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Abstract
Background  Histone acetylation plays a critical role in the progression of acute myeloid leukemia (AML). This study 
aimed to explore the prognostic significance and biological implications of histone acetylation-related genes in AML 
and to identify potential oncoproteins and therapeutic compounds.

Methods  Genes associated with AML and histone acetylation were identified using the TCGA-LAML and IMEx 
Interactome databases. A histone acetylation-related risk model was developed using the least absolute shrinkage 
and selection operator method. The prognostic value of the model was evaluated through Kaplan-Meier survival 
analysis, time-dependent receiver operating characteristic curve, univariate and multivariate Cox regression, and 
nomogram calibration. Key genes were identified using random forest, support vector machine, and multivariate 
Cox analysis. Molecular docking was employed to assess the binding affinity between ribosomal protein S6 kinase A1 
(RPS6KA1) and potential compounds. Furthermore, the effects of RPS6KA1 and afzelin on the malignant behaviors 
and downstream pathways of AML cells were validated through in vitro experiments.

Results  A risk model composed of 6 genes, including HDAC6, CREB3, KLF13, GOLGA2, RPS6KA1 and ZMIZ2, was 
established, demonstrating strong prognostic predictive capability. Among these, RPS6KA1 emerged as a key risk 
factor linked to histone acetylation status in AML. Elevated RPS6KA1 expression was observed in AML samples and 
was associated with poor prognosis. RPS6KA1 knockdown suppressed AML cell proliferation, migration, and invasion, 
induced G0/G1 phase arrest, and promoted apoptosis. Additionally, RPS6KA1 was identified as a potential target for 
afzelin, which exhibited anti-AML activity by inactivating RPS6KA1.

Conclusion  Histone acetylation status is closely associated with AML patient prognosis. RPS6KA1 acts as an 
oncoprotein in AML, facilitating disease progression. Afzelin may represent a novel therapeutic agent for AML by 
targeting RPS6KA1, which requires validation by clinical trials.
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Introduction
Acute myeloid leukemia (AML) is a highly lethal malig-
nancy originating from myeloid stem/progenitor cells 
[1, 2]. It is the most common form of acute leukemia in 
adults, accounting for approximately 80% of all diagnosed 
cases [3]. The incidence of AML increases with age, and 
in 2021, around 20,240 new cases and 11,400 deaths were 
reported globally [4]. Despite chemotherapy with cyta-
rabine and anthracyclines remaining the standard treat-
ment for AML [5], the 5-year overall survival (OS) rate 
is only approximately 40% for patients under 60 years 
of age, while it drops to just 10% for those over 60 [6, 7]. 
These statistics underscore the urgent need for a deeper 
understanding of the mechanisms driving AML progres-
sion and the development of novel therapeutic strategies.

Epigenetic modifications regulate gene expression 
through various mechanisms, including histone modifi-
cation, DNA methylation, non-coding RNA regulation, 
and chromatin structure remodeling [8]. In eukaryotic 
cells, histone modifications, such as acetylation, phos-
phorylation, methylation, sumoylation, and ubiquitina-
tion, contribute significantly to molecular functional 
diversity [9]. Histone acetylation, a reversible process 
mediated by histone acetyltransferases (HATs) and his-
tone deacetylases (HDACs), alters chromatin structure 
and gene expression [10, 11]. Aberrant histone acetyla-
tion has been implicated in the pathogenesis of various 
cancers, such as breast, colon, lung, liver, pancreatic, 
prostate, thyroid carcinomas, and AML [12–14]. Target-
ing these epigenetic alterations holds great promise for 
cancer therapy [15–18]. Understanding the clinical sig-
nificance of dysregulated histone acetylation can aid in 
the development of new therapeutic strategies for AML.

In this study, we developed a robust and sensitive prog-
nostic risk model based on histone acetylation regulators. 
Notably, ribosomal protein S6 kinase A1 (RPS6KA1), 
identified as a key risk factor in this model, was found 
to be highly expressed in AML patients and to promote 
malignant behaviors in AML cell lines. Furthermore, 
we discovered that afzelin has a high binding affinity for 
RPS6KA1 and exhibits tumor-suppressive effects in AML 
cell lines.

Methods and materials
Data collection
RNA sequencing data, clinicopathological character-
istics, and gene mutation information for 132 AML 
samples were obtained from The Cancer Genome Atlas 
(TCGA) database. RNA-seq transcriptome data were 
converted into fragments per kilobase of exon model per 
million mapped fragments (FPKM) format and subse-
quently normalized using the SVA package. Additionally, 
the GSE71014 dataset was downloaded from the Gene 

Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) to serve as a validation set.

Identification of genes associated with histone acetylation
A total of 36 histone acetylation regulators were iden-
tified through a comprehensive literature review. To 
identify genes associated with histone acetylation, Pear-
son correlation analysis was performed based on gene 
expression data from the TCGA-LAML cohort. The 
selection criteria were a correlation coefficient > 0.7 and 
P < 0.05. Additionally, genes interacting with these 36 
histone acetylation regulators were identified using the 
IMEx Interactome database (http://www.innatedb.com). 
By combining the genes identified through these meth-
ods, a gene-gene interaction network was constructed, 
and the hub genes were identified and designated as “his-
tone acetylation-related genes.”

Construction and validation of histone acetylation-related 
risk model
The TCGA-LAML dataset was randomly divided 
into a training set and a test set in a 7:3 ratio. In 
the training set, least absolute shrinkage and selec-
tion operator (LASSO)-Cox regression analysis was 
employed to identify key genes for constructing the 
risk model. The risk score for each patient was calcu-
lated using the following formula: risk score = ∑ (coef-
ficient × expression of signature gene). The final risk 
score was calculated as follows: ultimate risk score = 
-0.0020×HDAC6 + 0.0053×CREB3 + 0.0013×KLF13-
0.0461×GOLGA2 + 0.0091×RPS6KA1-0.0022×ZMIZ2. 
Patients in the training cohort (n = 93), test cohort 
(n = 39), TCGA-LAML cohort (n = 132), and GSE71014 
cohort (n = 104) were stratified into low-risk and high-
risk groups based on the median risk score. Kaplan-
Meier survival analysis and the log-rank test were 
performed to compare the prognosis of patients in the 
high- and low-risk groups. The sensitivity and specificity 
of the risk model were evaluated using time-dependent 
receiver operating characteristic (ROC) curves and the 
corresponding area under the curve (AUC) values. Prin-
cipal component analysis (PCA) was conducted using the 
ggplot2 package in R. Univariate and multivariate Cox 
regression analyses were employed to assess the impact 
of risk scores and clinicopathological factors (age, sex, 
and tumor type) on prognosis, with hazard ratios (HR) 
calculated for each factor.

Construction and verification of nomogram
A nomogram was constructed based on the TCGA-
LAML cohort by integrating clinicopathological variables 
such as age, gender, tumor type, and risk scores. This was 
done using the “nomogram” package in R software to fur-
ther explore the individual prognosis of AML patients. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.innatedb.com
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Calibration and ROC curve analyses were conducted to 
assess the predictive performance of the nomogram from 
various perspectives.

Identification and enrichment analysis of differentially 
expressed genes (DEGs) in risk groups
DEGs between the high-risk and low-risk groups in the 
TCGA-LAML dataset were identified using the R soft-
ware package DESeq2, with the screening criteria set 
at |log fold change| > 1 and P < 0.05. Subsequently, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of DEGs was performed using the clus-
terProfiler package in R.

Immune cell infiltration and genome mutation analysis
The CIBERSORT method was employed to evaluate dif-
ferences in immune cell infiltration between the different 
groups. Immune infiltration, including immune, stromal, 
and ESTIMATE scores, was assessed using the Estima-
tion of Stromal and Immune Cells in Malignant Tumors 
using Expression Data (ESTIMATE) algorithm. The cor-
relation between immune infiltration, risk scores, and 
RPS6KA1 expression was analyzed. Waterfall plots were 
generated using the maftools package in R to visualize 
the genomic mutation landscape.

Network construction and analysis of RPS6KA1 and its 
co-expressed genes
The interaction network of RPS6KA1 and its co-
expressed genes was constructed using GeneMANIA 
(http://genemania.org/). Additionally, gene ontology 
(GO) and KEGG analyses were performed using the 
clusterProfiler package in R. The expression level of 
RPS6KA1 and the survival status of AML patients were 
analyzed using the GEPIA database (http://gepia.cancer-
pku.cn/).

Molecular docking
Potential compounds that bind to RPS6KA1 were iden-
tified from the HERB database (http://herb.ac.cn/). The 
X-ray crystal structure of the RPS6KA1 protein was 
obtained from the Protein Data Bank (PDB; https://www.
rcsb.org/). The PDB file was processed with PyMOL 
software. The 3D chemical structures of potential com-
pounds were downloaded from PubChem (https://www.
ncbi.nlm.nih.gov/pccompound/) in SDF format, then 
converted to PDB format using OpenBabel 3.1.1. Sub-
sequently, the PDB files were converted to PDBQT for-
mat using AutoDockTools (version 1.5.7). AutoDock 
Vina v.1.1.2 was used for blind docking to calculate the 
binding energy, with the receptor grid encompassing the 
entire protein and docking performed at an exhaustive-
ness level of 2000. The structure with the lowest bind-
ing free energy was selected as the most favorable, with 

a binding energy < 0 indicating that the ligand can spon-
taneously bind to the receptor [19]. The docking results 
were visualized using PyMOL software.

Cell culture, transfection, and treatment
Human AML cell lines HL-60 and THP-1 (ATCC, 
Manassas, VA, USA) were cultured in Dulbecco’s Modi-
fied Eagle’s Medium (DMEM; Invitrogen, Carlsbad, CA, 
USA) supplemented with 10% fetal bovine serum (FBS; 
Invitrogen, Carlsbad, CA, USA), 100 U/mL penicillin, 
and 100 µg/mL streptomycin (Invitrogen, Carlsbad, CA, 
USA). Cells were maintained in a humidified incubator 
at 37 °C with 5% CO2. When cells reached 70–80% con-
fluence, Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 
USA) was used for transfection. Small interfering RNA 
(siRNA) targeting RPS6KA1 (si-RPS6KA1) (GenePharma 
Co., Ltd., Shanghai, China) and corresponding negative 
controls (si-NC) were transfected into HL-60 and THP-1 
cells. The transfection efficiency was assessed 24 h post-
transfection using quantitative real-time PCR (qPCR). 
Additionally, HL-60 and THP-1 cells were treated with 
afzelin (purity: 99.62%, CAS No. HY-N1441; MedChem-
Express, Shanghai, China) at varying concentrations (0, 
10, 20, 30, 40, and 50 µM) for 24 h. Untreated cells served 
as controls.

qPCR
Total RNA from HL-60 and THP-1 cells was extracted 
using the TRIzol kit (Takara, Dalian, China). Comple-
mentary DNA was synthesized with the Transcriptor 
Universal cDNA Master kit (Roche, Shanghai, China). 
Real-time PCR was conducted using a SYBR Green 
PCR Master Mix Kit (LMAI Bio, Shanghai, China) on 
an ABI7500 real-time PCR system (Applied Biosys-
tems, San Francisco, CA, USA). GAPDH was used as 
an internal reference. The primer sequences are as fol-
lows: RPS6KA1: 5’-​A​T​G​C​A​G​A​C​C​C​C​A​G​C​A​G​A​T​T​T-3’ 
(forward) and 5’-​G​T​G​C​A​G​C​T​T​C​A​C​C​A​C​G​A​A​T​G-3’ 
(reverse); GAPDH: 5’-​G​A​A​G​G​T​G​A​A​G​G​T​C​G​G​A​G​T​C-3’ 
(forward) and 5’-​G​A​A​G​A​T​G​G​T​G​A​T​G​G​G​A​T​T​C​G​A​T​T​
C-3’ (reverse).

Cell counting kit-8 (CCK-8) assay
HL-60 and THP-1 cells were seeded in 96-well plates 
at a density of 1,000 cells per well in 100 µL of medium 
and cultured at 37  °C with 5% CO2 for 24 h. At specific 
time points (0, 1, 2, 3, and 4 days), 10 µL of CCK-8 solu-
tion (Dojindo, Kumamoto, Japan) was added to each 
well. After a 2-hour incubation, the absorbance of each 
well was measured at a wavelength of 450  nm using a 
microplate reader (Bio-Rad, Richmond, CA, USA). Cell 
viability was calculated using the following formula: Cell 
viability (%) = (OD treatment-OD blank)/(OD control-
OD blank) × 100%.

http://genemania.org/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://herb.ac.cn/
https://www.rcsb.org/
https://www.rcsb.org/
https://www.ncbi.nlm.nih.gov/pccompound/
https://www.ncbi.nlm.nih.gov/pccompound/
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Transwell assays
Transwell chambers with 8 µM pore size (Costar, Cam-
bridge, MA, USA) were used to assess cell migration and 
invasion. For the invasion assay, chambers were coated 
with Matrigel (BD Biosciences, Franklin Lakes, NJ, USA); 
Matrigel was not used for the migration assay. HL-60 and 
THP-1 cells (approximately 5 × 104 cells) were suspended 
in 200 µL of serum-free medium and added to the upper 
chamber. The lower chamber was filled with 600 µL of 
medium containing 10% FBS. Cells were then incubated 
at 37 °C with 5% CO2 for 24 h. The number of cells that 
migrated or invaded to the lower chamber was then 
counted using a hemocytometer.

Flow cytometry
As previously described [20], the cell cycle and apopto-
sis of AML cell lines were analyzed using flow cytome-
try. For the cell cycle assay, HL-60 and THP-1 cells were 
collected and centrifuged at room temperature (800×g) 
for 10 min. The cells were then incubated with cold 70% 
ethanol for 24  h, followed by staining in the dark with 
propidium iodide (PI)/RNase stain buffer (BD Pharmin-
gen, San Diego, CA, USA) for 15 min. DNA content was 
analyzed using the Guava Easycyte HT flow cytometer 
system (Merck KGaA, Darmstadt, Germany), and the 
results were processed using ModFit 3.2 software (Ver-
ity Software House, Topsham, ME, USA). For apoptosis 
detection, AML cells were stained with 10 µL of Annexin 
V-Fluorescein Isothiocyanate (FITC) and 10 µL of PI 
in the dark at room temperature for 15  min. The cells 
were then sorted by flow cytometry. The percentages of 
Annexin V−/PI+ (necrosis), Annexin V+/PI− (early apop-
tosis), and Annexin V+/PI+ (late apoptosis) cells were 
calculated.

Western blotting
AML cells were lysed using RIPA lysis buffer contain-
ing protease inhibitors (Sigma, St. Louis, MO, USA) 
to extract total cellular protein. Protein concentration 
was quantified using a BCA kit (Beyotime, Shanghai, 
China). After separation by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis, the proteins were trans-
ferred onto a polyvinylidene fluoride (PVDF) membrane 
(Millipore, Billerica, MA, USA). The membrane was 
then blocked with 5% skim milk at room temperature 
for 2  h. Subsequently, the PVDF membrane was incu-
bated overnight at 4  °C with the following primary 
antibodies: anti-RPS6KA1 (ab32114, 1:1000, Abcam), 
anti-phospho (p)-RPS6KA1 (T359) (ab32413, 1:1000, 
Abcam), anti-ERK1/2 (ab184699, 1:1000, Abcam), anti-
p-ERK1/2 (T202/Y204) (ab278538, 1:1000, Abcam), 
anti-p-JNK (T183/Y185) (ab307802, 1:1000, Abcam), 
anti-JNK (ab179461, 1:1000, Abcam), anti-p-p38 (T180) 
(ab178867, 1:1000, Abcam), anti-p38 (ab170099, 1:1000, 

Abcam), anti-p-MCL-1 (bs-18726R, Bioss, Beijing, 
China), and anti-GAPDH (ab9485, 1:1000, Abcam). The 
membrane was then incubated with goat anti-rabbit 
IgG H&L (HRP) secondary antibody (ab205718, 1:5000, 
Abcam) at room temperature for 1 h. Protein bands were 
visualized using the BeyoECL Plus kit (Beyotime, Shang-
hai, China). Densitometric analysis of the bands was per-
formed using ImageLab software version 4.1 (Bio-Rad 
Laboratories, Hercules, CA, USA).

Statistical analysis
GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, 
CA, USA) and SPSS 21.0 software (IBM Corp., Armonk, 
NY, USA) were used for statistical analysis. For in vitro 
assays, data are presented as the mean ± standard devia-
tion (SD). All experiments were performed indepen-
dently in triplicate. Comparisons between groups were 
made using Student’s t-test or one-way analysis of vari-
ance with Tukey’s post hoc test. A P-value < 0.05 was con-
sidered statistically significant.

Results
Construction and analysis of histone acetylation-related 
gene risk model in AML
A total of 36 histone acetylation regulatory genes were 
identified (Supplementary Table 1). Pearson correla-
tion analysis revealed 1,988 genes in the TCGA-LAML 
dataset that were associated with these 36 histone acet-
ylation regulators. Additionally, 2,035 genes associ-
ated with these regulators were identified in the IMEx 
Interactome database. The interrelationships among all 
these genes were combined to construct a gene interac-
tion network (Fig.  1A), from which 301 key genes were 
identified and termed histone acetylation-related genes. 
LASSO-Cox regression analysis with ten-fold cross-
validation was then performed on TCGA-LAML train-
ing cohort to determine the optimal tuning parameter λ 
(Fig.  1B). Six genes, including HDAC6, CREB3, KLF13, 
GOLGA2, RPS6KA1, and ZMIZ2, were selected based 
on the optimal λ value (0.14) to construct the risk model 
(Fig.  1C). AML patients in the TCGA-LAML cohort 
(n = 132), training cohort (n = 93), test cohort (n = 39), 
and GSE71014 cohort (n = 104) were stratified into high-
risk and low-risk groups using the median risk score as 
the threshold. The patients in the high-risk group had 
significantly shorter overall survival in all four cohorts 
compared to those in the low-risk group (Fig.  1D-G). 
Additionally, ROC curve analysis was used to assess the 
accuracy and sensitivity of the risk model. The model 
demonstrated strong predictive value for evaluating 
the prognosis of patients in both the TCGA-LAML and 
GSE71014 cohorts. The 1-year, 3-year, and 5-year AUC 
values for the TCGA-LAML cohort were 0.70, 0.79, and 
0.95, respectively (Fig. 1H). For the GSE71014 cohort, the 
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1-year, 3-year, and 5-year AUC values were 0.64, 0.60, and 
0.60, respectively (Fig. 1I). Overall, these findings suggest 
that the risk model has strong predictive power for AML 
patient prognosis, implying that abnormal histone acety-
lation is closely associated with AML progression.

Construction and evaluation of nomogram
PCA revealed distinct gene expression patterns between 
patients in different risk groups within the TCGA-LAML 
cohort (Supplementary Fig.  1A), indicating that the 
model effectively distinguishes high-risk patients from 
low-risk patients. Additionally, in the TCGA-LAML 
cohort, CREB3, KLF13, and RPS6KA1 were highly 
expressed in the high-risk group, while ZMIZ2, HDAC6, 
and GOLGA2 were expressed at lower levels in the high-
risk group (Supplementary Fig. 1B). Univariate and mul-
tivariate Cox regression analyses were performed on 
the TCGA-LAML cohort, incorporating risk scores and 
clinical variables. The results (Supplementary Fig. 1C&D) 
demonstrated that, aside from gender, risk score, tumor 
type (M0-M7), and age could serve as independent prog-
nostic factors for AML patients. A nomogram was con-
structed to predict 1-, 3-, and 5-year survival probabilities 

for AML patients (Supplementary Fig.  1E). Calibration 
curves showed that the predicted 1-, 3-, and 5-year over-
all survival closely matched the observed overall survival 
times (Supplementary Fig. 1F). ROC curve analysis indi-
cated that in the TCGA-LAML cohort, the AUC values 
for the 1-, 3-, and 5-year nomogram were 0.70, 0.75, and 
0.84, respectively (Supplementary Fig.  1G). These find-
ings suggest that the nomogram has strong clinical utility 
in predicting the prognosis of AML patients.

Gene enrichment and immunoinfiltration analysis
To explore the pathways associated with the risk score, 
differential gene expression analysis was performed 
between the low- and high-risk groups. The analysis iden-
tified 1,390 DEGs, with 496 up-regulated and 894 down-
regulated in the high-risk group compared to the low-risk 
group (Fig. 2A; Supplementary Table 2). KEGG pathway 
enrichment analysis revealed that the 894 down-regu-
lated genes were associated with transcriptional dysreg-
ulation in cancer and acute myeloid leukemia (Fig.  2B). 
The 496 up-regulated genes were primarily enriched in 
pathways such as cytokine-cytokine receptor interaction, 
osteoclast differentiation, chemokine signaling pathway, 

Fig. 1  Construction and verification of risk model. A. Gene-gene interaction network based on 36 histone acetylation regulators. B. 10-fold cross-val-
idation in the LASSO analysis. C. LASSO coefficient profiles of histone acetylation-related genes in the TCGA-LAML dataset, from which six genes were 
selected to construct the risk model. D-G. Overall survival of high-risk and low-risk patients in the TCGA-LAML training cohort (D), test cohort (E), general 
cohort (F), and GSE71014 cohort (G) was analyzed by Kaplan-Meier analysis. H-I. Time-dependent ROC analysis of risk scores in TCGA-LAML cohort and 
GSE71014 cohort
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cell adhesion molecules (CAMs), and transcriptional 
misregulation in cancer (Fig. 2C). Additionally, the rela-
tionship between the tumor microenvironment and risk 
scores was analyzed. The CIBERSORT algorithm indi-
cated significant differences in immune cell infiltration 
between the two groups (P < 0.05, Fig.  2D). The ESTI-
MATE algorithm showed that stromal, immune, and 
ESTIMATE scores were significantly higher in high-risk 
patients compared to low-risk patients (P < 0.05, Fig. 2E). 
Correlation analysis further demonstrated a positive cor-
relation between the risk score and immune infiltration 
score (Fig. 2F).

Screening of key prognostic genes in AML
Multivariate Cox regression analysis of the six genes 
included in the risk model identified GOLGA2 as an inde-
pendent protective factor, while CREB3 and RPS6KA1 
emerged as independent risk factors affecting the prog-
nosis of AML patients (Fig. 3A). To further identify key 
genes associated with AML prognosis, random forest 
and support vector machine methods were employed. 
The results indicated that RPS6KA1 was the most sig-
nificant prognostic risk gene (Fig. 3B&C). Subsequently, 
the relationship between RPS6KA1 expression and AML 
immune infiltration was analyzed, revealing a significant 

positive correlation between the two (Fig. 3D). Addition-
ally, TCGA-LAML samples were stratified into high and 
low expression groups based on RPS6KA1 expression 
levels. The mutation landscape analysis showed that the 
high RPS6KA1 expression group had a higher frequency 
of AML-related gene mutations (Fig.  3E). ROC curve 
analysis demonstrated that the expression level of the 
RPS6KA1 gene could effectively predict the prognosis of 
AML patients (Fig. 3F).

Enrichment analysis of RPS6KA1 and its co-expressed 
genes
Based on the GeneMania database, the interaction net-
work of RPS6KA1 and its co-expressed genes was con-
structed. Notably, RPS6KA1 and its co-expressed genes 
were found to be involved in the regulation of histone 
deacetylation (Fig.  4A). Further GO and KEGG enrich-
ment analyses revealed that these genes were primar-
ily associated with the positive regulation of growth 
(Fig.  4B). Additionally, they were enriched in multiple 
pathways including MAPK signaling pathway (Fig. 4C).

Fig. 2  Analysis of functional enrichment and immune infiltration. A. Volcano plot showing DEGs between low- and high-risk groups in the TCGA-LAML 
dataset. A total of 496 genes were up-regulated (red dots) and 894 genes were down-regulated (green dots). The screening criteria were P < 0.05 and 
log2|fold change| > 1. B&C. Enrichment results of KEGG pathway of lowly-expressed genes (B) and highly expressed genes (C). The horizontal axis rep-
resents the gene ratio, and the color and size of the bubble represent the p-value and the gene count, respectively. D. Immune infiltration differences 
between high- and low-risk groups were evaluated using the CIBERSORT method. E. Immune infiltration differences between high- and low-risk groups 
were evaluated using the ESTIMATE method. F. Relationship between risk score and immune infiltration score
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Knockdown of RPS6KA1 inhibited the proliferation, 
migration and invasion of AML cells, and induced cell cycle 
arrest and apoptosis
According to the GEPIA database (http://gepia.cancer-
pku.cn/), RPS6KA1 mRNA expression in AML samples 
was significantly higher than in the control group (Sup-
plementary Fig.  2A), and its high expression level was 
associated with shorter overall survival in AML patients 
(Supplementary Fig. 2B). To explore the biological role of 
RPS6KA1 in AML progression, HL-60 and THP-1 cells 
were transfected with si-RPS6KA1 to achieve RPS6KA1 
knockdown. RPS6KA1 depletion significantly reduced 
the mRNA and protein expression levels of RPS6KA1 
in HL-60 and THP-1 cells (Supplementary Fig.  2C&D). 
Since si-RPS6KA1#1 exhibited a more pronounced 
knockdown efficiency, it was selected for subsequent 
experiments. RPS6KA1 knockdown significantly inhib-
ited the proliferation, migration, and invasion of HL-60 
and THP-1 cells (Supplementary Fig. 2E-G). Flow cytom-
etry analysis further revealed that RPS6KA1 knockdown 
induced significant cell cycle arrest in the G0/G1 phase 
(Supplementary Fig. 2H&I) and increased apoptosis lev-
els in HL-60 and THP-1 cells (Supplementary Fig. 2J&K). 
A recent study reported that inhibition of RPS6KA1 
enhances GSK3 activity, promotes phosphorylation 

of MCL-1 at serine 159 (p-MCL-1), and reduces the 
total expression of MCL-1, an anti-apoptotic protein, 
thereby contributing to AML cell resistance to veneto-
clax/azacitidine treatment [21]. Consistently, the present 
study observed a positive correlation between RPS6KA1 
expression and MCL-1 expression in AML samples from 
the TCGA cohort (Supplementary Fig. 2L). Furthermore, 
after RPS6KA1 depletion, western blot analysis showed 
an increase in p-MCL-1 expression levels, while the 
expression levels of p-ERK1/2, p-JNK, and p-p38 were 
decreased (Supplementary Fig.  2M&N). Overall, these 
results suggest that RPS6KA1 is highly expressed in AML 
and plays a role in promoting the malignant progression 
of the disease.

The results of molecular docking
From the HERB database (http://herb.ac.cn/), withaferin 
A, (-)-epigallocatechin gallate, flavopiridol, afzelin, quer-
cetin, phorbol 12,13-dibutyrate, and resveratrol were 
identified as potential compounds targeting RPS6KA1 
(Supplementary Table 3). To verify the interaction 
between RPS6KA1 and these compounds, molecular 
docking was performed. The results showed that afzelin 
binds to the RPS6KA1 protein by forming two hydro-
gen bonds with the LEU-144 and ASP-148 amino acid 

Fig. 3  Screening and analysis of key genes. A-C. Key genes associated with AML prognosis were identified using multivariate Cox regression analysis (A), 
random forest (B), and support vector machine (C) based on the six genes included in the risk model. D. Correlation analysis between RPS6KA1 expression 
and immune infiltration score. E. Landscape maps with gene mutations in the samples with high and low expression of RPS6KA1. F. Time-dependent ROC 
curves were used to assess the sensitivity of RPS6KA1 expression levels to predict the overall survival of AML patients
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residues, with a binding energy of − 8.9 kcal/mol (Fig. 5A). 
(-)-Epigallocatechin gallate binds to RPS6KA1 by form-
ing four hydrogen bonds with the SER-72, THR-204, 
GLY-147, and LYS-94 residues, with a binding energy of 
− 8.7  kcal/mol (Fig.  5B). Flavopiridol binds to RPS6KA1 
by forming two hydrogen bonds with the LEU-144 and 
ASP-148 residues, with a binding energy of − 9.4 kcal/mol 
(Fig. 5C). Phorbol 12,13-dibutyrate binds to RPS6KA1 by 
forming two hydrogen bonds with the ASN-193 residue, 
with a binding energy of − 8.0 kcal/mol (Fig. 5D). Querce-
tin binds to RPS6KA1 by forming three hydrogen bonds 
with the LEU-144, ASN-192, and GLU-191 residues, with 
a binding energy of − 8.6  kcal/mol (Fig.  5E). Resveratrol 
binds to RPS6KA1 by forming three hydrogen bonds 
with the GLN-70, SER-72, and LEU-144 residues, with 
a binding energy of − 7.2  kcal/mol (Fig.  5F). Withaferin 
A binds to RPS6KA1 by forming a hydrogen bond with 
the THR-204 residue, with a binding energy of − 8.7 kcal/
mol (Fig. 5G). These results indicate that RPS6KA1 has a 

high binding affinity with these active compounds. In this 
study, afzelin was chosen for further investigation.

Afzelin inhibited AML progression through repressing the 
activation of the MAPK pathway and RPS6KA1
To investigate the potential function and mechanism of 
afzelin in AML treatment, HL-60 and THP-1 cells were 
treated with different concentrations of afzelin (0, 10, 
20, 30, 40, and 50 µM) for 24  h, and cell viability was 
assessed using the CCK-8 assay. The chemical structure 
of afzelin is shown in Fig. 6A. The results demonstrated 
that afzelin inhibited the viability of HL-60 and THP-1 
cells in a concentration-dependent manner (Fig. 6B). The 
half-maximal inhibitory concentration (IC50) of afzelin 
for HL-60 and THP-1 cells was 28.93 µM and 28.70 µM, 
respectively. Transwell assays revealed that afzelin treat-
ment significantly reduced the migration and invasion 
capacities of HL-60 and THP-1 cells (Fig. 6C&D). Addi-
tionally, afzelin induced cell cycle arrest (Fig. 6E&F) and 

Fig. 4  Construction and analysis of gene-gene interaction network of RPS6KA1.A. The co-expression network of RPS6KA1 gene was established by Gen-
eMANIA. B. GO enrichment bar chart of RPS6KA1 and its co-expressed genes. The horizontal axis is the enrichment score, and the vertical axis represents 
the biological process (yellow), cell component (green), and molecular function (dark blue). C. Enrichment bubble map of KEGG pathway of RPS6KA1 and 
its co-expressed genes. The horizontal axis is the enrichment score, the vertical axis is the item name, the bubble color represents the P-value size, and 
the bubble size represents the gene count
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apoptosis in both HL-60 and THP-1 cells (Fig.  6G&H). 
Western blot analysis showed that afzelin reduced the 
protein levels of p-RPS6KA1, p-ERK1/2, p-JNK, and 
p-p38, while increasing the level of p-MCL-1 in HL-60 
and THP-1 cells (Fig. 6I&J). In this study, we also investi-
gated the effects of afzelin on the sensitivity of AML cells 
to venetoclax and azacitidine. As expected, afzelin treat-
ment markedly enhanced the inhibitory effects of veneto-
clax and azacitidine on the viability of HL-60 and THP-1 
cells (Supplementary Fig. 3). These findings suggest that 
afzelin may exert anti-tumor effects in AML by repress-
ing the MAPK pathway and inactivating RPS6KA1.

Discussion
AML is a heterogeneous disease characterized by genetic 
and epigenetic aberrations [22, 23]. Emerging evidence 
suggests that abnormal histone acetylation is closely 
associated with the onset and progression of AML [14]. 
Dysregulation of HDACs has been identified as a key 
factor in AML, contributing to poorer prognosis [24]. 
Furthermore, risk models based on histone acetylation 
regulators have demonstrated significant predictive value 
in assessing the prognosis of patients with breast cancer 
and renal clear cell carcinoma [25–27].

In this study, we constructed a gene-gene interaction 
network based on 36 known histone acetylation regula-
tors and identified 301 histone acetylation-related genes 

Fig. 5  The binding affinity between RPS6KA1 and drugs. Molecular docking of RPS6KA1 (PDB ID: 2Z7S) with afzelin (A), (-)-epigallocatechin gallate (B), 
flavopiridol (C), phorbol 12,13-dibutyrate (D), quercetin (E), resveratrol (F), and withaferin A (G). Green represents RPS6KA1, purple represents the sur-
rounding amino acid residues in the binding pocket, light blue represents the compound, and yellow dashed lines represent hydrogen bonds

 



Page 10 of 13Guo et al. BMC Cancer         (2024) 24:1189 

through correlation analysis. From these, six key genes, 
including CREB3, KLF13, RPS6KA1, ZMIZ2, HDAC6, 
and GOLGA2, were selected to develop a risk model for 
predicting the prognosis of AML and calculating the 
risk score. This risk model was shown to be an inde-
pendent risk factor for poor prognosis in AML patients. 
Immune regulation plays a crucial role in the tumorigen-
esis and progression of AML, with immune infiltration 
levels being a key factor in determining the response to 
immunotherapy and patient prognosis [28, 29]. In this 
study, significant differences were observed in 9 out of 
22 immune cell types between the high-risk and low-risk 
groups. The high-risk group exhibited a higher propor-
tion of monocytes and activated memory CD4+ T cells. 
Additionally, we found a negative correlation between 

the risk score and the level of immune infiltration. These 
findings suggest that the poor prognosis observed in 
high-risk AML patients may be linked to immunosup-
pression within the tumor microenvironment, and that 
targeting abnormal histone acetylation could enhance the 
efficacy of immunotherapy in AML treatment.

In this study, RPS6KA1 was identified as a key inde-
pendent risk factor for predicting the prognosis of AML 
patients and was found to be associated with immune 
infiltration levels. RPS6KA1, also known as ribosomal S6 
kinase 1 (RSK1), is a member of the ribosomal S6 kinase 
protein family [30]. It is located in the cytoplasm and acts 
as a downstream effector of the Ras/Raf/MAPK signaling 
pathway, regulating cell proliferation, survival, and migra-
tion through the phosphorylation of various substrates 

Fig. 6  Afzelin exerts anti-AML effects by acting on the MAPK pathway and RPS6KA1. A. Chemical structure of afzelin. B. HL-60 and THP-1 cells were treated 
with different concentrations of afzelin (0, 10, 20, 30, 40 and 50 µM) for 24 h, and cell viability was detected by the CCK-8 assay. C-H. The migration (C), inva-
sion (D), cell cycle (E&F), and apoptosis (G&H) of HL-60 and THP-1 cells after treatment with 30 µM afzelin for 24 h were detected by Transwell assay and 
flow cytometry, respectively. I&J. Protein levels of p-RPS6KA1, p-ERK1/2, p-JNK, p-p38, and p-MCL-1 in HL-60 and THP-1 cells treated with 30 µM afzelin for 
24 h were detected by Western blot. *P < 0.05, **P < 0.01, ***P < 0.001
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[31–33]. RPS6KA1 has been reported to be highly 
expressed in prostate carcinoma, breast carcinoma, and 
nodular melanoma, where its hyperactivation promotes 
tumor growth and invasion and is associated with poor 
prognosis [30, 34, 35]. Notably, recent studies have also 
reported that RPS6KA1 is linked to poor prognosis 
and chemotherapy resistance in AML patients [21, 36]. 
Consistently, our study demonstrated that RPS6KA1 
was highly expressed in AML and that its high expres-
sion was predictive of a worse prognosis. Bioinformat-
ics analysis suggested that its abnormal expression is 
linked to the MAPK, IL-17, mTOR, and ErbB signaling 
pathways, which are crucial modulators in human malig-
nancies. Additionally, RPS6KA1 knockdown inhibited 
the proliferation, migration, and invasion of AML cells, 
while inducing cell cycle arrest and apoptosis. Collec-
tively, these findings validate RPS6KA1 as an oncopro-
tein in AML. However, it should be noted that, although 
our data indicate a correlation between RPS6KA1 and 
histone deacetylation status in AML, the precise mech-
anisms by which RPS6KA1 modulates histone deacety-
lation regulators, or how histone deacetylation affects 
RPS6KA1 expression, remain unclear. These mechanisms 
warrant further exploration in future studies.

Molecular docking showed that afzelin, (-)-epigal-
locatechin gallate, flavopiridol, phorbol 12,13-dibutyr-
ate, quercetin, resveratrol, and withaferin A all exhibited 
good binding affinity with RPS6KA1. Previous studies 
have confirmed that (-)-epigallocatechin gallate, flavo-
piridol, phorbol 12,13-dibutyrate, quercetin, resveratrol, 
and withaferin A have significant anti-AML activities 
[37–42]. However, the tumor-suppressive effect of afzelin 
on AML cells has not been previously clarified. Afzelin, 
also known as kaempferol-3-o-rhamnoside, is a flavonol 
glycoside commonly used in the preparation of antibac-
terial and anti-inflammatory agents. It is readily avail-
able as it is found in various plants, including houttuynia, 
pepper, dried ginger, water lilies, and ginkgo biloba [43, 
44]. Afzelin has been reported to inhibit the migration 
of triple-negative breast carcinoma cells by targeting 
ERK2/MAPK1, KRas, and FAK [45]. It also inhibit the 
proliferation of lung, gastric, and prostate carcinoma 
cells [46–48]. Notably, this study found that afzelin could 
inhibit the viability, migration, and invasion of AML 
cells, as well as induce cell cycle arrest and apoptosis. 
Mechanistically, afzelin treatment reduced the protein 
levels of p-RPS6KA1, p-ERK1/2, p-JNK, and p-p38 in 
AML cells while promoting the level of p-MCL-1, sug-
gesting that afzelin inhibits RPS6KA1 activation both 
by directly binding to it and by repressing its upstream 
MAPK signaling. Previous studies have suggested that 
RPS6KA1 contributes to AML progression and drug 
resistance by promoting MCL-1 expression [21, 49], 
implying that afzelin treatment may sensitize AML cells 

to chemotherapeutics such as venetoclax and azacitidine. 
As expected, in this study, in vitro assays demonstrated 
that afzelin synergistically suppressed the viability of 
AML cells when combined with venetoclax or azaciti-
dine. These results suggest that afzelin is a promising nat-
ural compound for overcoming chemoresistance in AML 
cells.

Conclusions
This study successfully constructs a novel risk model 
associated with histone acetylation for AML, offering 
a promising tool for predicting the prognosis of AML 
patients. Additionally, we validate RPS6KA1 as an onco-
protein in AML, and identify afzelin as a potential anti-
AML agent. Moving forward, the reliability of these 
findings, particularly the biological function and phar-
macological effects of RPS6KA1 and afzelin, should be 
confirmed through in vivo experiments and clinical trials. 
Furthermore, a larger cohort is needed to verify the accu-
racy and validity of the risk model.
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