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Abstract 

Background  Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer’s 
disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene 
name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting 
a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood 
whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. 
These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline 
and microglial transcriptional phenotype.

Methods  In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflamma‑
tion. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic 
Cx3cr1Cre−ERT2;Slc11a2flfl;APP/PS1+or – mice were generated and administered corn oil or tamoxifen to induce knock‑
down at 5–6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12–
15 months of age). Hippocampal CD11b+ microglia were magnetically isolated from female mice (15–17 months) 
and bulk RNA-sequencing analysis was conducted.

Results  DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron lev‑
els in conditions of excess iron. In vivo, Slc11a2KD APP/PS1 female, but not male, mice displayed a significant worsening 
of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity com‑
pared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2KD APP/PS1 females displayed significant 
increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2KD cells from APP/
PS1 females also exhibited decreased expression of markers associated with subsets of disease-associated microglia 
(DAMs), such as Apoe, Ctsb, Ly9, Csf1, and Hif1α.
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Background
Alzheimer’s disease (AD) is one of the most common 
neurodegenerative diseases and the most frequent cause 
of dementia. AD is primarily characterized by accumu-
lation of extracellular amyloid-beta (Aβ) plaques and 
intraneuronal neurofibrillary tau tangles [1]. In addi-
tion to Aβ and tau, other pathological features have also 
been shown to contribute to AD development, includ-
ing significant neuroinflammation, synaptic dysfunction, 
oxidative stress, and lysosomal dysfunction [2, 3]. Inter-
estingly, emerging evidence demonstrates that excessive 
iron deposition in the brain is strongly associated with 
AD pathogenesis [4–6]. Iron levels in the brain increase 
significantly with age [7, 8] and the degree of iron load 
in disease-associated brain regions (i.e., the hippocam-
pus and frontal cortex) positively correlates with aber-
rant protein aggregation and severity of cognitive decline 
[9–11]. Furthermore, iron has been found in dense core 
plaques and tau tangles in the brains of AD patients and 
mouse models [12–14], and directly binds to and exacer-
bates the toxicity of Aβ [15, 16]. Although iron is critical 
for myelination, neurotransmitter synthesis, and mito-
chondrial metabolism in the healthy brain, excessive iron 
can result in the harmful formation of toxic free radicals 
and production of reactive oxygen species (ROS), which 
can ultimately lead to lipid peroxidation, cellular damage, 
and ultimately cell death [17].

Microglia are resident innate immune cells of the cen-
tral nervous system (CNS) and play essential roles in 
brain development, maintenance of neural homeostasis, 
and response to injury and disease in the CNS. While it 
is widely appreciated that microglial-mediated neuroin-
flammation is a key pathological hallmark of AD [18, 19], 
more recent work has also highlighted the prominent 
role microglia play in mediating brain iron dysregula-
tion in disease [20–22]. Microglia are equipped with the 
necessary machinery to import, store, and export and/or 
recycle iron [20, 23, 24]. In fact, iron transport may occur 
preferentially in microglia compared to other cell types in 
the brain [25–27]. Despite their high capacity to handle 
and store iron, microglia are particularly susceptible to 
iron-induced damage [28] and Ryan et al. recently dem-
onstrated a predominant role for microglia in mediating 

the harmful effects of excess iron on other neural cells in 
a tri-culture system [29]. Microglia are loaded with iron 
in AD and other neurodegenerative diseases, [30–34] 
and one of the key transcriptional changes in clusters of 
disease-associated microglia (DAMs) is an alteration in 
iron-storage genes such as Fth1 and Ftl in both humans 
and mouse models of AD [35, 36]. While microglial iron 
loading has been more widely recognized as a key com-
ponent of AD pathology, it is still not understood how 
this contributes to overall disease progression [5, 37, 38].

At the cellular level, an intimate relationship between 
microglial iron load and inflammatory signaling has been 
established. In a reciprocal manner, iron can enhance 
markers of inflammation and oxidative stress [21, 39, 40], 
and inflammatory signals induce the uptake and stor-
age of iron [24, 41]. Specifically, microglia preferentially 
upregulate iron importer divalent metal transporter 1 
(DMT1; gene name, Slc11a2) in response to acute inflam-
matory stimuli such as lipopolysaccharide (LPS) and Aβ 
[24, 41, 42]. DMT1 is a widely expressed proton-coupled 
ferrous iron (Fe2+) importer found on the cellular plasma 
membrane and endosomal membrane [43]. This importer 
plays a role in transferrin-bound and non-transferrin-
bound iron uptake, as it mediates the immediate import 
of ferrous iron at the cell surface, and also transports iron 
reduced in the endosome into the cytosol so it can be uti-
lized by the cell [44]. In cell culture systems, inhibition of 
DMT1 results in a significant decrease in pro-inflamma-
tory IL1β signaling in response to Aβ [45]. Furthermore, 
our work showed that knocking down Slc11a2 blunts 
the neural inflammatory response to LPS in male, but 
not female, mice [42]. These results were observed in the 
absence of an additional iron load, suggesting a role for 
microglial DMT1 in helping to drive baseline inflamma-
tory responses.

With these findings, it is intriguing to consider a role 
for microglial DMT1 in a disease of chronic cellular iron 
load and inflammation. To our knowledge, no studies 
have investigated whether targeting this microglial iron 
importer alters disease pathogenesis in  vivo. We gener-
ated an inducible, microglial-specific genetic knock-
down of Slc11a2 in a model of AD in both male and 
female mice. We investigated whether microglial Slc11a2 

Conclusions  This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behav‑
ioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss 
of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2KD APP/PS1 female mice. Overall, this work 
illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight 
into mechanisms behind disease-related sex differences.
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knockdown alleviated markers of disease, including 
microglial inflammatory and oxidative stress markers and 
changes in behavior and cognition.

Materials and methods
Experimental animals
All mouse breeding, maintenance, and procedures were 
approved in advance and conducted in compliance with 
the Institutional Animal Care and Use Committee at 
Vanderbilt University. For the primary cell experiments 
from young and aged mice, young 9-week-old con-
trol C57BL/6  J male mice were purchased from Jackson 
Laboratories (Bar Harbor, ME, USA) (#000664, JAX). 
For aged mice, young C57BL/6J male mice were origi-
nally purchased from Jackson Laboratories and were 
aged and maintained in the Vanderbilt mouse facil-
ity until they were 27–30 months old. To determine the 
effect of decreased microglial DMT1 on disease, we gen-
erated a novel transgenic mouse model with inducible 
knockdown of Slc11a2 in microglial cells in the APP/
PS1 model of AD. Cx3cr1Cre−ERT2 mice (B6.129P2(C)-
Cx3cr1tm2.1(cre/ERT2)Jung/J; #020940) purchased from Jack-
son Laboratories (JAX, Bar Harbor, ME, USA) express a 
tamoxifen-inducible Cre-recombinase driven by the pro-
moter for the microglial/macrophage Cx3cr1 chemokine 
receptor gene, allowing for conditional knockdown of 
loxP-containing genes in Cx3cr1-expressing cells [46]. 
Slc11a2- ‘floxed’ mice (129S-Slc11a2tm2Nca/J; #017789, 
JAX) [47] were bred with Cx3cr1Cre−ERT2 homozy-
gous mice to obtain Slc11a2flfl;Cx3cr1Cre++ homozy-
gous animals. APP/PS1+ hemizygous animals were 
purchased from JAX and maintained in our facility 
(Tg(APPswe,PSEN1dE9)85Dbo; MMRRC_034832-JAX). 
These transgenic animals express a chimeric mouse/
human amyloid precursor protein (Mo/HuAPP695swe) 
and a mutant presenilin-1 (PS1-dE9), and have been 
widely used in AD research, particularly in relation to 
amyloid-β associated pathology [48–50]. We chose this 
model of AD based on the well-characterized develop-
ment of disease-associated symptoms (i.e., amyloid dep-
osition, cognitive deficits) and the progressive nature of 
disease development over the course of several months. 
This slower onset compared to other models allows us 
to examine the early pathological changes that occur 
prior to the onset of symptoms later in the course of dis-
ease. Additionally, the APP/PS1 model has already been 
shown to exhibit significant microglial iron loading [21, 
32], and an amyloid-driven model is relevant based on 
associations between iron and Aβ in the brain [15, 51]. 
APP/PS1+ hemizygous animals were bred separately 
with Slc11a2flfl animals to yield Slc11a2flfl;APP/PS1+ 
mice. Resulting progeny from these crosses were then 
bred with Slc11a2flfl;Cx3cr1Cre−ERT2++ animals to yield 

triple-transgenic Slc11a2flfl;Cx3cr1Cre−ERT2±;APP/PS1+ 
or APP/PS1− (i.e., ‘WT’) mice (Additional File 1A). All 
mice used in experiments were Slc11a2flfl;Cx3cr1Cre−ERT2± 
and either APP/PS1+ hemizygotes or WT as littermate 
controls. Experimental mice were on a mixed 129S/BL6 
background, with > 80% BL/6J genetic makeup as con-
firmed via Transnetyx strain analysis (Cordova, TN). All 
genotypes were confirmed with an ear snip via Transne-
tyx using real-time PCR. Mice were weaned at 3 weeks of 
age and had ad libitum access to food (LabDiets, standard 
rodent chow 5001, 240 ppm iron) and water. Both male 
and female mice were used in our experiments and were 
group-housed (2–5 per cage) by sex in transparent cages 
at 22–25  °C under a 12  h light/dark cycle in a specific 
pathogen-free facility. Control and experimental animals 
were randomly assigned across cages.

Tamoxifen treatment
Tamoxifen (Sigma #T5648) was dissolved in corn oil 
(Sigma #C8267-2.5L, lot #MKCK6411, Saint Louis, MO) 
to generate a 20 mg/mL stock concentration by sonicat-
ing the mixture and stirring overnight in a glass vial at 
37  °C. Slc11a2flfl;Cx3cr1Cre−ERT2±;APP/PS1+ or – male and 
female mice at 5–6  months of age were administered a 
dose of 4  mg (maximum 200  μL volume) tamoxifen via 
oral gavage every day for five consecutive days [42, 52] 
(Additional File 1B). All mice that received tamoxifen are 
denoted as ‘Slc11a2KD’, and are either APP/PS1 or WT. 
Littermate mice with the same genotypes (Slc11a2flfl;Cx
3cr1Cre−ERT2±;APP/PS1+ or –) were administered gavage 
with corn oil as a control for the presence of Cre based on 
work showing effects of Cx3cr1Cre−ERT2 genotype alone 
on microglial function [53, 54]. Corn-oil-treated animals 
are denoted as ‘Control,’ and are either APP/PS1+ or WT. 
The numbers of experimental animals used are shown in 
Supplemental Table  1  of Additional File 2. We chose to 
induce knockdown of Slc11a2 between 5–6  months of 
age in these mice, as it is a relatively early timepoint in 
this AD model when Aβ plaque deposition becomes vis-
ible and allowed us to assess the effect of early changes in 
microglial Slc11a2 on downstream disease development. 
Knockdown of Slc11a2 was confirmed in isolated micro-
glia from all animals via RT-qPCR utilizing a primer tar-
geting Slc11a2 exons 6–8 (Additional File 1C).

Behavioral assays
All behavioral assays were conducted in the Vander-
bilt Murine Neurobehavioral Core after mice were 
acclimated to the facility for at least one to 2 weeks. All 
mice underwent testing between 12 and 15  months of 
age (mouse numbers and body weights shown in Addi-
tional File 2, Supplemental Table  1 and Supplemental 
Table 2). Control WT and APP/PS1 mice were randomly 
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distributed across cages and litters, and the order of mice 
run through each assay was also randomly assigned. To 
avoid experimenter bias, mice of both sexes and all four 
experimental groups were evenly and randomly split 
between two different experimenters of opposite sex, 
who were blinded to the genotype and treatment of the 
mice before testing. The running order of assays was 
kept consistent for all animals in each study, and animals 
were run at the same time each day between 0630 and 
1300  h with one task per day. For each task, mice were 
acclimated to the testing room for 30 min to 1 h prior to 
testing, and control and experimental groups were evenly 
and randomly distributed across cages, days, and time of 
each assay. Following completion of a trial, each appara-
tus was cleaned of feces, disinfected, and deodorized with 
an anti-bacterial spray (Peroxigard, Virox Technologies) 
in between animals. APP/PS1+ mice are known to be 
prone to spontaneous seizures [55] and any mouse that 
exhibited a seizure during an assay was excluded from 
that analysis (n = 3 male Slc11a2KD APP/PS1+). Addition-
ally, two mice died spontaneously prior to completion of 
all tasks and euthanasia (one male Slc11a2KD APP/PS1 
and one female Control APP/PS1). The data for these ani-
mals is recorded for the tasks completed prior to death.

Nest building
As a measurement of general cognition and well-being, 
an overnight nest building assay was used. Nest build-
ing assessments were performed as the first behavioral 
task to minimize effects of stress on the mice from other 
behavioral assays. Mice were single-housed and given 5 g 
of cotton nestlet (Ancare, Bellmore, NY) in the afternoon 
the day prior. The next morning, amount shredded and 
quality of nests was scored by a blinded observer using a 
0–5 scale adapted from previous work, in 0.5 increments 
[42, 56, 57]. Following nest building assessment, mice 
were re-housed in groups of 4–5 before all other behav-
ioral tasks.

Locomotor activity: elevated zero maze and open field
Several assays were used as control measures of anxi-
ety and for locomotor activity assessment. An elevated 
zero maze (white maze, width 5  cm; diameter 50  cm; 
wall height 15 cm, Stoelting Co. IL) was used first, where 
mice underwent a single 5 min trial of free exploration. 
Mice were video-recorded using a ceiling-mounted cam-
era and movement was automatically tracked and scored 
using AnyMaze (Stoelting Co., Wood Dale, IL). Analysis 
parameters were set to ensure 80% of the mouse needed 
to be present in either the ‘open’ or ‘closed’ zone for an 
entry into that zone to be recorded. Total time in the 
open and closed zones and total distance traveled were 
measured. Sound-attenuating transparent open field 

chambers (27.5 × 27.5 cm) were used for a second meas-
urement of baseline locomotor activity. Mice were placed 
in the center of the chamber and allowed to explore freely 
for 45 min. Distance traveled was recorded automatically 
via the breaking of infrared beams (MedAssociates ENV-
510 software, Fairfax, VT). Additionally, time spent in 
the center area (19.05 × 19.05 cm) versus time in the ‘sur-
round’ was calculated as a control measure of anxiety-
like behavior.

Short‑term spatial working memory
A single-trial Y-maze was used as another measurement 
of baseline locomotor and exploratory behavior, as well 
as an assay to measure short-term working memory 
function. A clear plexiglass three-arm Y-maze (each arm 
5  cm in width, 34.5  cm long) with differentiated arms 
(different colors of paper with or without patterns placed 
underneath the maze) was used. All mice were placed 
in the same point of the same arm and allowed to freely 
explore for 6  min. A ceiling-mounted camera recorded 
video of the mice and AnyMaze automatically measured 
total distance traveled and order of arm entries. Entry 
into another arm was predicated on having at least 80% 
of the mouse cross into at least 1 cm of the arm. Sponta-
neous alternation as a measure of intact working mem-
ory was calculated by hand using arm entry order data 
from AnyMaze. A ‘correct’ alternation is defined by three 
consecutive entries into three different arms (e.g., ABC, 
BCA, CAB). Percent alternation was calculated using: 
((Number of spontaneous alternations) / (Number of 
total arm entries—2)) * 100.

Morris water maze
Mice underwent testing in the Morris water maze 
(MWM) to assess the effect of Slc11a2 knockdown on 
learning and memory [58]. Briefly, a circular pool approx-
imately 1 m in diameter filled approximately 30 cm deep 
with 22–27  °C water was used for this task. A white 
round platform (10 cm in diameter) was used to provide 
animals an escape from the water. Mice first underwent 
two visual training days, where the platform jutted above 
the water with a pole attached to allow mice to see the 
target platform. This platform was moved around to each 
of the four quadrants on each session during training 
days to allow the opportunity for each animal to swim 
and survey the room, which contained multiple visual 
spatial cues kept constant throughout. Each training day 
comprised four trials per mouse, and each mouse was 
given 60 s to find the platform. If a mouse did not reach 
the platform in 60 s, it was guided to and placed on the 
platform for at least 5  s. On subsequent days following 
the two visual training days, the water was made opaque 
with non-toxic tempura white paint, and the platform 
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was submerged approximately 0.5  cm under the water. 
The platform was kept in the same location for each 
trial and day, and mice were randomly placed in differ-
ent locations in the pool so that the use of spatial cues for 
navigation was necessitated. Mice underwent four trials 
per day for 5  days, with each trial lasting 60  s to assess 
learning and short-term memory. If mice did not find the 
platform within 60  s, they were guided to the platform 
and escape latency was recorded as 60  s. Following the 
final day of testing, the platform was removed and mice 
were allowed to swim freely for 60 s. Total time spent in 
the target quadrant where the platform used to be, time 
spent around the location of the platform, swim speed, 
total distance traveled, and time spent in perimeter were 
recorded as measurements of platform location memory.

Fear conditioning assay
Following completion of all other behavioral tasks, a 
fear conditioning assay was conducted to assess dif-
ferences in fear-associated memory. Mice were placed 
in sound-attenuating chambers with a wire grid floor. 
On the 1st  day (training trial), mice were placed in the 
chambers for 8 min and allowed to explore freely. Every 
2 min, a 30  s tone was played, followed immediately by 
a small shock administered through the wire floor (1  s, 
0.5 mA). This tone-shock pairing occurred 3 times during 
the training trial. To assess contextual fear conditioning, 
mice were placed back into the same chamber the next 
day and allowed to run around freely for 4 min with no 
tone or shock presented. Total time freezing—indicative 
of fear memory—was recorded automatically (VideoF-
reeze, MedAssociates). To assess cued fear conditioning 
(memory of the tone), mice underwent a second testing 
trial. This trial included a different experimenter han-
dling the mice, significant alterations to the chamber with 
white walls, white floor inserts, and red light, and the 
scent of vanilla placed in an open tube outside the cham-
ber. Mice freely explored the chamber for 2  min before 
the tone was administered for the final 2 min (without a 
shock pairing). Total time spent freezing during the no-
tone and tone segments were recorded as a measurement 
of cued fear memory.

Mouse euthanasia and tissue collection
At the time of euthanasia, mice were deeply anesthe-
tized with isoflurane and 500–700  μL of blood was 
collected via cardiac puncture. Immediately following 
blood collection, mice were trans-cardially perfused 
with 20  mL of cold 1 × Dulbecco’s phosphate-buffered 
saline (DPBS) to remove circulating blood and decapi-
tated for rapid brain removal. Whole brains were either 
placed on ice for mincing and processing for cellular 

isolation, or bilateral hippocampus was isolated first 
before proceeding to cellular isolation.

Tissue digestion and single‑cell suspension preparation
Brains were rapidly removed and briefly placed in 3 mL 
cold, sterile 1 × Hank’s buffered saline solution (HBSS, 
Gibco, #14175095) containing 1% fetal bovine serum 
(FBS, heat-inactivated; Gibco, #10082147) to remove 
any residual blood. Microglia isolation was performed 
following published protocols, with slight modifica-
tions [59–61]. Briefly, whole brains were transferred 
and finely minced with scissors in cold, sterile “IMG 
media” [Dulbecco’s modified Eagle’s medium (DMEM) 
with high glucose (4.5  g/L) and l-glutamine media 
(Gibco, #11965092) containing 10% FBS and 1% peni-
cillin–streptomycin (Gibco, #15140122). Minced tis-
sue was transferred into 50 mL conical tubes and 5 mL 
of digestion media (IMG media + 100 units Papain, 
#LK003176; 500 Kunitz units DNase, #LK003170, Wor-
thington Biochemicals, Lakewood, NJ) was added to 
each tube. Whole-brain samples were enzymatically-
dissociated by placing in an orbital shaker for 1  h at 
37  °C, diluted with 10  mL IMG media, and strained 
through 70 μm sterile filters (Corning, #431751). Bilat-
eral hippocampus samples in the RNA-sequencing 
studies were treated in the same manner described 
above, with slight modification. Bilateral hippocampus 
samples were isolated and immediately placed in 15 mL 
conical tubes on ice and 2.5  mL digestion media was 
added. Samples were incubated for 30 min in an orbital 
shaker at 37 °C. Every 10 min, samples were triturated 
up and down with a serological pipette of decreasing 
size before straining samples through filters and pro-
ceeding with subsequent steps. All samples were fur-
ther processed at 4 °C unless otherwise indicated.

Percoll gradient
Cells were centrifuged for 5 min at 500 × g, re-suspended 
in a solution of 30% isotonic Percoll and IMG media 
(Cytiva, #17-0891-01), and slowly layered onto a 70% 
Percoll gradient with HBSS + 1% FBS. HBSS + 1% FBS 
(without Percoll) was layered on top, and samples were 
centrifuged for 15  min at room temperature at 600 × g 
with the brake set to the lowest setting to allow for den-
sity separation. The supernatant containing myelin and 
neuronal debris was removed, and cells at the interface 
between the 30–70% gradients were carefully collected 
and placed on ice into 8  mL HBSS + 1% FBS in a fresh 
tube to wash residual Percoll. Cells were centrifuged at 
500 × g for 5 min at 4  °C, and pelleted cells were re-sus-
pended in appropriate media for downstream assays.
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Plating and treatment for primary cell experiments
For experiments conducted in isolated primary cells from 
young and aged mice, all steps above were performed 
under sterile conditions in a cell culture hood with auto-
claved tools and sterile-filtered reagents. Mixed glial cells 
isolated and pelleted from the Percoll gradient were re-
suspended in 1 mL IMG media for counting and plating. 
Cells were counted using the Nexcelom Cellometer Auto 
T4 Cell Counter (Nexcelom Biosciences) and plated at a 
density of 100,000 cells per well in poly-L-lysine-coated 
48-well plates in pre-warmed sterile IMG media contain-
ing 5  ng/mL GM-CSF (R&D Systems, #415-ML-010). 
Media was changed the next day, and then every other 
day for 5  days before stimulation with Aβ as described 
below.

CD11b immunomagnetic microglial isolation
For experiments analyzing gene expression (RNA-
sequencing and RT-qPCR) in microglia from the triple-
transgenic animals, Percoll-isolated glial samples were 
further processed for enrichment of CD11b+ microglia. 
Following Percoll gradient separation, centrifugation, and 
pelleting, cells were re-suspended in 400 μL cold “MACS” 
buffer (1 × PBS containing 0.5% FBS and 2  mM EDTA) 
and transferred to 5 mL tubes. Cells were centrifuged at 
4  °C for 5  min at 500 × g, pelleted, and re-suspended in 
90 μL MACS buffer for magnetic labeling and separation 
according to manufacturer’s instructions (Miltenyi Bio-
tec, Bergisch Gladbach, Germany). Briefly, samples were 
incubated with magnetic anti-CD11b MicroBeads (Milte-
nyi Biotec, #130-093-634; 10 μL per 90 μL buffer/brain) 
for 15 min at 4  °C. Magnetic separation was performed 
utilizing MS columns, and CD11b+ cells and the effluent 
non-magnetic fractions (CD11b− cells) were obtained. 
Following a final centrifugation for 5 min at 500 × g, cells 
were immediately re-suspended in RLT lysis buffer (Qia-
gen, #74004) supplemented with 1% beta-mercaptoetha-
nol, briefly vortexed, and flash-frozen in liquid nitrogen. 
Samples were stored at –80 °C until RNA isolation.

In vitro cells and experimental treatments
The immortalized microglial cell line, “IMG” [62], was 
used for in  vitro experiments to assess the direct effect 
of pharmacological inhibition of DMT1 on Aβ-induced 
inflammation. IMG cells were purchased from Millipore 
(Cat. #SCC134, RRID:CVCL_HC49), and cultured as 
described using Accutase for dissociation and passaging 
[45]. Briefly, cells were cultured up to a maximum of 10 
passages in sterile Dulbecco’s modified Eagle’s medium 
(DMEM) with high glucose (4.5 g/L) + 2.5 mM glutamine 
(Gibco, #11965092) supplemented with 10% fetal bovine 
serum (FBS, heat-inactivated, Gibco, #16140071) and 1% 
penicillin/streptomycin (“IMG media”).

Ebselen treatments
The drug ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-
one] was chosen as a robust inhibitor of DMT1 [63]. 
Ebselen was purchased from Focus Biomolecules (#10-
2288) and re-suspended in sterile dimethyl sulfoxide 
(DMSO; Sigma, #276855). IMG cells were plated and 
grown overnight in six-well-plates (150,000–200,000 
cells/well) in IMG media. The next day, cells were treated 
for 24  h with either 25  μM ebselen or control DMSO. 
This concentration of ebselen was chosen as the treat-
ment dose following preliminary experiments indicating 
this dose decreased cellular iron content and following 
similar reported doses from previous work [64]. Follow-
ing 24 h of ebselen/DMSO treatment, cells were further 
treated as described below.

Aβ and iron treatments
In both IMG cells and primary isolated microglia in the 
young and aged mice experiments, oligomeric Aβ1-42 was 
used as an acute AD-associated inflammatory stimulus. 
Aβ (HFIP-treated, rPeptide #A-1163-2) and scrambled 
Aβ (rPeptide #A-1004-2) were purchased from rPeptide 
and 5  mM stock solutions were prepared with sterile, 
anhydrous DMSO (Sigma #276855) and sonicated for 
15 min before storing aliquots at – 20 °C. The day before 
cell stimulation, oligomeric Aβ1-42 was prepared as previ-
ously described [39] using cold, sterile phenol-free Ham’s 
F-12 media (R&D Systems, #M25350) and allowed to rest 
at 4 °C for 24 h. The next day, cells were treated with 1 μM 
Aβ1-42 or scrambled Aβ for 24 h before lysis and collec-
tion for RNA isolation. For in vitro experiments in IMG 
cells, ferric ammonium citrate (FAC, Sigma, #F5879) was 
used as a non-transferrin-bound form of iron. FAC was 
re-suspended fresh in sterile RNase-free water immedi-
ately before each experiment, and cells were treated for 
24 h with 50 μM FAC based on literature recommenda-
tions [39, 65] or water (control), with or without Aβ prior 
to lysis and collection for RNA isolation or ICP-MS, as 
described below.

Inductively‑coupled plasma mass spectrometry (ICP‑MS)
Following 24 h of treatment with scrambled Aβ or 1 μm 
Aβ1-42 ± FAC, IMG cells were collected for ICP-MS anal-
ysis of intracellular iron content. After washing twice 
with ice-cold 1 × PBS, cells were collected into metal-
free tubes using Accutase, and total cell counts were 
measured for data normalization. After centrifugation at 
600xg for 5  min and removal of supernatant, cells were 
acid-digested in 150  μL trace-metal grade nitric acid 
(70%, OPTIMA Grade HNO3, Fisher-Sci, #A467-250), 
and 30% ultra trace-grade hydrogen peroxide (Ther-
mofisher) was added at a 1:4 dilution (37.5  μL H2O2). 
Samples were vortexed, incubated at 65 °C overnight, and 
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diluted the next day with Ultrapure Milli-Q water (Ω18.2) 
at 10 times the volume of nitric acid (1.5 mL water). ICP-
MS was performed at the Vanderbilt Mass Spectrometry 
Research Center using an Agilent 7700 ICP-MS (Agilent) 
attached to a Teledyne autosampler (CETAC Technolo-
gies, Omaha, NE). The following settings were used: cell 
entrance = − 40 V, cell exit = − 60 V, plate bias = − 60 V, 
OctP bias = −  18  V, and collision and cell helium 
flow = 4.5 mL/min. Samples were introduced by peristal-
tic pump and taken up at 0.5 rps for 30 s, followed by 30 s 
at 0.1 rps for signal stabilization. A calibration curve for 
each isotope was made at 0, 1, 10, 100, 1000, 5000, and 
10,000 ppb, and blanks were run following standard cali-
bration to wash out signal from the 10,000 ppb standard. 
Data were acquired and analyzed using the Agilent Mass 
Hunter Workstation Software version A.01.02.

RNA isolation, cDNA synthesis, and RT‑qPCR
Lysed cell samples from all experiments (i.e., 
CD11b+ microglia and primary isolated glia) were pro-
cessed for total mRNA using an RNeasy Micro Kit with 
DNase treatment according to manufacturer’s instruc-
tions (Qiagen, Hilden, Germany, #74004), with the 
exception of the IMG experiments, which used the RNe-
asy Mini Kit (Qiagen, # 74104). Following on-column 
RNA purification and elution, cellular RNA was reverse 
transcribed into cDNA at equal concentrations across 
samples using iScript Reverse Transcriptase (BioRad, 
Hercules, CA). RT-qPCR was conducted to assess the 
expression of several genes and confirm Slc11a2 knock-
down using FAM-conjugated TaqMan Gene Expres-
sion Assay primers (Thermofisher, shown in the table in 
Additional File 3) and iQ Supermix (BioRad). PCR reac-
tions were performed in duplicate under thermal con-
ditions: 95 °C for 10 min, followed by 40 cycles of 95 °C 
for 15 s, and 60 °C for 45 s. The expression of each gene 
was normalized to a housekeeping gene (either 18S or 
ActinB where indicated), and relative expression values 
were analyzed utilizing the comparative cycle threshold 
2−ΔΔCT method [66].

RNA sequencing and library preparation
Following on-column purification and DNase treat-
ment with the Qiagen RNeasy Micro Kit, total mRNA 
extracted from hippocampal CD11b+ samples was sub-
mitted to the Vanderbilt Technologies for Advanced 
Genomics (VANTAGE) Core facility for sample qual-
ity control assessment and RNA-sequencing (RNA-
seq). Only hippocampal CD11b+ microglia isolated 
from female animals were used for RNA-seq, follow-
ing earlier findings of significant behavioral differ-
ences primarily in Slc11a2KD female APP/PS1 animals. 
The concentration of RNA samples was determined by 

NanoDrop (ThermoScientific). Sample Quality Control 
analysis was assessed using fluorometry Qubit and integ-
rity by BioAnalyzer, and a RIN value of > 7 was confirmed 
for all samples before proceeding to library preparation 
and sequencing. Paired-end sequencing libraries were 
constructed using a standard mRNA NEBNext Poly(A) 
selection Library Prep Kit (Illumina). Library Quality 
Control analysis was performed by using Qubit and Bio-
Analyzer to determine the concentration and size bp. 
Samples were then sequenced at multiplex Paired-End 
150 bp using the Illumina NovaSeq 6000 sequencing plat-
form. To confirm sequencing quality, Illumina Quality 
Scores were calculated utilizing the following equation: 
Q = −  10log10I. All samples sequenced reached sequenc-
ing quality of at least Q30.

Sequencing analysis: alignment, mapping, quantification, 
differential expression
Gene alignment, read mapping, gene counts quantifi-
cation, and differential gene expression analyses were 
conducted at the Creative Data Solutions (CDS) Core at 
Vanderbilt. RNA-seq reads were adapter-trimmed and 
quality-filtered using Trimgalore v0.6.7 [67] and Cuta-
dapt 1.18 [68] to remove adapter sequences and pairs that 
were either shorter than 20 bp or that had Phred scores 
less than 20. An alignment reference was generated from 
the mm39 mouse genome and GENCODE comprehen-
sive gene annotations (M31), to which trimmed reads 
were aligned and counted using Spliced Transcripts 
Alignment to a Reference (STAR) v2.7.9a [69] with the 
–quantMode GeneCounts parameter. About 30–50 
million uniquely mapped reads were acquired per sam-
ple. DESeq2 package v1.36.0 [70] was used to perform 
sample-level quality control, low count filtering, nor-
malization and downstream differential gene expression 
analysis. Genomic features counted fewer than five times 
across at least three samples were removed. The default 
significance cutoff (0.1) for optimizing the independent 
filtering in DESeq2 was also used.

The measure of standard deviation (sd) and quantiles 
on principal component 1 (PC1) among samples was 
used to assess whether any samples were a statistical 
outlier. One sample in the Control APP/PS1 group was 
removed from analyses after exhibiting a deviation of > 2 
standard deviations and an interquartile range of > 1.5 
in PC1 compared to its respective group (sample shown 
in Additional File 4B and C). Five to six biological rep-
licates per condition were included for the differential 
expression analysis. Differentially expressed genes were 
identified using a false discovery rate (FDR) adjusted 
p-value threshold of 0.05, calculated using the Benjamini-
Hochberg (BH) procedure for multiple hypothesis testing 
correction, and a log2 fold change threshold of greater 
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than 1. Gene set enrichment analysis (GSEA) [71] was 
performed using the R package Clusterprofiler [72] with 
gene sets from the Mouse MSigDB database [73]. Cover-
age of reads across annotated exons in the Slc11a2 gene 
analysis was done using the R package ggcoverage 1.3.0 
[74]. All data processing was performed at the Advanced 
Computing Center for Research and Education (ACCRE) 
at Vanderbilt University.

Data and statistical analyses
Data are presented as mean ± S.E.M. All experiments 
were analyzed using analysis of variance (ANOVA) for 
multiple comparisons followed by appropriate post-hoc 
analyses unless otherwise noted. Male and female data 
were first compared using ANOVA (2(Sex) × 2(Geno-
type) × 2(Treatment), followed by Sidak’s corrections for 
multiple comparisons and analysis of interaction effects. 
Based on our previous work showing sex differences in 
Slc11a2 expression between males and females, most pri-
mary analyses were conducted within each sex separately 
to assess the effect of Slc11a2 knockdown in each sex. To 
do this, a 2(Genotype) × 2(Treatment) ANOVA followed 
by Sidak’s corrections was used. In analyzing MWM data, 
repeated measures ANOVA (2(Knockdown) × 2(APP/
PS1 Genotype) × 5(Day)) was used to analyze latency data 
from multiple training days and Tukey’s post-hoc analysis 
was used following significant F values to establish differ-
ences among all groups. Data from primary cell and IMG 
cell experiments were analyzed using either 2(Treat-
ment) × 2(Age) ANOVA or 3(Treatment) × 2(ebselen/
DMSO) ANOVA, respectively. Sidak’s post-hoc analysis 
was used for interaction effects and corrections for mul-
tiple comparisons. Statistical outliers within each group 
for all studies were identified using either the ROUT or 
Grubb’s method for outliers and excluded from statisti-
cal analyses. GraphPad Prism 9 (GraphPad Software, San 
Diego, CA, USA) was used for statistical analyses outside 
of RNA-seq analyses conducted in R. Differences among 
groups were considered significant at values of p < 0.05.

Results
Summary
The data presented are from experiments in primary 
microglia isolated from young and aged mice treated 
with Aβ in vitro, immortalized IMG cells treated with a 
DMT1 inhibitor followed by Aβ and iron, and data from 
a triple-transgenic AD mouse model with microglial 
Slc11a2 knockdown in both sexes. These experiments 
were designed to examine relationships between Aβ and 
microglial DMT1 at the cellular level, to directly tar-
get DMT1 in vitro to examine changes at the molecular 
level, and to determine the effects of targeting microglial 
Slc11a2/DMT1 at the behavioral level.

Age and Aβ stimulation synergize to increase 
microglial Slc11a2 and iron loading markers 
in primary microglia
To assess a potential role for microglial iron and Slc11a2 
in aging and Aβ-related pathology, we first  isolated 
microglia from young (nine-week-old) and aged (two-
year-old) mice for primary cell experiments. We observed 
significant ferritin (FtL) protein deposits in microglia 
isolated from aged compared to young mice (Fig.  1A), 
demonstrating, as others have shown, a key iron-load-
ing microglial phenotype in aging [38, 75]. To deter-
mine whether Slc11a2 contributes to this age-associated 
increase in iron and whether the transporter gene plays 
a role in Aβ-related disease conditions, isolated cells 
from young and aged mice were treated in vitro with an 
acute stimulus of 1 μM oligomeric Aβ for 24 h and gene 
expression of Slc11a2 was measured. As others have also 
shown [24, 45], there was a significant increase in micro-
glial Slc11a2 in response to acute Aβ exposure (Fig. 1B, 
Treatment, F(1,35) = 48.91, p < 0.0001). Additionally, cells 
from the two-year-old aged mice exhibited an augmented 
Aβ-induced Slc11a2 response, which was significantly 
greater than the response observed in the cells from 
young mice (Age, F(1,35) = 11.21, p = 0.002; young vs. old 
Aβ, p = 0.005). In addition, there was a robust increase 
in the expression of pro-inflammatory cytokines Tnfα, 
Il1β, and Il6 in response to Aβ (Fig.  1C–E, Il6: Treat-
ment, F(1,32) = 41.20, p < 0.0001; Il1β: F(1,34) = 24.23, 
p < 0.0001; Tnfα: F(1,34) = 77.83, p < 0.0001), which was 
even greater in the cells from the aged mice compared to 
those isolated from the young mice (significant for Tnfα: 
Age, F(1,34) = 6.52, p = 0.015, Interaction F(1,34) = 5.57, 
p = 0.024; young vs. aged Aβ p = 0.005). Along with dif-
ferences in Aβ-induced Slc11a2 gene levels, there was a 
significant increase in iron-storage genes Ftl and Fth1 in 
response to Aβ only in the cells from the aged animals 
(Fig. 1F, G). Specifically, Aβ induced an increase in Fth1 
in the aged glia (Age, F(1,29) = 12.46, p = 0.001, Treat-
ment, F(1,29) = 13.67, p = 0.0009), and Fth1 and Ftl were 
significantly higher in response to Aβ in the aged cells 
when compared to the young cells (Fth1, young vs. aged, 
p = 0.01; Ftl: Age, F(1,34) = 7.92, p = 0.008, young vs. aged, 
p = 0.02). There were no differences in  expression of 
Tfrc—another main iron importer gene—due to age or 
Aβ treatment (Fig.  1H, p > 0.05), suggesting that a spe-
cific gene expression increase in Slc11a2 may accompany 
age- and Aβ-related changes in cellular iron and inflam-
matory status. Aβ also decreased Slc40a1 (gene for ferro-
portin, main iron exporter) to a similar degree in the cells 
from the young and aged animals (Fig.  1I,  Treatment, 
F(1,30) = 23.40, p < 0.0001), further suggesting that a spe-
cific alteration in Slc11a2 in response to age and Aβ may 
be involved in the progression of disease.
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DMT1 inhibition in vitro significantly blunts Aβ‑induced 
inflammatory markers and decreases cellular iron levels 
in immortalized microglia
Based on the purported roles for DMT1 during Aβ stim-
ulation and iron load observed in our aged primary cell 
experiments, we assessed the effect of directly inhibiting 
DMT1 on Aβ and iron-induced inflammation in a micro-
glial in  vitro system. Cells from the murine immortal-
ized microglial cell line, “IMG” cells [62], were treated 
with ebselen, a pharmacological inhibitor of DMT1 [63], 
before subsequent treatment with scrambled Aβ, oli-
gomeric Aβ1-42 alone, or iron (50  μM FAC) + Aβ1-42. Aβ 
stimulation led  to a robust increase in microglial pro-
inflammatory Il1β, Il6, Tnfα, Egr1, and Nos2 transcription, 
as expected (Fig. 2A–D, Il1β: Treatment, F(3,22) = 16.78, 
p < 0.0001; Il6: Treatment, F(3,23) = 5.28, p = 0.006; Tnfα: 
Treatment, F(3,23) = 10.89, p = 0.0001; Egr1: Treatment, 
F(3,21) = 6.72, p = 0.002, Nos2: Treatment, F(3,23) = 16.31, 
p < 0.0001). Addition of 50 μM FAC did not have a signifi-
cant effect on Aβ-induced inflammatory markers. Ebselen 
profoundly decreased the Aβ-induced pro-inflammatory 
response for all three cytokines assayed along with Egr1 
and Nos2, even in the absence of excess iron added to the 
media (Aβ alone condition) (Fig. 2A–E, Il1β: Interaction, 
F(3,22) = 15.76, p < 0.0001; Il6: Interaction, F(3,23) = 4.81, 
p = 0.0096; Tnfα: Interaction, F(3,23) = 6.89, p = 0.0018; 
Egr1: Interaction, F(3,21) = 6.01; Nos2: Interaction, 
F(3,23) = 13.18, p < 0.0001). Markers typically associ-
ated with anti-inflammatory and homeostatic microglial 
subtypes such as Mrc1 and Cx3cr1 were significantly 

decreased due to Aβ treatment, although ebselen treat-
ment did not exert an additional effect (Fig. 2F, G, Mrc1: 
Treatment, F(3,22) = 7.42, p = 0.001; Cx3cr1: Treat-
ment, F(13,22) = 17.10, p < 0.0001.) Aβ induced a sig-
nificant upregulation in Slc11a2 and ebselen inhibited 
this increase when a bolus of FAC was added as well 
(Fig.  2H, Treatment, F(3,23) = 5.07, p = 0.008, Interac-
tion, F(3,23) = 3.49, p = 0.032). This was paralleled by a 
change in Fth1 levels in ebselen-treated cells (Interac-
tion, F(3,22) = 4.23, p = 0.016), as well as a decrease in 
total intracellular iron levels as measured via ICP-MS, 
where ebselen significantly decreased cellular iron lev-
els in the FAC+Aβ1-42 condition (Fig.  2J, Treatment, 
F(3,16) = 72.53, p < 0.0001, Ebselen, F(1,16) = 4.15, 
p = 0.058, Interaction, F(3,16) = 3.52, p < 0.05). These data 
demonstrate associations between DMT1 inhibition, 
decreases in cellular iron levels, and blunted Aβ-induced 
pro-inflammatory responses in IMG cells.

Microglial Slc11a2 knockdown results in a hyperactive 
phenotype in female APP/PS1 mice and worsens 
hyperactivity in male APP/PS1 mice at 12–15 months
To determine the effects of knocking down Slc11a2 in 
vivo, we generated a transgenic mouse line allowing for 
inducible knockdown of Slc11a2 in microglia between 
5 and 6 months of age. Between 7 and 9 months after 
tamoxifen treatment, when mice were 12–15  months 
of age, male and female control WT, control APP/PS1, 
Slc11a2KD WT, and Slc11a2KD APP/PS1 mice were run 
through a series of behavioral assays to assess the effect 

Fig. 1  Age and Aβ stimulation synergize to increase microglial Slc11a2 and iron-loading markers in primary microglia. A Representative images 
of Percoll-isolated glia from a young (top image, 9-week-old) and aged (bottom image, 2-year-old) mouse showing ferritin deposits in microglia 
from the aged mouse. Isolated glia were stained with antibodies raised against ferritin-L and F4/80, along with DAPI to visualize ferritin, microglia, 
and nuclei, respectively. Images shown at 20x, scale bar = 100 μm. B–I Relative gene expression (compared to control scrambled Aβ) of (B) Slc11a2, 
C Tnfα, D Il6, E Il1β, F Fth1, G Ftl, H Tfrc, and I Slc40a1 via RT-qPCR. Isolated cells from young and aged mice were plated and treated with scrambled 
Aβ or 1 μM Aβ1-42 for 24 h before collection for RNA isolation and RT-qPCR analysis. Two-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001 effect of treatment. &p < 0.05, &&p < 0.01 effect of age x treatment. ns not significant. Data represent the mean ± S.E.M of 7–11 mice 
per group. Statistical outliers were removed using the Grubb’s test



Page 10 of 24Robertson et al. Journal of Neuroinflammation          (2024) 21:238 

of microglial Slc11a2 knockdown on aspects of behav-
ior and cognition.

First, to assess locomotor activity and control for 
anxiety-like behavior, mice were tested in elevated 
zero maze (EZ maze, 5  min), open field chambers 
(45 min), and one-trial spontaneous alternation Y-maze 
tests (6  min) and total distance traveled was meas-
ured in each. In females, control APP/PS1 mice did 
not exhibit differences in baseline locomotor activ-
ity compared to control WT female mice in any of the 
assays tested (Fig.  3A–F; p > 0.05). However, micro-
glial Slc11a2KD female APP/PS1 animals exhibited a 
significant increase in distance traveled in all three 
activity measurement assays compared to their non-
APP/PS1 WT  counterparts (Fig.  3A, C, E, F; activ-
ity measurements, EZ maze: APP/PS1, F(1,38) = 9.28, 
p = 0.004, Interaction effect, F(1,38) = 12.29, p = 0.001; 
open field: Interaction, F(1,39) = 5.36, p = 0.03; Y-maze 
activity: APP/PS1, F(1,40) = 5.23, p = 0.03, Interaction, 
F(1,40) = 5.92, p = 0.02; arm entries in Y-maze: APP/
PS1, F(1,40) = 5.76, p = 0.02, Interaction, F(1,40) = 7.93, 
p = 0.008). As control measurements to assess for anxi-
ety-like behavior, the amount of time spent in the open 
arms of the EZ maze (Fig. 3B, p > 0.05) or in the center 
area of the open field chambers were not significantly 
different (Fig. 3D, p > 0.05). Additionally, there were no 
significant differences in Y-maze spontaneous alterna-
tion capacity between any groups (Fig. 3G, p > 0.05).

Male APP/PS1 mice exhibited a significant increase 
in activity in the EZ maze compared to WT controls 
(Fig.  4A; EZ Maze: APP/PS1 effect, F(1,48) = 22.61, 
p < 0.0001). There was a significant main effect of 
Slc11a2 knockdown on activity in the EZ maze in males 
(Knockdown effect, F(1,48) = 8.18, p = 0.0063), and post-
hoc analyses revealed that Slc11a2 knockdown had a 
greater effect on the hyperactive phenotypes observed 
in the APP/PS1 males compared to corresponding con-
trols (Fig. 4A, EZ maze: Control vs. APP/PS1, p = 0.013, 
Slc11a2KD Control vs. Slc11a2KD APP/PS1, p = 0.0006). 
There were no differences in anxiety-like behavior in EZ 
maze (time spent in open arms, Fig. 4B). Male APP/PS1 
mice did not show any significant differences in total dis-
tance traveled or anxiety-like behavior in the open field 
chambers over 45  min (Fig.  4C, D, p > 0.05). However, 
there was a significant APP/PS1-associated increase in 
activity in a 6 min Y-maze in the males (Fig. 4E; Y-maze: 
APP/PS1 effect, F(1,46) = 8.40, p = 0.006), which was 
exacerbated in the Slc11a2 knockdown animals (Fig. 4E, 
Y-maze activity post-hoc comparisons: Control vs. APP/
PS1, p = 0.39, Slc11a2KD Control vs. Slc11a2KD APP/PS1, 
p = 0.012; Fig.  4F, Y-maze arm entries: F(1,46) = 5.65, 
p = 0.02; post-hoc comparisons: Control WT vs. APP/
PS1, p = 0.61, Slc11a2KD WT vs. Slc11a2KD APP/PS1, 
p = 0.03). There were no significant differences in Y-maze 
spontaneous alternation capacity as a measure of work-
ing memory (Fig.  4G). Overall, these data suggest that 

Fig. 2  DMT1 inhibition in vitro significantly blunts Aβ-induced inflammatory markers and decreases cellular iron levels in immortalized microglia. 
A–I Relative gene expression (compared to scrambled Aβ DMSO) via RT-qPCR of A Il1β, B Il6, C Tnfα, D Egr1, E Nos2, F Mrc1, G Cx3cr1, H Slc11a2, 
and I Fth1 in IMG cells. IMG cells were treated for 24 h with DMSO or 25 μM ebselen, followed by 24 h treatment with scrambled Aβ or 1 μM 
Aβ1-42 ± 50 μM ferric ammonium citrate (FAC). J ICP-MS analysis of intracellular 56Fe content from IMG cells following 24 h treatment with DMSO 
or ebselen, and 24 h scrambled Aβ ± FAC or Aβ1-42 ± FAC treatment. Two-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 effect of Aβ 
or FAC treatment. #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 effect of treatment x ebselen. ns not significant. Data show a representative 
experiment with the mean ± S.E.M of 3–4 technical replicates, and experiment was repeated three times. Statistical outliers were removed using 
the Grubb’s test
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microglial Slc11a2 knockdown is associated with an 
exaggerated hyperactive phenotype in the APP/PS1 ani-
mals, particularly in female mice.

Slc11a2 knockdown worsens memory performance 
in Morris water maze and cued fear conditioning assay 
in APP/PS1 females
To determine whether Slc11a2 knockdown in vivo affects 
measurements of well-being, cognition, and longer-term 
learning and memory, several behavioral tasks were uti-
lized. An overnight nest building assay revealed a robust 
APP/PS1-associated deficit in nestlet amount shredded 
in the females; however, there was no additional effect 
of Slc11a2 knockdown on this measurement of cogni-
tion and well-being (Additional File 5A; Control WT 
mean, 4.3 g ± 0.28; Control APP/PS1 mean, 1.73 g ± 0.30; 
Slc11a2KD WT mean, 3.5  g ± 0.47; Slc11a2KD APP/PS1 
mean, 1.48  g ± 0.35; APP/PS1 effect, F(1,38) = 43.54, 
p < 0.0001). To assess learning and spatial memory, mice 
underwent 5  days of trials to find a hidden platform in 
Morris water maze (MWM), a widely used test for hip-
pocampal-dependent spatial navigation and memory. 

Over the course of 5  days, all female mice (regardless 
of APP/PS1 genotype or Slc11a2 knockdown) effec-
tively learned the location of the platform compared to 
their baseline on day one, exhibiting significantly shorter 
latencies and path lengths to find the platform by day 
five (latencies in Additional File 5B; Day effect, F(2.84, 
113.5) = 8.05, p < 0.0001; path length in Fig. 5A; Day effect, 
F(2.75, 110.1) = 11.38, p < 0.0001). Average swim speed 
during a 60 s probe trial was assessed as a control meas-
ure. Female Slc11a2KD APP/PS1 mice exhibited signifi-
cantly greater swim speeds in the water maze compared 
to all other groups (Fig. 5B; Knockdown x APP/PS1 Inter-
action, F(1,40) = 5.45, p = 0.025). Because of the differ-
ences in swim speed, which may confound data reporting 
latency to find platform, path lengths to platform were 
measured. Female APP/PS1 mice were not different than 
control WT females at finding the hidden platform dur-
ing training days. However, microglial Slc11a2KD female 
APP/PS1 animals exhibited slightly longer path lengths 
to find the hidden platform, although this was not sta-
tistically significant (Fig.  5A; p = 0.1). Mice underwent 
one 60  s probe trial for memory of platform location 

Fig. 3  Microglial Slc11a2 knockdown results in a hyperactive phenotype in female APP/PS1 mice at 12–15 months. A, B Elevated zero maze. A Total 
distance traveled (m) in control WT, control APP/PS1, Slc11a2KD WT, and Slc11a2KD APP/PS1 female mice. B Total percent time spent in open arms. 
C, D Open field locomotor activity assay. C Total distance traveled (cm). D Total percent time spent in the center. E–G Exploratory Y-maze. E Total 
distance traveled (m). F Total number of different arm entries. G Total percent alternation. Two-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001 effect 
of APP/PS1 genotype, #p < 0.05 Slc11a2KD vs. Control. ns not significant. Data represent the mean ± S.E.M of 8–13 female mice per group. Statistical 
outliers were removed using the Grubb’s test
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24  h after the last set of training trials, in which the 
platform was removed from the pool and mice were 
allowed to swim freely. There were no significant dif-
ferences in time spent in the target quadrant where the 
platform location was previously (Fig. 5C, p > 0.05); how-
ever, female APP/PS1 mice overall exhibited a decrease 
in time spent around the exact platform location (exact 
platform location, plus 1.5 cm surrounding radius) com-
pared to WT littermate controls (Fig. 5D; Females: APP/
PS1 effect, F(1,39) = 8.90, p = 0.005). Female Slc11a2KD 
APP/PS1 mice exhibited a significant further reduction 
in time spent around the platform location, suggesting 
an exacerbated loss of memory function in these animals 
(Females: post hoc analysis: Control WT vs. Control 
APP/PS1, p = 0.68; Slc11a2KD WT vs. Slc11a2KD APP/
PS1, p = 0.004). To further assess the effects of Slc11a2 
knockdown on memory function, we utilized a fear con-
ditioning assay in which a tone was succeeded by a mild 
foot shock. During the initial training session, all groups 
significantly increased freezing by the third tone presen-
tation, albeit APP/PS1 females overall froze less over the 
course of the 8 min training session (Fig. 5E, Time effect, 

F(6.9, 279.3) = 41.1, p < 0.0001; Interaction of Time x APP/
PS1, F(15,600) = 4.91, p < 0.0001). In the contextual fear 
conditioning assay, female APP/PS1 mice exhibited a 
disease model-associated deficit in fear memory (Fig. 5F, 
APP/PS1 effect, F(1,39) = 12.26, p = 0.0012); although, 
there was no additional effect of Slc11a2 knockdown. 
However, in the cued fear conditioning memory task, 
female Slc11a2KD APP/PS1 mice displayed a significant 
worsening in fear memory associated with presentation 
of a tone (Fig.  5G, Knockdown x APP/PS1 Interaction, 
F(1,39) = 4.19, p = 0.047). Indeed, although all females 
exhibited an increase in freezing in response to the pres-
entation of the tone (Tone, F(1,39) = 145.2, p < 0.0001), 
female Slc11a2KD APP/PS1 mice were significantly less 
responsive compared to all other groups (Fig. 5H; Interac-
tion of Knockdown x APP/PS1, F(1,39) = 5.39, p = 0.026).

Male APP/PS1 animals displayed a significant deficit 
in nest building capacity compared to littermate WT 
control mice, with no additional effect due to Slc11a2KD 
(Additional File 5C; Control WT mean, 3.17  g ± 0.52; 
Control APP/PS1 mean, 2.03  g ± 0.41; Slc11a2KD 
WT mean, 3.82  g ± 0.34; Slc11a2KD APP/PS1 mean, 

Fig. 4  Microglial Slc11a2 knockdown worsens hyperactivity in a novel environment in male APP/PS1 mice at 12–15 months. A-B Elevated zero 
maze. A Total distance traveled (m) in control WT, control APP/PS1, Slc11a2KD WT, and Slc11a2KD APP/PS1 male mice. B Total percent time spent 
in open arms. C, D Open field locomotor activity assay. C Total distance traveled (cm). D Total percent time spent in the center. E–G Exploratory 
Y-maze. E Total distance traveled (m). F Total number of different arm entries. G Total percent alternation. Two-way ANOVA, *p < 0.05, ***p < 0.001 
effect of APP/PS1 genotype. #p < 0.05 Slc11a2KD vs. Control. ns not significant. Data represent the mean ± S.E.M of 11–15 male mice per group. 
Statistical outliers were removed using the Grubb’s test
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2.35  g ± 0.44; APP/PS1 effect, F(1,47) = 9.15, p = 0.004). 
In the MWM, all males regardless of experimental 
group learned the location of the platform by the end 
of five training days, albeit APP/PS1 males exhibited 
longer latencies and path lengths over the course of the 
training compared to WT controls (latencies shown in 
Additional File 5D; Day effect, F(3.08, 144.7) = 18.30, 
p < 0.0001; APP/PS1 effect, F(1,47) = 7.84, p = 0.007; 
APP/PS1 x Day, F(4,188) = 2.76, p = 0.029; path 
lengths shown in Fig.  6A; Males: Day effect, F(2.891, 
135.9) = 20.45, p < 0.0001; APP/PS1 effect, F(1, 
47) = 5.99, p = 0.018). This behavioral phenotype was 
observed in the absence of differences in swim speeds 
between groups (Fig.  6B, p > 0.05), demonstrating a 
disease model-associated learning deficit in the males. 
In the MWM probe trial, there were no significant dif-
ferences between groups in time spent in the target 
quadrant of the previous platform location (Fig.  6C, 
p > 0.05); however, male APP/PS1 mice overall spent 
significantly less time around the remembered platform 

location (platform location, including 1.5  cm sur-
rounding radius) compared to WT controls (Fig.  6D; 
Males: APP/PS1 effect, F(1,46) = 6.55, p = 0.01). There 
were no differences in male Slc11a2KD animals com-
pared to Slc11a2-intact control animals in MWM. 
In the fear conditioning task, male APP/PS1 animals 
exhibited decreased freezing during the training ses-
sion (Fig.  6E, Interaction of Time x APP/PS1, F(15, 
705) = 2.25, p = 0.004). There were no significant differ-
ences between any groups of the males in the contex-
tual fear conditioning assay (Fig. 6F, p > 0.05), although 
male APP/PS1 mice overall performed worse on the 
cued fear conditioning task for memory compared to 
WT controls (Fig. 6G, H, APP/PS1 effect, F(1,46) = 4.15, 
p = 0.047). Slc11a2 knockdown had no effect on per-
formance in these assays in the males. Overall, these 
data suggest that microglial Slc11a2 knockdown is 
associated with significant worsening of cognitive dys-
function in several tasks in a sex-specific manner, par-
ticularly in female APP/PS1 animals.

Fig. 5  Microglial Slc11a2 knockdown worsens memory performance in Morris water maze and cued fear conditioning assay in APP/PS1 female 
mice. A–D Morris water maze (MWM). A Total distance traveled (m) before reaching hidden platform over course of five training days in control 
WT, control APP/PS1, Slc11a2KD WT, and Slc11a2KD APP/PS1 female mice. Four trials of 60 s each were conducted each day and averaged per animal. 
Three-way ANOVA, ****p < 0.0001 effect of day. B Average speed (m/s) measured during probe trial. Two-way ANOVA, *p < 0.05 effect of APP/
PS1 genotype. ##p < 0.01 Slc11a2KD vs. Control. C Total percent time spent in the target quadrant in probe trial for memory. D Total time (s) spent 
around where the platform previously was (exact platform location + 1.5 cm radius) during probe trial for memory. E–H Fear conditioning assay. E 
Percent component time freezing during the 8 min training protocol. Every 2 min, a 30 s tone was played, followed by a mild foot shock. Increased 
freezing behavior over the course of the assay is shown. ****p < 0.0001 effect of time, ****p < 0.0001 effect of APP/PS1 x time. F Percent time freezing 
during 4 min contextual fear conditioning test. G Total percent time spent freezing during the 4 min of cued fear conditioning testing. H Percent 
component time spent freezing during 2 min of no-tone versus 2 min of tone presentation in cued fear conditioning test. ****p < 0.0001 effect 
of tone, *p < 0.05 Slc11a2KD APP/PS1 vs. Control APP/PS1. Data represent the mean ± S.E.M. of 8–13 mice per group. Statistical outliers were removed 
using the Grubb’s test
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Hippocampal microglia from female Slc11a2KD APP/
PS1 animals exhibit significant alterations in subsets 
of DAM‑like inflammatory and oxidative genes
Significant alterations in gene expression from isolated 
microglia have been shown in AD models and human 
patients [35, 36]. Thus, to examine transcriptomic 
changes in Slc11a2 knockdown microglia in our in vivo 
studies, we magnetically isolated CD11b+ microglia from 
the bilateral hippocampus from female mice for bulk 
RNA-sequencing. We focused this RNA-seq analysis on 
the females to delve deeper into the molecular changes 
that may underlie the behavioral and memory-associated 
deficits we observed only in the female Slc11a2KD APP/
PS1 mice. In the Slc11a2 knockdown microglia, we first 
confirmed abrogation of expression in the Slc11a2 gene 
between exons 6–8 (Additional File 4A), similar to what 
has been shown by others in this mouse model used 
to knockdown Slc11a2 [76, 77]. Principal component 
analysis revealed a primary effect of APP/PS1 genotype 
on overall gene expression in isolated cells (Fig. 7A). As 

expected, hippocampal microglia isolated from APP/PS1 
control animals exhibited a significant and robust pattern 
of differential gene expression compared to microglia 
isolated from WT controls. We found 1236 differentially 
expressed genes (DEG) that were elevated in microglia 
from APP/PS1 control animals and 1308 genes that were 
significantly downregulated in APP/PS1 controls com-
pared to WT controls (adjusted p-value < 0.05). In exam-
ining the top 50 DEG (by fold-change and adj. p-value) 
in hippocampal microglia isolated from APP/PS1 com-
pared to WT control females, we observed changes in 
similar gene markers previously reported in AD-associ-
ated microglia. Specifically, there were robust increases 
in microglial phagocytic marker Cd68 [78], hypoxia-
related gene Hif1α [79], aging-associated marker Clec7a 
[80], lipid-droplet-associated marker Plin2 [81], as well 
as Type I IFN-signaling gene, Mamdc2 [82] (Additional 
File 6A). DEGs that were downregulated in APP/PS1 hip-
pocampal microglia compared to WT controls included 
homeostatic microglial marker Tmem119, as well as 

Fig. 6  Microglial Slc11a2 knockdown has no effect on memory performance in male mice. A-D Morris water maze (MWM). A Total distance traveled 
(m) before reaching hidden platform over course of five training days in control WT, control APP/PS1, Slc11a2KD WT, and Slc11a2KD APP/PS1 male 
mice. Four trials of 60 s each were conducted each day and averaged per animal. Three-way ANOVA, ****p < 0.0001 effect of day, *p < 0.05 effect 
of APP/PS1. B Average speed (m/s) measured during probe trial. Two-way ANOVA, *p < 0.05 effect of APP/PS1 genotype. ##p < 0.01 Slc11a2KD vs. 
Control. C Total percent time spent in the target quadrant in probe trial for memory. D Total time (s) spent around where the platform previously 
was (exact platform location + 1.5 cm radius) during probe trial for memory. E–H Fear conditioning assay. E Percent component time freezing 
during the 8 min training protocol. Every 2 min, a 30 s tone was played, followed by a mild foot shock. Increased freezing behavior over the course 
of the assay is shown. ****p < 0.0001 effect of time, **p < 0.0001 effect of APP/PS1 x time. F Percent time freezing during 4 min contextual fear 
conditioning test. G Total percent time spent freezing during the 4 min of cued fear conditioning testing. H Percent component time spent freezing 
during 2 min of no-tone versus 2 min of tone presentation in cued fear conditioning test. *p < 0.05 effect of APP/PS1 genotype, ****p < 0.0001 effect 
of tone. Data represent the mean ± S.E.M. of 11–14 mice per group. Statistical outliers were removed using the Grubb’s test
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iron export gene, Slc40a1 (ferroportin) (Additional File 
6B). Gene-set enrichment analysis (GSEA) revealed sig-
nificant upregulations in genes involved in cholesterol 
homeostasis, cellular metabolism, and inflammatory acti-
vation in APP/PS1 microglia (Additional File 6C), similar 
to what others have shown previously in AD models [83].

To determine the effect of Slc11a2 knockdown on hip-
pocampal microglia, we first compared microglial gene 
expression between Slc11a2KD and Control WT females. 
As a result of knockdown alone, we only found 10 DEGs 
(Additional File 7A). Top genes altered included Ccr6 
and Cd5 (Additional File 7B, C). We then aimed to deter-
mine how Slc11a2 knockdown affects microglial gene 

expression in the APP/PS1 female animals. There were 
449 genes significantly upregulated and 130 downregu-
lated in microglia isolated from Slc11a2KD APP/PS1 ani-
mals compared to microglia from control APP/PS1 mice. 
Of these DEGs, Enpp2 and Ttr were robustly upregu-
lated in knockdown cells compared to controls (Fig. 7B). 
Of the top 50 identified DEGs between Slc11a2KD APP/
PS1 and control APP/PS1 females, Apoe (encoding apoli-
poprotein E), Cybb (gene for NOX2), and lipid-droplet-
accumulating microglia (LDAM) marker, Ly9, were also 
significantly downregulated in the knockdown cells com-
pared to the control APP/PS1 cells (Fig. 7B, C). GSEA in 
the Slc11a2KD and control APP/PS1 microglia revealed 
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Fig. 7  Slc11a2 knockdown shifts transcriptional profile and alters several DAM-related gene markers in hippocampal microglia from female APP/
PS1 mice. A Principal component analysis (PCA) of bulk RNA-seq gene expression in sorted CD11b+ microglia from control WT, control APP/PS1, 
Slc11a2KD WT, and Slc11a2KD APP/PS1 mice. Primary differences in overall gene expression are a result of APP/PS1 genotype. B Heat map of top 50 
DEGs (by adjusted p-value in RNA-seq dataset) between Slc11a2KD APP/PS1 versus control APP/PS1 microglia. Blue = downregulated in Slc11a2KD 
cells, lighter blue and/or red = upregulated in Slc11a2KD cells. C Top 50 DEGS by fold-change in RNA-seq analysis between Slc11a2KD APP/PS1 
and control APP/PS1 microglia. Red = upregulated in Slc11a2KD, blue = downregulated in Slc11a2KD cells. D GSEA analysis of hallmark gene pathways 
significantly altered between Slc11a2KD APP/PS1 and control APP/PS1 microglia. E, F Relative gene expression of targeted E inflammatory markers 
and F iron and oxidative stress markers from Slc11a2KD APP/PS1 versus control APP/PS1 microglia in the RNA-seq dataset. Gene expression is relative 
to control WT average (black dotted line set to 1). *p < 0.05, student’s t-test comparing Slc11a2KD APP/PS1 vs. control APP/PS1. G Gene markers 
representing subsets of DAMs (i.e., pro-inflammatory, anti-inflammatory, LDAM, and ferroptosis) were analyzed via RNA-seq between Control 
and Slc11a2KD APP/PS1 female microglia. Genes highlighted in red are significantly different between groups, adjusted p-value < 0.05. Data represent 
the mean ± S.E.M. of 5–6 mice per group
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significant increases in genes associated with cellular 
metabolism—in particular, oxidative phosphorylation 
and fatty acid metabolism—and reactive oxygen species 
(ROS) pathways (Fig. 7D). Slc11a2 knockdown cells also 
exhibited significant decreases in genes associated with 
TNF and NFκB inflammatory signaling and Wnt signal-
ing, as indicated by gene-set enrichment pathway analysis 
(Fig. 7D). When comparing relative expression of specific 
genes in the sequencing dataset, we observed significant 
alterations in several genes involved in inflammatory and 
oxidative stress-associated pathways in Slc11a2KD ver-
sus control cells from APP/PS1 females. Specifically, we 
observed a significant decrease in Ctsb and Csf1 (mark-
ers associated with DAMs) [84] in the knockdown cells, 
as well as a significant increase in Tgfbr1 (p < 0.05) and 
increase in Trem2 compared to control cells (although 
not statistically significant, p = 0.068) (Fig. 7E). In exam-
ining genes related to iron handling and redox sta-
tus, we observed a significant increase in iron exporter 
gene Slc40a1 and antioxidant gene Gpx4 in Slc11a2KD 
APP/PS1 cells compared to control APP/PS1 microglia 
(Fig.  7F). Additionally, Slc11a2 knockdown cells exhib-
ited decreases in pro-oxidant genes, such as Hif1α and 
Cybb, and a robust decrease in the iron-related gene 
encoding ceruloplasmin (Cp) (Fig. 7F). To assess changes 
in specific DAM-like markers further, we conducted tar-
geted analysis of gene sets related to different subsets of 
DAMs reported in the literature [36, 85–88], including 
a ‘pro-inflammatory’, ‘anti-inflammatory’, ‘lipid-associ-
ated DAM (LDAM)’, and ‘ferroptosis’ gene set (Fig. 7G). 
These data further demonstrate that Slc11a2 knockdown 
resulted in changes to some, but not all, DAM markers. 
Although Slc11a2KD cells isolated from APP/PS1 mice 
exhibited significant differences in the expression of sev-
eral markers compared to control APP/PS1 microglia, 
Slc11a2KD APP/PS1 microglia displayed a transcriptional 
profile still distinct from control, non-APP/PS1 WT cells 
(black dotted line, Fig.  7E, F). In comparison to control 
WT cells, Slc11a2KD APP/PS1 microglia upregulated 
DAM and aging-related markers Csf1, Hif1α, Cybb, and 
Ctsb—albeit, to a lesser degree than control APP/PS1 
microglia.

Initial assessment of overall gene expression via PCA 
and DEGs in these samples revealed significant variance 
in gene expression in one sample in the Slc11a2KD APP/
PS1 group compared to the rest of the Slc11a2KD APP/
PS1 biological replicates (sample labeled as -0004 in PCA 
plot shown in Additional File 4B and in heat map Fig. 7B). 
Although this sample was not considered to be a statisti-
cal outlier, further RNA-seq analyses conducted follow-
ing the removal of this sample are shown in Additional 
File 8. In this analysis, there were 2230 genes significantly 
upregulated and 2210 significantly downregulated in the 

Slc11a2KD versus control APP/PS1 females (Additional 
File 8B). The top DEGs revealed upregulations in genes 
including phagocytic-associated Igkc, along with Ttr 
and Enpp2, and prostaglandin-signaling molecule, Ptgds 
(Additional File 8C and D). Slc11a2KD cells also exhibited 
significant downregulations in several DAM markers—
particularly from the ‘pro-inflammatory’ gene subset—
including Cybb, Stat1, and Ctsb, as well as Ly9, Hif1α, 
homeostatic marker Bin2, and Apoe (Additional File 
8G). Overall, these data suggest that microglial Slc11a2 
knockdown in females decreases expression of some 
markers related to subsets of DAMs and aged cells in the 
APP/PS1 model. Several DEGs found in female Slc11a2 
knockdown microglia were probed via RT-qPCR in male 
hippocampal microglia and are shown in Additional File 
9. There were no significant changes in Hif1α, Cybb, or 
Il1β in male microglia due to Slc11a2 knockdown, mir-
roring the lack of behavioral differences in the male 
Slc11a2KD mice.

Discussion
Iron-loaded microglia are a hallmark of several neuro-
degenerative diseases, including AD [89–91]. Reactive 
microglia surrounding Aβ plaques exhibit a significant 
upregulation of ferritin-L (Ftl1) across AD mouse mod-
els and human patients and is a defining feature of DAMs 
across multiple disease models [31, 35, 36, 92]. Further-
more, recent in vitro work showed that iron loading spe-
cifically in microglia underlies subsequent neurotoxicity 
and cell death, positioning microglial iron load as a cen-
tral mediator of neurodegeneration [29]. Inflammatory 
signals and iron import mechanisms are intimately con-
nected ([20, 24], our data also in IMG cells). Increased 
iron levels have been shown to enhance pro-inflamma-
tory cytokine secretion [45], toxic ROS production [40], 
and cellular senescence and dysfunction [75, 93]. Recip-
rocally, AD-associated inflammatory stimuli such as Aβ 
and bacterial lipopolysaccharide (LPS) upregulate the 
iron importer DMT1 in microglia.

In our studies in primary microglia from aged and 
young mice treated in vitro with pro-inflammatory oligo-
meric Aβ1-42, we observed that the Aβ-induced increase 
in Slc11a2 was exacerbated in microglia from aged com-
pared to young mice. This age-associated increase in 
Slc11a2 expression was accompanied by a significant 
upregulation in iron storage genes Ftl1 and Fth1 and 
augmented Aβ-induced inflammatory markers, suggest-
ing a primed cellular state [94, 95]. These findings dem-
onstrate an association between augmented Aβ-induced 
inflammation and iron loading markers in aged cells 
and implicate a synergy between age and Aβ leading to 
increased microglial Slc11a2 expression. It may be that 
DMT1/Slc11a2 plays a role in mediating the cellular 
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iron and inflammatory load observed in neurodegenera-
tive disease. Indeed, a role for DMT1 in Parkinson’s dis-
ease is well-appreciated [96, 97]. However, no studies to 
our knowledge have examined whether altering micro-
glial DMT1/Slc11a2 in vivo affects the development of 
chronic inflammation and disease-associated hallmarks 
in AD.

To investigate the effects of cell-specific alteration of 
Slc11a2 in AD, we generated a novel model of tamoxifen-
inducible, microglial-specific knockdown of Slc11a2 in 
the APP/PS1 mouse model of AD. In female Slc11a2KD 
APP/PS1 mice, we observed a significant worsening of 
behavioral phenotypes and cognitive performance at 
12–15 months of age. Specifically, female Slc11a2KD APP/
PS1 animals were significantly more hyperactive than all 
other female groups in multiple assays conducted. Previ-
ous studies have presented conflicting data on hyperac-
tivity in AD mouse models, depending on the age and 
AD model used [98–100]. Our data showing hyperac-
tivity in female Slc11a2KD APP/PS1 mice and male con-
trol APP/PS1 mice at 12–15 months replicate data from 
others, who have  shown  significant hyperactivity in 
mouse models of AD at both early and later stages [98, 
101–103]. Additionally, AD human patients often exhibit 
disruptions in psychiatric behaviors such as hyperactiv-
ity, impulsivity, and disinhibition [104]. While work is 
ongoing to elucidate the mechanisms driving hyperlo-
comotion in these animals, others have demonstrated 
increased neuronal excitability and calcium transients 
during exploratory behavior in AD model mice [105]. 
It may be that microglial Slc11a2 knockdown affects 
microglial-neuronal interactions and leads to altera-
tions in neuronal function that drive this hyperactive 
behavior. Further work is warranted to understand the 
mechanisms driving hyperactivity in AD models. Aside 
from the hyperactivity observed in Y-maze, we note that 
the lack of difference between WT and APP/PS1 mice in 
working memory capacity in this task was unexpected. 
Previous work has also reported no difference in baseline 
spatial working memory between WT and APP/PS1 mice 
in a Y-maze task [106, 107], and our conflicting results, as 
theirs, may in part be due to age and strain of mice tested, 
AD model characteristics, stress level of the mice, and/or 
apparatus design.

To assay for changes in memory function utilizing a 
more sensitive task, we utilized the MWM test [58, 108]. 
Slc11a2 knockdown resulted in a significant worsening 
of memory function in APP/PS1 females in the MWM 
memory probe trial. To further probe this memory phe-
notype, we used a fear conditioning assay consisting 
of both a contextual conditioning and cued condition-
ing task. We observed a significant deficit in learned 
cued fear memory in female Slc11a2KD APP/PS1 mice 

compared to control WT and APP/PS1 mice. The cued 
fear conditioning task utilizes the re-presentation of a cue 
(a tone previously paired with a shock) and requires the 
use of separate, parallel neural processing systems from 
the contextual fear memory task. These involve inputs 
from the amygdala, insular cortex, regions in the parietal 
and temporal lobes, sensory cortices, and thalamus [109, 
110]. These complex networks likely converge with hip-
pocampal circuits to acquire and express fear memory 
associated with a conditioned stimulus [111]. Interest-
ingly, dysfunction and neurodegeneration in the amyg-
dala [112–114] and insular cortex [115, 116] have been 
implicated in AD models and patients as an early indi-
cator of disease, and may also underlie many of the neu-
ropsychiatric symptoms observed, such as hyperactivity 
and agitation [117]. The deficits we observed in cued fear 
memory in the female Slc11a2KD APP/PS1 mice, paired 
with their significant hyperactivity, suggest that Slc11a2 
knockdown may worsen AD-associated behavior medi-
ated by both hippocampal and non-hippocampal-
dependent circuits. These data thus reflect a sex-specific, 
disease-modifying cognitive effect of Slc11a2 knockdown 
in female, but not male, APP/PS1 mice.

The sex-differential effects of microglial Slc11a2 knock-
down are of particular interest in relation to AD devel-
opment. In humans, females are significantly more likely 
to develop AD than males [118, 119], and female mice 
display enhanced pathological hallmarks compared to 
males in AD models [120–123]. In the studies reported 
here, we observed effects of microglial Slc11a2 knock-
down in female, but not male, APP/PS1 mice, suggest-
ing a potential pathway involved in worsening disease 
parameters in female mice. Sex differences in brain 
iron-handling and changes in iron-associated markers 
related to disease development are not well understood. 
In humans, brain ferritin levels are generally higher in 
older males than females in several regions [124], which 
is thought to contribute to the risk for males developing 
neurodegenerative disease at comparatively earlier ages 
[125]. In females, but not males, iron-deficiency anemia 
is associated with the development of dementia [126]. 
On the other hand, there is a significant rise in serum fer-
ritin levels associated with menopause in aging females 
[127] that has been directly correlated with declining 
cognitive performance [128]. In mice, males have higher 
brain iron levels than females [129], and adult male and 
female mice differentially alter brain iron stores in iron-
deficient conditions [130]. Additionally, research has 
illuminated significant sex differences in microglial mor-
phology, inflammatory markers, and activity in age and 
disease, which may also contribute to sex differences in 
AD development [131, 132]. While work is ongoing to 
determine the mechanisms driving these sex differences, 
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sex steroid hormone exposure during critical periods 
of development is thought to be a primary driver of 
immune cell sex differences [133, 134]. Additionally, epi-
genetic mechanisms such as differences in DNA methyla-
tion and histone modifications have been posited to play 
key roles in driving sex differences in immune cell reac-
tivity and function [131]. Future experiments utilizing 
gonadectomized rodents could further elucidate whether 
gonadal hormones per se are primary drivers of the sex 
differences we observed. Although the exact associations 
between brain iron status, sex, and microglial function 
are still being elucidated, our work suggests that a micro-
glial inflammatory-iron-related pathway is relevant to 
sex-dependent differences in inflammation and disease 
progression.

Although technical limitations confined us to gene 
expression analyses in these studies, we note that future 
work aimed at quantifying DMT1 protein levels and cel-
lular iron load in the Slc11a2KD cells would be needed 
to expand upon these findings. While we cannot make 
definitive conclusions related to iron levels and/or pro-
tein-level changes in DMT1 and inflammatory mak-
ers per se, others have demonstrated an important role 
for transcriptional changes in inflammatory and iron-
related genes [135, 136]. Indeed, the association between 
Slc11a2 knockdown, changes in behavioral function, and 
alterations in expression of other genes is compelling to 
suggest a role for Slc11a2 in mediating disease-associated 
processes. Furthermore, many studies have characterized 
the microglial transcriptional landscape during AD [80, 
86, 137]. We conducted RNA-seq on isolated hippocam-
pal microglia from the female mice to assess transcrip-
tional changes that may underlie the cognitive differences 
observed. We found robust increases in Enpp2, or ecto-
nucleotide pyrophosphatase 2, and Ttr, the gene encod-
ing for transthyretin, in Slc11a2KD APP/PS1 microglia 
compared to controls. Although there is a possibility 
these genes are associated with choroid plexus contami-
nation in the hippocampal samples [138, 139], previous 
work in neuroinflammation and AD models has identi-
fied downregulations in these genes in specific DAM 
subsets [140–142]. These two genes play roles in protein 
folding, Aβ binding, and lipid signaling, and have been 
suggested to play significant deleterious roles in micro-
glia during aging and disease, when they are increased 
[143, 144].

Slc11a2KD cells from APP/PS1 females also exhibited 
decreases in subsets of DAM-like and age-associated 
markers, such as Apoe, Ly9, Csf1, Cybb, Hif1α, Nfe2l2, 
and Ctsb. Upregulations in these genes in AD-associated 
microglia are thought to represent a ‘primed’ micro-
glial expression state initiated in response to mounting 
pathology and may help limit excessive oxidative damage 

in disease [35, 36, 142, 145–148]. Thus, decreases in 
these markers in the Slc11a2KD cells may reflect the loss 
of a protective transcriptional state. Slc11a2KD cells from 
APP/PS1 females also displayed a decrease in Bin2, a 
marker related to cell migration and phagocytosis. Oth-
ers have suggested that a decrease in Bin2 promotes a 
deleterious transition in microglia during AD progres-
sion [146, 149]. Our data thus suggest that Slc11a2 
knockdown in microglia during AD progression leads 
to decreased expression of ‘protective’ DAM-like mark-
ers associated with limiting cellular damage, and instead 
an exacerbation of deleterious changes observed in aged 
and AD-associated microglia. Indeed, this may under-
lie the unexpected behavioral results observed. Our 
original hypothesis was that inhibiting Slc11a2 would 
improve behavior and cognition based on our previous 
work showing an association between decreased inflam-
matory markers and improved sickness behavior in our 
acute LPS model [42]. However, data presented here sug-
gest that decreased expression of several of these disease-
associated microglial markers instead worsened disease 
parameters. It may be that these inflammatory and pro-
oxidant pathways in microglia are important for protect-
ing neural function during long-term chronic disease.

With the exception of differences in iron export gene, 
Slc40a1, and ceruloplasmin gene, Cp, there were few sig-
nificant changes in iron-associated genes in Slc11a2KD 
cells in our RNA-seq data. This could suggest that the 
effect of Slc11a2 knockdown is primarily on select DAM-
related markers and not on iron markers per se, or it 
could reflect a time-dependent transcriptional change in 
those markers during AD progression that was not cap-
tured at the time point tested. Our in  vitro work dem-
onstrated that ebselen robustly decreases Aβ-induced 
inflammatory markers and decreases iron load. Ebselen 
functions as a potent DMT1 inhibitor [63] and is also a 
peroxidase mimetic, and thus holds potential as a thera-
peutic to limit cellular iron uptake, ROS production, and 
inflammatory signaling [150–152]. Indeed, ebselen can 
improve phenotypes in AD models, and this may be due 
in part to its effects exerted on DMT1 and iron-handling 
[153, 154]. While our in  vivo work cannot definitively 
demonstrate that the effects of DMT1 knockdown are 
due to differences in iron load per se, it is intriguing to 
note that the directional changes in subsets of inflam-
matory and oxidative markers in microglia from the 
Slc11a2KD females are in the same direction as the anti-
inflammatory and antioxidant effects of ebselen. Indeed, 
our pathway analysis in the RNA-seq dataset revealed 
decreases in TNF signaling, mimicking the in vitro find-
ings that Slc11a2 knockdown decreases inflammatory 
markers. Future work is needed to measure levels of iron 
in knockdown cells to conclusively determine the cellular 
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effects of knockdown. However, even if total cellular iron 
levels do not change due to Slc11a2 knockdown, it could 
be that alterations in DMT1 affect the localization or dis-
tribution of iron in the cell that then alters inflammatory 
signaling. A difference in cellular iron distribution can 
lead to altered free radical production, which has been 
shown to directly affect inflammatory signaling pathways 
via modulation of NFκb signaling [155–158]. Future stud-
ies are needed to examine the mechanism by which these 
alterations in DMT1 and inflammatory signaling affect 
microglial function, as well as the mechanisms by which 
Aβ drives DMT1 expression. Future studies could also 
examine Aβ clearance capacity, as microglia play critical 
roles in plaque clearance in vivo [159]. Co-cultures with 
other cells (i.e., neurons) would also help elucidate how 
these differences in microglial inflammatory signaling 
affect overall neural function in disease.

Overall, it is intriguing to consider how the findings at 
the cellular level relate to the changes we observed in dis-
ease progression in vivo. Our initial hypothesis was that 
knocking down Slc11a2 would improve cognition, based 
on decreases in microglial inflammation and iron load. 
Although we observed decreases in some cellular inflam-
matory markers, as hypothesized, these changes instead 
correlated with deficits in several behavioral tasks in 
female mice. This work thus adds to the growing body of 
data pointing to the nuanced role for microglial function 
and inflammation during disease. It may be that micro-
glial increases in iron-related markers and inflammation 
are initially a neuroprotective measure, whereas a late 
transition to an iron-import phenotype exceeds the cell’s 
capacity for non-toxic iron-handling and leads to neuro-
degenerative consequences [29, 160].

Conclusions
In conclusion, this work highlights a sex-specific effect 
of microglial knockdown of iron import gene Slc11a2 on 
behavior and cognitive function in the APP/PS1 mouse 
model of AD. Female Slc11a2KD APP/PS1 mice are sig-
nificantly more hyperactive and display worsened mem-
ory phenotypes compared to control animals. Associated 
with these behavioral changes, microglia from Slc11a2KD 
APP/PS1 females display a transcriptional shift dem-
onstrating decreased DAM-like markers purported to 
be protective. These data suggest that microglial knock-
down of iron import gene, Slc11a2, leads to a progres-
sive worsening of disease parameters in female AD mice 
and illuminate a microglial inflammatory-iron-associated 
pathway that holds relevance to our understanding of the 
complex roles of iron and microglia in neurodegenerative 
disease.
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Additional file 1. Experimental model and timeline diagram. A Schematic 
of mouse model generated in these studies. Slc11a2flfl;Cx3cr1Cre-ERT2+/+ 
mice were bred with Slc11a2flfl;APP/PS1+ hemizygotes to yield two result‑
ant genotypes: Slc11a2flfl;Cx3cr1Cre-ERT2+/-;APP/PS1+ and Slc11a2flfl;Cx3cr1Cre-

ERT2+/-;WT. Tamoxifen was administered to half the animals to induce 
knockdown of microglial Slc11a2, and corn oil was used as a control. This 
resulted in four experimental groups: Control WT, Slc11a2KD WT, Control 
APP/PS1+, and Slc11a2KD APP/PS1+. B Timeline of experiments. Tamoxifen 
gavage was used to induce Slc11a2 knockdown at 5-6 months of age, and 
behavioral analyses were conducted between 12-15 months of age. Tissue 
was collected when mice were 15-18 months of age. C CD11b+ microglial 
cells were isolated from whole brains, and confirmation of Slc11a2 knock‑
down was done via RT-qPCR using a primer targeting exons 7-8 in both 
sexes. Two-way ANOVA, ****p<0.0001 effect of knockdown.

Additional file 2. Mouse numbers and weights used in experiments. Sup‑
plemental Table 1 Mouse numbers used for behavioral assays. Supple‑
mental Table 2 Body weights were assessed at time of euthanasia when 
mice were 15-18 months old. The data are presented as average weight 
in grams ± S.E.M. for 8–14 mice per group. One mouse from the male 
Slc11a2KD;APP/PS1 group and one female Control APP/PS1 mouse died 
prior to euthanasia.

Additional file 3. Antibodies and primers used. Supplemental Table List of 
antibodies used in immunofluorescent staining of isolated glia, and list of 
gene primers used for RT-qPCR

Additional file 4. Knockdown confirmation and outlier analysis in female 
microglia from RNA-seq. A RNA-seq read coverage across annotated exons 
in the Slc11a2 gene using the package, ggcoverage v1.3.0. Slc11a2KD sam‑
ples exhibited complete abrogation of reads between exons 6-8. Sample 
ID numbers shown on right of plot. B PCA plot showing all samples in 
RNA-seq analysis. The red arrow is pointing to sample #10 in control APP/
PS1 group. C Outlier analysis of control APP/PS1 group, showing #10 as 
statistical outlier. Data represent 5-7 mice per group.

Additional file 5. Slc11a2 knockdown had no additional effect on APP/PS1-
associated deficits in nest building or Morris water maze latency. A and 
C Amount nestlet shredded after overnight nest building assay. Two-way 
ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. B and D Latencyto 
reach hidden platform of Morris water maze during training days. Four 
trials per day were averaged for one data point per animal, and these 
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trials were repeated for five days. Three-way ANOVA, *p<0.05, **p<0.01, 
****p<0.0001. Data represent the mean ± S.E.M. of 8-14 mice per group.

Additional file 6. Hippocampal microglia from female APP/PS1 mice exhibit 
significant alterations in gene expression compared to WT. A Top 50 DEGS 
by adjusted p-value between APP/PS1 and WT microglia. Heat map shows 
upregulations in APP/PS1 cells in red and downregulations in blue. B 
Volcano plot showing genes differentially alteredin APP/PS1 compared to 
WT microglia. C GSEA of significantly altered hallmark gene sets in APP/PS1 
cells compared to WT. Upregulated pathways in APP/PS1 microglia include 
those involved in cholesterol homeostasis, inflammatory signaling, and 
metabolic changes. Data represent 5-6 mice per group.

Additional file 7. Slc11a2KD microglia from WTfemale mice exhibit minimal 
alterations in gene expression compared to controls. A Number of DEGS 
from RNA-seq analysis comparing control WT and Slc11a2KD WT groups. 
B Volcano plot showing genes differentially expressedin Slc11a2KD versus 
control WT microglia. C Heat map showing top DEGSin Slc11a2KD versus 
control WT microglia. Red = upregulated, blue = downregulated. Data 
represent 5-6 mice per group.

Additional file 8. Removal of variable sample from Slc11a2KD APP/PS1 
group in RNA-seq data reveals robust effects of Slc11a2KD on microglial 
gene expression in APP/PS1 female mice. A–D Data from RNA-seq analysis 
when sample #4 is removed. A PCA plot showing separation of group 
clusters. B Number of DEGs between Slc11a2KD and control APP/PS1 micro‑
glia. C Heat map showing top 50 DEGSbetween Slc11a2KD and control 
APP/PS1 microglia. Red = upregulated, blue = downregulated. D Top 50 
DEGs by log fold-change between Slc11a2KD and control APP/PS1 micro‑
glia. E, F Targeted gene expression analysis from RNA-seq dataset showing 
changes in E inflammatory markers and F iron-related and oxidative stress 
markers from Slc11a2KD versus control APP/PS1 microglia. Gene expression 
is shown relative to control WT group set to 1. *p<0.05, **p<0.01 student’s 
t-test. G Gene markers representing subsets of DAMswere analyzed via 
RNA-seq between Control and Slc11a2KD APP/PS1 female microglia after 
removing sample #4. Genes highlighted in red are significantly different 
between groups, adjusted p-value < 0.05. Data represent mean ± S.E.M. of 
4-6 mice per group.

Additional file 9. Slc11a2 knockdown had no significant effect on APP/PS1-
associated increases in Hif1α, Cybb, or Il1β in male hippocampal microglia. 
A-C) RT-qPCR gene expression analysis of A Hif1α, B Cybb, and C Il1β 
from isolated hippocampal CD11b+ microglia from male mice. Two-way 
ANOVA, **p<0.01, ****p<0.0001. Data represent the mean ± S.E.M. of 5-9 
mice per group.
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