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Abstract 

Background  Treatment resistant schizophrenia (TRS) is broadly defined as inadequate response to adequate 
treatment and is associated with a substantial increase in disease burden. Clozapine is the only approved treat-
ment for TRS, showing superior clinical effect on overall symptomatology compared to other drugs, and is the 
prototype of atypical antipsychotics. Risperidone, another atypical antipsychotic with a more distinctive dopamine 
2 antagonism, is commonly used in treatment of schizophrenia. Here, we conducted a genome-wide association 
study on patients treated with clozapine (TRS) vs. risperidone (non-TRS) and investigated whether single variants 
and/or polygenic risk score for schizophrenia are associated with TRS status. We hypothesized that patients who are 
treated with clozapine and risperidone might exhibit distinct neurobiological phenotypes that match pharmacologi-
cal profiles of these drugs and can be explained by genetic differences. The study population (n = 1286) was recruited 
from a routine therapeutic drug monitoring (TDM) service between 2005 and 2022. History of a detectable serum 
concentration of clozapine and risperidone (without TDM history of clozapine) defined the TRS (n = 478) and non-TRS 
(n = 808) group, respectively.

Results  We identified a suggestive association between TRS and a common variant within the LINC00523 gene 
with a significance just below the genome-wide threshold (rs79229764 C > T, OR = 4.89; p = 1.8 × 10−7). Polygenic 
risk score for schizophrenia was significantly associated with TRS (OR = 1.4, p = 2.1 × 10−6). In a large post-mortem 
brain sample from schizophrenia donors (n = 214; CommonMind Consortium), gene expression analysis indicated 
that the rs79229764 variant allele might be involved in the regulation of GPR88 and PUDP, which plays a role in striatal 
neurotransmission and intellectual disability, respectively.

Conclusions  We report a suggestive genetic association at the rs79229764 locus with TRS and show that genetic 
liability for schizophrenia is positively associated with TRS. These results suggest a candidate locus for future follow-up 
studies to elucidate the molecular underpinnings of TRS. Our findings further demonstrate the value of both single 
variant and polygenic association analyses for TRS prediction.
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Introduction
Antipsychotics is the cornerstone of schizophrenia 
treatment, but up to 30% of patients do not respond 
adequately to standard treatment [1]. These treatment-
resistant schizophrenia (TRS) patients suffer from greater 
symptom burden [1], and clozapine is the only evidence-
based treatment for TRS with superior clinical effect on 
overall positive and negative symptoms [2].

All atypical antipsychotics broadly share antagonism at 
dopamine 2 (D2) and serotonin 2A (5-HT2A) receptors, 
but they also have binding capabilities at other receptors 
[3]. Clozapine has transient and low affinity binding at D2 
receptors while favouring antagonism on 5-HT2A recep-
tors [3]. It exhibits the broadest coverage of molecular 
targets among all antipsychotics, including modulation 
of glutaminergic, cholinergic, and noradrenergic trans-
mission [3]. Risperidone is a commonly used atypical 
antipsychotic with a more distinct receptor profile and 
particularly stronger D2 antagonism than clozapine [3]. 
Patients who respond adequately to antipsychotics like 
risperidone are considered as ‘responders’ to D2 recep-
tor antagonism. Since clozapine can only be prescribed 
after failed response to two other antipsychotics, those 
who use clozapine may be considered as ‘non-respond-
ers’, meaning that symptom improvement is not suffi-
cient with antagonism of these receptors but may require 
involvement of other neurotransmitter systems.

Currently, knowledge on the underlying neurobiology 
of TRS is limited. While emerging evidence suggests that 
TRS has a polygenic architecture [4], previous studies 
have failed to identify specific gene variants that robustly 
correlate with TRS [5]. In a genome-wide investigation, 
Ruderfer et  al. identified shared genetic underpinnings 
between schizophrenia pathophysiology and the mecha-
nisms of action of antipsychotic drugs [6]. Here, we con-
ducted a genome-wide association study (GWAS) on 
clozapine use, defined as proxy of resistant schizophre-
nia, vs. risperidone use, defined as proxy for responsive 
schizophrenia, in patients with confirmed therapeutic 
concentrations of these two drugs. We both analysed 
for associations with single variants and polygenic risk 
score for schizophrenia and hypothesized that genetic 
differences between patients treated with clozapine and 
risperidone might reflect aspects underlying the genetic 
architecture of antipsychotic response.

Methods
Study population
In clinical practice, therapeutic drug monitoring (TDM) 
may be applied to guide antipsychotic dosing to ensure 
sufficient treatment intensity, and thus exclude potential 
‘pseudo resistance’ and erroneous diagnosis of TRS. The 
study utilized retrospective data/samples of patients from 

the routine TDM service at Center for Psychopharma-
cology, Diakonhjemmet Hospital, Oslo, Norway, who in 
the period between January 2005 and August 2022 had 
performed (i) TDM of clozapine and/or risperidone and 
(ii) genotyping of cytochrome P450 (CYP) enzymes. In 
Norway, TDM is reimbursed and commonly used as a 
clinical tool in public psychiatric health service to assess 
adherence to medication and optimize dosing of drugs 
for maximizing clinical effect and/or minimizing side 
effects. Use of CYP genotyping is also reimbursed and 
increasingly used to guide dose optimization of psychi-
atric drugs.

The study population consisted of patients of Norwe-
gian inhabitants and is assumed to be of patients with 
Caucasian ancestry. The main inclusion criterion was the 
availability of biobanked (residual) blood samples from 
CYP genotyping and clinical concentration levels of clo-
zapine or risperidone verified by TDM. Patients were 
phenotyped based on their history of using clozapine 
or risperidone at clinically relevant concentrations, as 
determined by their TDM history. The TRS group was 
defined by clozapine use, while the non-TRS group was 
defined by risperidone use without any history of clozap-
ine TDM. Further requirements for being included in the 
risperidone cohort were treatment with ≥ 2 mg/day risp-
eridone at least once (dose range for psychotic disorders) 
and no previous use/TDM history of clozapine.

In the non-TRS group, 41% of the patients had a TDM 
history of antipsychotic polypharmacy with risperi-
done (two or more drugs). Furthermore, in the non-TRS 
group, TDM history of median number of other, non-
clozapine antipsychotics before taking risperidone was 1 
(IQR: 0,1), whereas in the clozapine (TRS) group, TDM 
history of median number of non-clozapine antipsychot-
ics was 2 (IQR; 0,3). All patients were included in the 
study independent of the clinical setting (out-/inpatient). 
In Norway, TDM of clozapine is usually performed for 
dose titration and by routine during ongoing treatment, 
whereas TDM of risperidone is more often ‘reactive’ due 
to insufficient clinical effect or suspected side effects. 
Center for Psychopharmacology is the major laboratory 
performing the analyses.

The Regional Committee for Medical and Health 
Research Ethics and the Investigational Review Board at 
Diakonhjemmet Hospital approved the study. The study 
used anonymized data and residual blood samples from 
already performed routine analyses. In these cases, where 
study inclusion does not pose any burden to the patients, 
the Health Research Act of Norway allows for using sam-
ples and information collecting in clinical routine for 
research purpose without written informed patient con-
sent. However, it is mandatory to send information to the 
patients, in advance of starting a project, about their legal 
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rights to reserve against being included. Accordingly, let-
ters were sent to all patients eligible for inclusion, where 
those requesting to opt-out were excluded from the 
study.

Serum concentration determination of antipsychotics
Liquid chromatography with mass spectrometry (LC–
MS) method with FDA certified and validated ana-
lytical assays were applied for determination of serum 
concentrations of clozapine and risperidone and their 
metabolites. Lower limit of quantification for clozapine 
and N-desmethylclozapine was 50 nmol/L, whereas this 
limit was 1  nmol/L and 2  nmol/L for risperidone and 
9-hydroxyrisperidone, respectively.

Serum concentration thresholds, based on consensus 
guidelines [7], were used as an informative measure to 
assess whether exposure to antipsychotic was adequate. 
These were clozapine 1070 nmol/L (350 µg/L) and risp-
eridone active moiety 50  nmol/L (20  µg/L, risperidone 
plus 9-hydroxyrisperidone).

Genotyping and imputation
As previously described in detail [8], DNA extracted from 
the whole blood was genotyped using the Human Omni 
Express-24 v.1.1 (Illumina Inc., San Diego, CA, USA), at 
deCODE Genetics (Reykjavik, Iceland), following stand-
ard Illumina protocols. Quality control and phasing of 
chromosome-wide haplotypes were performed with 
PLINK v1.93 [9, 10] and Eagle2 [11, 12], respectively. The 
first release of the haplotype reference consortium refer-
ence set was used for imputation of missing variants with 
Minimac3 [13]. Following imputation, exclusion crite-
ria were variants with (1) minor allele frequency < 1% 
or (2) departure from Hardy–Weinberg equilibrium (P 
value < 1 × 10−6), or individuals with (3) high rates of 
missing genotypes (> 5%), that exhibit relatedness (pair-
wise Identity-By-Descent ^ π > 0.2 according to PLINK 
v1.9). 1286 individuals with ~ 5.6 million common vari-
ants were included for further statistical analysis.

Statistical analysis
The statistical analyses were performed using R statistics 
[14] for demographic characteristics of the study sam-
ple and follow-up analysis of the lead variant identified. 
Distribution of sex and age were compared between TRS 
and non-TRS patients using Pearson’s Chi-squared test 
and Welch’s two sample t-test, respectively. If risperidone 
patients were prescribed long-acting injectable formu-
lations, total daily dosing was estimated by dividing the 
prescribed doses by dosing intervals. Estimated means of 
serum concentrations (nmol/L) and daily dose (mg/day) 
were calculated using linear mixed models with unique 
patient identifier as random effects.

The GWAS of TRS versus non-TRS was conducted 
using logistic regression analyses implemented in PLINK 
v1.9 [9, 10], controlling for participant age, sex, the first 
10 genetic principal components and genotyping batch. 
Standard GWAS threshold (5 × 10−8) was used to define 
statistical significance of the GWAS analysis. LDproxy 
module provided by the LDlink platform [15] was used to 
perform linkage equilibrium analysis of the lead variant.

For the expression quantitative trait loci (eQTL) analy-
sis, genotype and post-mortem frontal brain cortex gene 
expression data were obtained from the CommonMind 
Consortium [16]. Only data from schizophrenia patients 
with European ethnicity (n = 214) were included in the 
study. Genotype QC and imputation were performed 
by the Consortium. The expression data was filtered 
and normalized using the DESeq2 R package [17]. The 
R package MatrixEQTL [18] was used for the cis-eQTL 
analysis, adjusting for age, gender and post-mortem 
interval. Variant-gene associations within 1 Mb of the 
identified lead variant were considered. P < 0.05 defined 
statistical significance of patient/treatment characteris-
tics and gene expression analyses.

For the GWAS sample, a schizophrenia polygenic risk 
score (PRS) was calculated based on the latest schizo-
phrenia GWAS performed by the PGC [19] using the 
meta-analysis of European samples comprising 53,386 
cases and 77,258 controls. The PRS was calculated 
using the PRS continuous shrinkage (PRS-cs) approach 
[20], adjusting for linkage disequilibrium (LD) based 
on the LD structure of the European sample of the 
1000 Genomes Phase III [21] with default options and 
a shrinkage parameter of phi = 1 [20]. To facilitate the 
interpretability of the results, the PRS was standardized 
(mean = 0, SD = 1) before statistical analysis. To inves-
tigate if the PRS for schizophrenia as well as smoking, 
age, and sex is associated with TRS, a logistic regression 
analysis including TRS (yes/no) as the dependent vari-
able was performed. The model included the PRS, age, 
sex, smoking (yes/no), as well as genotyping batch and 
the first 5 principal components for genetic ancestry for 
adjustment.

Results
Sample characteristics are presented in Table 1. The study 
population (n = 1286) included n = 478 TRS patients and 
n = 808 non-TRS patients. There was a higher propor-
tion of males among the TRS group compared to the 
non-TRS group (59% vs 53%, p = 0.009), but no differ-
ence in age distribution (Table 1). Mean daily dose esti-
mates were 335 and 3.3  mg/day for patients who were 
treated with clozapine (TRS) and risperidone (non-TRS), 
respectively (Table  1). Furthermore, estimated serum 
concentration measurements for patients in the TRS 
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and non-TRS group were 1201  nmol/L (393  ng/ml) for 
clozapine and 64  nmol/L for risperidone (active moiety 
including 9-hydroxyrisperidone), respectively (Table  1). 
Among the TRS group, median number of clozapine 
measurements during the study period was 14 (IQR: 5, 
36) spanning 4.3 years (IQR: 0.7, 11.8) of TDM, whereas 
TDM history of the non-TRS group showed median of 
3 (IQR: 1.8, 7) risperidone measurements over 0.8 years 
(IQR: 0.04, 4.8; Table 1).

The GWAS on TRS did not show any associations 
reaching genome-wide significance (p < 5 × 10−8), how-
ever identified a single nucleotide polymorphism (SNP; 
rs79229764 C > T) on chromosome 14 with a p-value 
just above the genome-wide significance threshold 
(p = 1.8 × 10−7; Fig.  1). We observed a 2.1-fold higher 
proportion of the risk allele carriers among TRS patients 
compared to non-TRS patients with allele frequencies 
of 3.7% and 1.7%, respectively; OR = 4.89, 95% CI = [2.6, 
8.5]). Frequency of the minor allele variant is 4.2% among 
European populations (https://​www.​ensem​bl.​org/). 
LD structure from the 1000 Genomes phase 3-genome 

browser showed a low LD region (Supplementary Fig. 1) 
with variants that are in low to moderate LD with the 
rs79229764 haplotype among the European populations 
(R2 < 0.54; Supplementary Table 1).

The rs79229764 variant is located within the exon of 
the long intergenic non-coding RNA 523 (LINC00523) 
gene. NHGRI-EBI GWAS Catalog did not reveal any pre-
vious associations with the rs79229764 variant (https://​
www.​ebi.​ac.​uk/​gwas/). Expression quantitative trait loci 
(eQTL) analysis of rs79229764 using the CommonMind 
Consortium post-mortem brain expression data [16] 
from n = 214 (CC: n = 203, CT: n = 11) schizophrenia 
patients revealed gene associations with nominal signifi-
cance. The top 3 most significant risk allele-gene relation-
ships included increased expression of PUDP (p = 0.001) 
and GPR88 (p = 0.0047), and decreased expression of 
JMJD7 (p = 0.003; Table 2 and Fig. 2).

The schizophrenia PRS showed a significant, positive 
association with TRS, i.e., higher PRS was associated 
with being a TRS case (OR = 1.4, p = 2.1 × 10−6; Fig. 3 and 
Supplementary Table  2). In addition, we observed that 

Table 1  Demographic and treatment characteristics of the study population

IQR Interquartile range, SD Standard deviation, TDM Therapeutic drug monitoring, TRS treatment resistant schizophrenia. TRS and non-TRS groups comprised of 
patients who were treated with clozapine and risperidone, respectively

Variables TRS non-TRS p

Number of patients, n 478 808 –

Male, n (%) 284 (59) 430 (53) 0.031

Age, years; mean (SD) 48.7 (15.0) 48.7 (16.9) 0.99

Serum concentration, nmol/L; mean (95%CI) 1201 (1162,1240) 64 (30, 98) –

Dose, mg/day; mean (95%CI) 335 (320, 350) 3.3 (3.2, 3.4) –

History of TDM measurements, n; median (IQR) 14 (5, 36) 3 (1.8, 7) –

TDM duration, years; median (IQR) 4.3 (0.7, 11.8) 0.8 (0.04, 4.8) –

Fig. 1  Manhattan plot showing the associations with risk of TRS. The − log10 transformed p-values for each SNP are shown on the y-axis 
and chromosomal positions are indicated on the x-axis. The dashed black line represents the standard GWAS p-value threshold of 5 × 10−8. The most 
significant SNP is highlighted by text

https://www.ensembl.org/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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smoking was significantly associated with TRS (OR = 1.4, 
p = 0.003; Fig. 3 and Supplementary Table 2). No associa-
tion was observed between TRS and sex or age (Fig.  3 
and Supplementary Table 2).

Discussion
In the current study, we conducted a genome-wide 
investigation of TRS based on treatment history of 
clozapine (TRS) and risperidone (without clozapine 

history; non-TRS) at therapeutic serum concentra-
tions in a well-phenotyped study cohort (n = 1286). 
We found that genetic liability to schizophrenia, as 
measured by schizophrenia PRS was significantly 
associated with TRS. We also identified a suggestive 
variant in the LINC00523 gene (rs79229764 C > T) 
with strong enrichment in clozapine vs. risperidone 
patients (OR = 4.89) and a significance level close to 
the genome-wide threshold (p = 1.8 × 10−7). Follow-up 

Table 2  The 3 most significant brain tissue gene expression associations of the lead variant rs79229764 C > T from CommonMind 
Consortium

Betas are included from the eQTL analysis which was adjusted for age, gender and post-mortem interval. Only data from schizophrenia patients with European 
ethnicity were included in the analysis. * p > 0.05 after multiple comparisons corrections

Chromosome Position Gene name Beta p (unadjusted)* Gene type

X 6,667,865–7,148,158 PUDP 0.441 0.001 Protein coding

15 41,828,092–41,837,581 JMJD7 -0.592 0.003 Protein coding

1 100,538,139–100,542,021 GPR88 0.435 0.005 Protein coding
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Fig. 2  Impact of rs79229764 C > T on brain tissue gene expression from CommonMind Consortium data. The 3 most significant gene expression 
associations were illustrated. Normalized expression results are shown on the y-axis, while rs79229764 C > T genotypes are indicated on the x-axis. 
Gene names and unadjusted p-values from association analyses are shown at the top part of the plots
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Fig. 3  Forest plot showing the association between treatment resistant schizophrenia and schizophrenia polygenic risk score (PRS SCZ), smoking, 
age, and sex. Effects are reported as odds ratios (95% confidence interval)
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eQTL analysis in post-mortem brain samples from 
schizophrenia donors (n = 214) suggested transcrip-
tional effects of rs79229764 on different genes.

Although previous studies investigating the associa-
tion between schizophrenia PRS and TRS had conflicting 
results [22–25], our finding is in line with a recent sys-
tematic review and meta-analysis that showed significant 
associations between schizophrenia PRS and TRS [26]. 
We have previously observed that higher schizophrenia 
PRS is associated with antipsychotic prescription pat-
tern [27, 28]. Together with the findings from the current 
study, these results suggest that schizophrenia PRS may 
have potential utility to aid in therapeutic decision mak-
ing on antipsychotic treatment. Furthermore, this shows 
the ability of the study to use a combinatorial approach 
investigating pharmacogenomics of TRS at both overall 
and detailed levels.

Interestingly, tobacco smoking was also significantly 
associated with TRS. Approximately 60% of patients 
with schizophrenia are smokers [29, 30], and the “self-
medication” hypothesis states that nicotine consumption 
via tobacco smoking reduces the negative and cognitive 
symptoms in patients with schizophrenia [31]. Support-
ing this hypothesis, among patients with TRS, smokers 
show worse cognitive performances and more severe 
negative symptoms compared to nonsmokers [32] which 
may be indicative of self-medication behaviour to allevi-
ate these symptoms. While smoking is known to induce 
metabolism and reduce serum levels of clozapine, the 
present findings suggest that smoking of nicotine-con-
taining products may be indicative of a higher disease 
burden, corresponding non-response to antipsychotics 
and TRS.

The rs79229764 variant, identified as the closest to 
genome-wide significant association with TRS in our 
sample, is located in the exon of the LINC00523 gene on 
the chromosome 14 open reading frame 70, C14orf70), 
which encodes an intergenic lncRNA (LINC00523). 
LINC00523 is highly expressed in basal ganglia (particu-
larly in nucleus accumbens), testis, and adrenal gland 
(https://​www.​gtexp​ortal.​org/). Functional effect of the 
rs79229764 variant on LINC00523 expression is cur-
rently unknown, however LINC00523 has been previ-
ously shown to be downregulated in patients with type 2 
diabetes mellitus (T2DM) [33]. It can be speculated that 
changes in the expression may be of clinical importance 
since T2DM, as well as tobacco smoking, are among the 
major risk factors of cardiovascular disease (CVD), which 
is reported to be the cause of death for 25% of patients 
with schizophrenia [34]. The contribution of unhealthy 
lifestyle [35] and metabolic adverse effects related to 
antipsychotic drugs (especially clozapine) [36] among 
patients with TRS are well-known, and current evidence 

also suggest that there may be a shared genetic liability 
between schizophrenia and CVD [37].

Investigation of the transcriptional effects of 
rs79229764 variant in post-mortem brain data of schiz-
ophrenia patients suggested upregulation of GRP88 
and PUDP, and downregulation of JMJD7. Of particu-
lar interest may be the GPR88 gene, which encodes an 
orphan G-protein coupled receptor of the class A rho-
dopsin family (GPR88) that has previously been sug-
gested to be a candidate susceptibility gene for sporadic 
cases of schizophrenia and bipolar disorder [38, 39]. 
GPR88 is robustly expressed in the GABAergic medium 
spiny neurons (MSN) of the striatum [40–42] and cen-
tral extended amygdala [43]. MSNs of the striatum are 
involved in dopaminergic and glutamatergic signalling 
pathways [44], which have been indicated in the patho-
physiology of schizophrenia and treatment-resistance 
[45]. Furthermore, GPR88 expression has been previ-
ously shown to be altered after administration of mood 
stabilizers [46, 47], antidepressants [48–50], and drugs 
related to treatment of addiction [43] which highlights 
its relevance for the treatment of psychiatric disorders. 
Future studies should therefore elucidate the potential 
impact of the rs79229764 polymorphism and/or GPR88 
expression for the risk of TRS.

PUPD (or HDHD1) encodes a phosphatase which 
might be involved in RNA degradation [51]. Previous 
studies suggest involvement in cancer formation [52] 
and intellectual disability [53]. Associations with intellec-
tual disability is in line with the latest evidence from the 
larger GWAS on TRS which showed polygenic correla-
tions between TRS and poor cognitive performance and 
intelligence [4] and might indicate role of neurodevelop-
mental processes in formation of TRS [54].

One limitation of the current study is the relatively 
small sample size for a GWAS on complex traits such 
as TRS. To prevent concentration-dependent serious 
adverse effects and ensure adequate clinical exposure, 
TDM of clozapine is strongly recommended and per-
formed more often compared to other antipsychotics. In 
the current study, this suggests that the clozapine-taking 
TRS group is more likely to represent general TRS popu-
lation. On the other hand, since TDM of risperidone is 
usually performed on physician’s request, the risperidone 
taking non-TRS patients who are referred to TDM and 
pharmacogenetic investigation usually suffer from more 
serious psychiatric conditions and require closer fol-
low-up. Therefore, non-TRS patients with gene variants 
associated with risk of treatment failure are likely to be 
overrepresented compared to general risperidone-taking 
patient population. Although not possible to quantify the 
magnitude of this effect, the high odds ratio of being car-
rier of the suggestive variant among clozapine-treated 

https://www.gtexportal.org/
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patients in our analysis may be underestimated. Another 
limitation is that we did not have access to clinical infor-
mation of patients, which precluded a clinical assessment 
of treatment response status. However, the study utilizes 
longitudinal TDM data to include well-defined pheno-
types of TRS and non-TRS patients where appropriate 
drug use was quantitatively evidenced by serum concen-
trations within the therapeutic ranges for the respective 
drugs [7]. With access to smoking status on the TDM 
requisition forms we were also able to identify and adjust 
for smoking as a predictor of TRS. Thus, the methodolog-
ical approach in the current study facilitates use of robust 
phenotypes by accounting for smoking and eliminating 
pseudoresistance, an important confounding factor in 
TRS research, which may be driven by poor adherence or 
other factors [55]. Therefore, the strengths of the study, at 
least partially, may outweigh the above limitations.

Conclusions
We conducted a GWAS of TRS that utilized a thera-
peutic drug monitoring patient sample, where smoking 
status was known, and therapeutic concentrations of clo-
zapine and risperidone confirmed. Although the study 
did not reveal any genome-wide significant associations, 
we identified a variant in the LINC0053 gene that was 
marginally associated with higher risk of TRS. Transcrip-
tional effects of this variant suggest a role of striatal regu-
lation and possible neurodevelopmental underpinnings 
in the pathophysiology of TRS. We also show that poly-
genic liability for schizophrenia was significantly asso-
ciated with TRS. Our results suggest a candidate locus 
for future follow-up studies to elucidate the molecular 
underpinnings of TRS and demonstrate the value of com-
bining single variant and polygenic association analyses 
to suggest potential utility of genetics in predicting TRS.
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