate γ-H2AX protein levels (Fig. 6C) and γ-H2AX foci 
number (Fig.  6D) in SW480 cells, indicating that DL-
homocystine and allantoic acid might be responsible 
for inducing DNA damage in vitro. Importantly, in the 
colon loop model, DL-homocystine and allantoic acid 
exhibited DNA damaging property as shown by West-
ern blots (Fig. 6E). The above results indicated that DL-
homocystine and allantoic acid from < 3  kDa fractions 
of Fn. CM have mutagenic property.

Discussion
According to the latest Global Cancer Statistics, colo-
rectal cancers account for about 10% of all 19.3 million 
new cancer cases globally, and about 9.4% of all 9.9 mil-
lion deaths [68]. The intestinal microbiota, as an impor-
tant driver of health and disease, is closely associated 
with both the development of colorectal cancer and the 
efficacy of anti-tumor immunity [69, 70]. Tumorigenic 
bacteria can damage DNA via inducing DSBs in epi-
thelial cells, triggering cell-cycle arrest, activation of 

DNA repair pathways, apoptosis, and senescence [29, 
71]. DSBs is the most dangerous type of DNA damage. 
Although host cells have two distinct DNA DSBs repair 
mechanisms, namely homologous recombination (HR) 
and non-homologous end-joining (NHEJ), if deployed 
in an inappropriate cellular context, DSBs will lead to 
genetic instability, gross chromosomal rearrangement 
and accumulation of mutations, which in turn enhance 
cancer development if these mechanisms are impaired 
[72, 73]. Our TCGA cohort analysis showed that F. nucle-
atum transcriptomic abundance is positively correlated 
with mutation load. DNA damage response-related genes 
are also differentially expressed between F. nucleatum-
high and F. nucleatum-low in primary CRC tissues. F. 
nucleatum-secreted molecules also exhibited genotoxic 
properties according to the γH2AX assay. Importantly, 
long-term F. nucleatum infection increased the number 
of somatic structural variation (insertion, deletion and 
inversion) in mouse colon tissue.

Previous studies by others support a positive role of F. 
nucleatum in CRC development and progression [11, 74]. 
Our study results showed that F. nucleatum in primary 
CRC tissues has a close relationship with DNA damage 

Fig. 4  F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in vitro. Colon cell lines SW480 and HCT116 were exposed to F. nucleatum 
or Fn. CM for 3 consecutive days. DNA damage was assayed by neutral comet assay A, D and quantified as DNA in tail B, E and DNA tail moment (C, 
F). G, H Protein levels of γ-H2AX were assessed by Western blots. ***p ≤ 0.001. Results were derived from three independent experiments
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and poorer patients’ survival. Consistent with TCGA 
cohort analysis, F. nucleatum induced DNA damage in 
CRC cells. Our in  vitro experiments were mainly con-
ducted on two colon cancer cell lines, including HCT116 
and SW480. It has been reported that DUOXA2, which 
may contribute to chronic inflammation and reactive 
oxygen species (ROS)-related DNA damage, was strongly 
upregulated in human colonic epithelial cells in response 
to F. nucleatum [75], suggesting that F. nucleatum not 
only induced DNA damage in colorectal cancer cells but 
also in normal colon cells. Additionally, we verified that 
Fusobacterium nucleatum induces DNA damage in the 
normal human colon cell line, NMC460. There is a tight 
relationship between DNA damage and alteration in epi-
genetic characteristics [76–78]. While our research did 
not specifically delve into the epigenetic modifications of 
HCT116 and SW480 cells in response to Fusobacterium 
nucleatum, it has been reported that epigenomic altera-
tions of H3K27ac sustained in HCT116 at 24  h follow-
ing initial infection with F. nucleatum [79]. Seldom study 
reported the epigenetic modifications in SW480 cells in 
response to Fusobacterium nucleatum. Future studies 
could benefit from incorporating an analysis of these epi-
genetic characteristics to provide a more comprehensive 
understanding of the mechanisms.

Further experiments demonstrated the DNA-dam-
aging effect of F. nucleatum was mainly caused by 

bacteria-secreted mutagens in the Fn. CM. Metabolites, 
as a powerful identification tool, have been in the spot-
light for cancer diagnosis, monitoring, and therapy in 
biological samples [80]. In our further study, the muta-
genic properties of DL-homocystine and allantoic acid 
in the subfractions of Fn.CM were confirmed combined 
with the untargeted metabolites analysis. DL-homocys-
tine is the double-bonded form of homocysteine, study 
showed that excessive level DL-homocystine fed could 
induce tibial dyschondroplasia (TD) in broiler chicks [81] 
and could lead to platelet adhesion and intimal hyper-
plasia in the hyperhomocystinemia rat carotid endar-
terectomy (CEA) model [82]. Studies have shown that 
Allantoic acid inhibited the AllR DNA binding motif to a 
lesser extent, which determined actinorhodin and unde-
cylprodigiosin production, in Streptomyces coelicolor 
[83]. Our results suggested that DL-homocystine and 
allantoci acid fractions secreted by F. nucleatum have 
the mutagenic property of inducing DNA double-strand 
breaks. In colorectal cancer, up to 15–20% of cancers 
carry alterations in defective DNA damage response [84–
86]. Combined with the results our TCGA data analysis, 
the changes of these two metabolites DL-homocysteine 
and allantoic acid, and their DNA damage effects explo-
ration may be of great significance to the early diagnosis 
and prevention of colorectal cancer in the future and may 
help guide the pathological mechanisms and targeted 
treatment of CRC occurrence and development.

Conclusions
In conclusion, F. nucleatum transcriptomic abundance 
is positively correlated with mutation load in primary 
colon adenocarcinoma samples according to the TCGA 
cohort. F. nucleatum-secreted molecules also exhibited 
genotoxic properties in  vitro and in  vivo. Furthermore, 
long-term F. nucleatum infection increased the number 
of somatic structural variation in colon tissue. DL-homo-
cystine and allantoic acid may be two of the Fusobacte-
rium nucleatum-secreted mutagens that cause DNA 
damage. Therefore, our finding delineates the genotoxic-
ity of F.nucleatum-secreted mutagens, which provides a 
basis for further work to investigate the role of F. nuclea-
tum in the pathogenicity of CRC.

Methods
TCGA patient samples acquisition
The gene expression and clinical data of CRC patients 
were obtained from the TCGA database (http://​tcgad​ata.​
nci.​nih.​gov). CRC tissue samples from patients with gene 
expression data (430 patients with primary colon adeno-
carcinomas in TCGA cohort (TCGA-COAD cohort)) 
were obtained, and their clinicopathological index data 
were collected. High-throughput sequencing data from 

Fig. 5  Isolation of the F. nucleatum-secreted mutagen-containing 
fractions in Fn. CM. Fn.CM was subject to digestion by protease 
K (50 μg/mL) A or heat inactivation (100 °C for 30 min) B 
and co-cultured with SW480 cell line. Protein levels of γ-H2AX 
were detected by Western blots. Fn. CM was separated 
using 3-kDa molecular weight cutoff (MWCO) membranes 
and the DNA-damaging effect was assessed by Western blots C 
and comet assay (D, E). ***p ≤ 0.001. Results were derived from three 
independent experiments

http://tcgadata.nci.nih.gov
http://tcgadata.nci.nih.gov
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a larger patient cohort provided us with the opportunity 
to comprehensively study the tumor-specific microenvi-
ronment [87]. Kaplan–Meier plotter was used to assess 
the patient’s overall survival from TCGA-COAD. KEGG 
enrichment was used to analyze the pathway.

Quantification of the relative abundance of bacteria 
in TCGA‑COAD cohort
We obtained 560 unaligned RNA-seq data in fastq for-
mat of colon adenocarcinoma from The Cancer Genome 
Atlas (TCGA; http://​tcgad​ata.​nci.​nih.​gov) [88]. PathSeq 
pipeline [89] was used to detect the bacterial composi-
tion. PathSeq initially filters out human reads and low-
quality reads, and then maps the remaining unmapped 
reads to gut-associated bacteria. Pre-built host genomes 
were obtained from the GATK Resource Bundle FTP 
server located in the /Bundle/pathseq/ directory. The 
microbial references used here include 1520 cultured 
bacterial genomes [90] and colon cancer-associated bac-
teria, rigorously identified through extensive and strin-
gent statistical validation (CRC-enriched bacteria) [46, 
91–93]. Bacterial reads were detected in 179 colorectal 

cancer tumor samples generated using single-end Illu-
mina GA sequencing technology, while samples without 
bacterial detection were primarily generated by paired-
end Illumina Hiseq sequencing technology, which may 
filter out bacterial sequences. Normalized values in the 
PathSeq output were used to assess the relative abun-
dance of bacteria, taking into consideration species 
genome length and bacteria genome coverage. To inves-
tigate the impact of bacterial abundance on the host, we 
also downloaded the corresponding patient expression 
values and clinical information from the TCGA database. 
Additionally, the MSI and CMS subtype information of 
those patients were obtained from the Synapse platform 
(doi:.7303/syn2623706) (ref: https://​www.​ncbi.​nlm.​nih.​
gov/​pmc/​artic​les/​PMC46​36487/).

F. nucleatum strains and culture conditions
F. nucleatum strain ATCC 25586 and Escherichia coli (E. 
coli) were purchased from Chinese Academy of Sciences 
(Shanghai, China)/American Type Culture Collection 
(ATCC, USA). F. nucleatum was cultured anaerobically 
at 37  °C for 24  h in Brain Heart Infusion (BHI; Difco™, 

Fig. 6  Metabolites detected from F. nucleatum-conditioned medium (Fn-CM) fraction which below 3KD induces DNA damage in vitro 
and ex vivo. Metabolites were enriched from untargeted metabolites results by volcano plot A and heatmap (B). Colon cell lines SW480 were 
exposed to F. nucleatum metabolites DL-Homocystine and Allantoic acid for 3 consecutive days. DNA damages were assayed by Western Blot 
(C) and Immunofluorescence (D). E Colon loop model was performed with PBS, DL-Homocystine or Allantoic acid. DNA damages were assayed 
by Western Blot. ***p ≤ 0.001; **p ≤ 0.01; *p < 0.05. Results of C-D were derived from three independent experiments

http://tcgadata.nci.nih.gov
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636487/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636487/
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BD, Rutherford, NJ, USA) broth medium before harvest-
ing. E. coli strain was cultured aerobically at 37 °C for 8 h 
in Luria–Bertani (LB; Difco™, BD, Rutherford, NJ, USA) 
infusion broth. F. nucleatum-conditioned medium (Fn. 
CM) was harvested after 24  h culture. 50  μg/mL Pro-
tease K and 100 °C, 30 min heat inactivation were used to 
treat the Fn.CM. BHI < 3-kDa and Fn. CM < 3-kDa were 
separated using 3-kDa molecular weight cutoff (MWCO) 
membranes (BD, Rutherford, NJ, USA).

Cell lines and culture
Human Colorectal Carcinoma Cells SW480 and HCT116 
were purchased from the American Type Culture Col-
lection (ATCC, USA). SW480 and HCT116 cells were 
cultured in Royal Park Memorial Institute (RPMI)-1640 
(Gibco, USA) containing 10% fetal bovine serum (Gibco, 
USA) at 5% CO2 and 37  °C, and other cells were cul-
tured in RPMI-1640 medium containing 10% (0.1  g/ml) 
fetal bovine serum (FBS, Gibco, USA). Comet assay is a 
useful technique in the detection of DNA damage, par-
ticularly DNA strand breaks [94]. SW480 and HCT116 
were exposed to F. nucleatum (MOI = 50) or E. coli 
(MOI = 100) for 4  h per day under anaerobic condition 
for 3 consecutive days and F. nucleatum or Fn. CM for 
3 consecutive days to assess the DNA damage. All bac-
teria bodies and debris in the culture supernatant were 
removed by centrifugation and filtration through a 0.22-
µm membrane to obtain the conditioned medium (CM) 
that was then used to treat HCT116 and SW480 cells at 
the concentration of 1% (vol/vol) for 3 consecutive days.

Determination of DNA damage
Neutral comet assay was performed according to the 
manufacturer’s instructions (Trevigen). The amount of 
DNA damage was quantified by determining the per-
centage of DNA in the tail and tail moment using Comet 
Score (TriTek) software. Graphs was generated using 
GraphPad Prism 5 (GraphPad Software, Inc.). Protein 
levels of γH2AX were detected by Western blot. For 
immunofluorescence staining of human colon cancer 
sections, slides were incubated with a primary antibody 
(γH2AX), followed by a secondary fluorescent antibody, 
and then DAPI to stain cell nuclei. Sections will be evalu-
ated using laser scanning confocal microscopy (Olympus 
FV1000). The measuring of the foci of γH2AX, was deter-
mined using the ‘Colocalization Finder’ plugin in ImageJ.

Western Blot
Total protein was isolated from cell pellets or colonic tis-
sues and separated by SDS-PAGE. The separated proteins 
were then transferred onto polyvinylidene difluoride 
(PVDF) membranes (EMD Millipore, Billerica, MA, 
USA) for 1  h. The membranes were blocked with 10% 

non-fat milk in 0.05% Tris-based saline-Tween 20 for 1 h 
at room temperature. Subsequently, the membranes were 
incubated with primary antibodies overnight at 4  °C, 
including anti-β-actin (Cell signaling technology #4970) 
and anti-γ-H2AX antibodies (ab11174). Following this, 
the membranes were incubated with secondary antibod-
ies at room temperature for 1  h. Protein band intensi-
ties were detected using the ECL Plus Western Blotting 
Detection Reagents (GE Healthcare).

Animal model and tissue samples
C57BL/6 mice were purchased from The Laboratory 
Animal Services Center and fed in the Experimental 
Animal Center of the Chinese University of Hong Kong. 
All animals were maintained under appropriate condi-
tions (22 ± 2  °C, 12-h light–dark cycle). All experiments 
performed on animals were approved by the Ethical and 
Institutional Animal Care and Use Committee of Prince 
of Wales Hospital of the Chinese University of Hong 
Kong. All procedures were approved by the Animal Care 
Committee of the Chinese University of Hong Kong 
and carried out in strict compliance with the relevant 
guidelines.

For the colon loop experiment, 6-week-old C57BL/6 
male mice were used. The abdomen of each mouse was 
disinfected with ethanol solution immediately before 
surgery. Mice were anesthetized by the intraperitoneal 
administration of ketamine (80  mg/kg) and xylazine 
(10  mg/kg). A midline laparotomy was performed, and 
an about 3  cm-long colon loop was prepared by a dou-
ble ligation of the colon. Care was taken to avoid inter-
fering with the blood supply [95]. Colon loops were 
injected with 300 µl fresh F. nucleatum (1 × 109 CFU), F. 
nucleatum-conditioned medium, BHI, BHI < 3-kDa or 
Fn. CM < 3-kDa, DL-Homocystine, and Allantoic acid, 
respectively. BHI and BHI < 3-kDa were used as controls 
in the experiment. The injections were performed once 
by the insertion of a 0.5-in., 27-gauge needle oblique to 
the intestinal lumen. After inoculation, the incision in 
the peritoneum, abdominal muscles, and skin was closed. 
After 6 h of incubation, colon samples were collected.

6-week-old and 180–220 g C57BL/6 male mice used in 
our experiments were randomly divided into two groups: 
experimental group and control group. All mice under-
went 6 consecutive intraperitoneal injections of azoxym-
ethane (AOM; 10 mg/kg) at 1-week intervals, followed by 
administration of 0.2 g/L ampicillin, neomycin, and met-
ronidazole, and 0.1 g/L vancomycin in drinking water for 
2 weeks. Mice were allowed to drink the water ad libitum 
for the duration of the experiments. After the last dose 
of antibiotics, 1 × 108 colony forming units (CFU) of F. 
nucleatum were administered to the experimental group, 
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and the same volume of phosphate-buffered saline (PBS) 
was given to the control group 5 days/week for 30 weeks.

Whole genome sequencing
Whole genome sequencing was set out to explore the 
potential specificity of F. nucleatum-induced DNA dam-
age in the mouse colon tissue from F. nucleatum or PBS 
control group. DNA of colon tissue was extracted by 
Genomic DNA Purification Kit (Promega) according 
to the manufacturer’s instruction and performed whole 
human genomes at 30X coverage through Illumina 
novaseq system. The raw DNA sequencing reads were 
subjected to quality control where low-quality reads and 
short reads were removed by using Fastp. All clean data 
were aligned to the mouse MM10 (GRCm38) genome 
by using the BWA-MEM tool. Duplicated reads were 
marked by Sambamba [96]. Delly [97] was used to call 
structure variations.

Statistical analysis
Log-rank Mantel-Cox test was used to compare Kaplan–
Meier curves for patient’s overall survival. Wilcoxon 
rank-sum test was used to identify the differentially 
expressed genes between F. nucleatum-high and -low 
groups and the number of different structure variations 
between F. nucleatum samples and control samples. The 
2-tailed unpaired t-test and Wilcoxon test were used to 
analyze the difference between control and experimental 
group in vitro and in vivo. Before performing other statis-
tical procedures, the D’Agostino-Pearson normality test 
was applied to assess the normality of the data distribu-
tion. Measurement data are expressed as mean ± standard 
deviation (SD) from 3 independent experiments. P values 
less than 0.05 were considered statistically significant.
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