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Abstract
The effects of heat exposure on negative affect are thought to be central to the observed relationships between 
hot summer days and deleterious outcomes, such as violent crime or mental health crises. As these relationships 
are likely to be magnified by the effects of climate change, a better understanding of how consistent or variable 
the effects of hot weather on affective states is required. The current work combines data gathered from an 
ecological momentary assessment (EMA) study on individuals’ thermal perceptions, comfort, and affective states 
in outdoor environments during their daily lives with high spatiotemporal resolution climate-modeled weather 
variables. Using these data, associations between objective weather variables (temperature, humidity, etc.), 
perceived heat (thermal perception and comfort), and affective states are examined. Overall, objective weather data 
reasonably predicted perception and comfort, but only comfort predicted negative affective states. The variance 
explained across individuals was generally very low in predicting negative affect or comfort, but within-person 
variance explained was high. In other words, while there may be a relatively consistent relationship between 
temperature and psychological experience for any given person, there are significant individual differences across 
people. Age and gender were examined as moderators of these relationships, and while gender had no impact, 
participant age showed several significant interactions. Specifically, while older adults tended to experience 
more thermal discomfort and perceived higher temperatures as hotter, the relationship between discomfort and 
negative affect was lower in older adults. Taken together, these results emphasize the importance of thermal 
discomfort specifically in predicting negative affect, as well as the high inter-individual variability in thermal 
perceptions and comfort for the same ambient temperatures.
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Introduction
The relationship between heat stress and negative emo-
tions is a well-documented one, and a topic of increasing 
importance as our planet experiences hotter and more 
variable conditions due to climate change. The heat-affect 
link is an essential component of several noted patterns 
of maladaptive behaviors during summertime, including 
increases in violent crime and an uptick in suicides and 
mental health hospitalizations on hot days [1]. For exam-
ple, key theories of this heat-violence relationship, such 
as the Temperature-Aggression Hypothesis [2], empha-
size that uncomfortable heat leads to negative emotions 
such as irritability and anger, thereby making it more 
likely that individuals will react aggressively if provoked. 
Other work has identified a broad range of negative affec-
tive responses due to heat stress, including fatigue, anxi-
ety, frustration, and hostility [3–5], which may be what 
partially drives the rising of mental health hospitaliza-
tions with increasing ambient heat in summertime [6, 7].

Prior work testing these relationships has taken two 
primary approaches. One approach involves testing these 
effects by linking time and location-based meteorologi-
cal data to national surveys [3], hospitalization reports 
[7], crime incidence [8, 9], or other large-scale aggregated 
datasets. This approach has high ecological validity, dem-
onstrating the relationship between hot weather and real-
world outcomes. However, the correlational nature of 
these designs and the lack of detailed data on individuals’ 
emotional states makes it difficult to draw strong causal 
conclusions about the importance of the heat per se and 
whether the behaviors are indeed driven by changes in 
negative emotions. As heat stress may cause other altera-
tions in behavior (i.e., impairments in cognition, changes 
in activity patterns, and disrupted sleep [10–12]), the 
centrality of the negative emotional responses in predict-
ing such behaviors is hard to test.

The other key approach, adopted primarily in psycho-
logical research, involves experimentally manipulating 
heat exposure and directly testing its effects on differ-
ent metrics of negative emotional states. These measures 
may include self-reported affect, physiological arousal, 
and/or aggressive behaviors [2, 12–14]. Studies adopt-
ing this approach benefit from higher experimental con-
trol and a more direct measure of the negative emotional 
response, but cannot directly speak to how these negative 
emotional states may impact real-world outcomes or how 
these results may differ if examined in individuals’ daily 
lives.

Ideally, these two levels of analysis could be linked to 
create a more psychology-informed model of the rela-
tionship between hot temperatures and key outcomes 
of interest, such as violent crime or mental health hos-
pitalizations. For example, a long-standing debate within 
the heat and violence investigation involved the shape 

of the relationship between these two variables. While 
some studies found a linear relationship (higher heat, 
more violent crime) [15–17], others found a curvilinear 
relationship (both increase to a point, and then the rela-
tionship becomes negligible or negative) [18, 19]. It was 
proposed that the curvilinear relationship may be due to 
a threshold of negative affect - at a certain point, negative 
affect is superseded by the fatigue and lethargy that acute 
heat induces [20]. Some laboratory investigations pro-
vided support for this mechanism -- the negative-affect 
escape model suggests that at a point, aggression drops 
off as people experience more heat as their goals shift 
away from anger and aggression towards removing them-
selves from the situation [14, 20]. Though the majority of 
this work was conducted several decades ago, and there 
remains some disagreement on the ‘true’ shape of the 
relationship, this example demonstrates in principle how 
the two levels of analysis may be linked in order to better 
understand a complex pattern.

The ultimate goal of this study was to do precisely this 
-- generate a better understanding of thresholds of heat 
stress from temperature and other weather variables 
which may have a more or less consistent impact on neg-
ative emotional states. Subsequently, these results could 
be used to generate a ‘negative-affect-centric’ model 
predicting violent crime and mental illness incidence 
from heat exposure, thereby bridging these two levels of 
analysis.

We aimed to do this by leveraging data from an eco-
logical momentary assessment (EMA) study design with 
a large sample of participants who completed surveys 
while in different outdoor environments during the sum-
mer months in Chicago. These surveys included ques-
tions regarding their physical environment (including 
temperature perception and thermal comfort), as well 
as current affective states. These surveys were time- and 
geolocation-locked, allowing for outdoor ambient tem-
perature and other weather variables (relative humidity, 
wind, solar radiation) to be linked to temperature per-
ceptions, thermal comfort, and affect in our participants. 
Using a recently developed and validated climate model-
ing approach with higher spatial and temporal resolution 
than standard weather data [21], a key goal was to exam-
ine whether there were temperatures, or combinations 
of temperature and other weather variables, that consis-
tently led to negative affective states during the Chicago 
summer. These results could then be used to inform this 
negative-affect-centric model and be used to predict 
actual violent crime rates and mental health hospitaliza-
tions during this same period (see broad pre-registration 
for study aims: https://osf.io/ta82w).

https://osf.io/ta82w
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The present study
In light of this, the first step required was to test whether 
climate-modeled estimates of weather data could reliably 
predict thermal perceptions, thermal comfort, and affec-
tive states in a large and demographically diverse sample 
of individuals. We start by analyzing these relationships 
across all participants, testing the predictive power of the 
climate-modeled weather variables for temperature per-
ception (hot or cold), comfort, and negative affect, as well 
as associations between participant-reported attributes 
(perception, comfort, and affect). We also tested whether 
these variables predict reductions in positive affect as a 
secondary aim. Subsequently, we examined these rela-
tionships as moderated by key demographic variables 
(e.g., age, gender).

The current study, which is exploratory in nature and 
focuses primarily on prediction rather than identify-
ing the underlying mechanisms linking heat and affect, 
examines these effects across individuals (fixed-effects 
estimates from mixed-effects regression models) and 
within individuals (from the mixed-effects models). 
By examining these relationships in real outdoor envi-
ronments during individuals’ daily lives, and linking 
the responses to high spatio-temporal resolution cli-
mate modeling, the results of this study provide unique 
insights into the consistency and variability of hot weath-
er’s effects on emotional states.

Methods
The data reported here are taken in part from a broader 
project (the “Mapping Chicago Project”, OSF repository 
link: https://osf.io/pjfcd). Only study info relevant to the 
current aims is reported here. A more detailed methods 
section including all study procedures can be found in 
the Supplementary Materials.

Participants
426 participants were enrolled in the study. They were 
recruited primarily via social media (Facebook ads, 
Craigslist) for a 2-week study during the summer of 2022. 
The targeted N was 400 to 500 participants, which was 
based on budgetary constraints and time, as our goal 
was to collect data only during the summer months. Eli-
gibility for the study was determined based on whether 
participants: (1) were 18 years or older, (2) lived in the 
city of Chicago, and (3) starting in wave 4, were not liv-
ing in a Chicago community area where we already had 
many participants, as we aimed to prioritize geographic 
diversity within the city. Eligible participants were sent 
an email with instructions on how to enroll via the Expi-
Well app. A series of data quality checks (see QA checks 
in Supplementary Materials for more details) were per-
formed to ensure that participants were providing real 
data. From the 426 enrolled, 9 participants were flagged 

as likely providing partially fraudulent data and excluded 
from subsequent analyses. Additionally, some partici-
pants did not complete the study procedures required 
to link the background survey with the other surveys 
completed.

In total, 394 participants completed the baseline sur-
vey and 364 completed at least 1 outdoor environment 
survey, which is the primary survey type analyzed in this 
study (average = 7.24 surveys per person, total outdoor 
surveys = 2,637). After removing observations that did 
not pass QA checks or could not be matched to modeled 
temperature data, 2293 outdoor surveys were included. 
Participants were distributed across waves, with 20 
participants in Wave 1 (5/31 − 6/13), 79 participants 
in Wave 2 (6/17 − 7/1), 80 participants in Wave 3 (7/5–
7/19), 81 participants in Wave 4 (7/25 − 8/8), 53 partici-
pants in Wave 5 (8/14 − 2/28), 63 participants in Wave 6 
(8/28 − 9/11), and 59 participants in Wave 7 (9/11 − 9/25).

In line with our aim for demographic and geographic 
diversity, we collected data from participants in 67 out 
of a possible 77 Chicago community areas. Participants’ 
ages ranged from 18 to 73 and the mean age was 35.96 
years (SD = 12.29), and for gender, we had 274 partici-
pants who identified as female, 104 participants who 
identified as male, and 13 who identified as nonbinary/
gender nonconforming. Participants were given the 
option to select one or more of a list the following racial 
or ethnic identities and/or fill in an open-ended option. 
We had 64 participants identify as Asian or Asian Amer-
ican, 105 as Black or African American, 58 as Hispanic 
or Latino or Chicano, 4 as Native American or Alaska 
Native, 2 as Native Hawaiian or Pacific Islander, 5 as Mid-
dle Eastern or North African, 183 as White or Caucasian, 
6 as another racial or ethnic identity not listed, and 2 pre-
ferred not to provide this information. Additionally, 29 
participants selected more than one ethnic or racial iden-
tity from this list.

Study procedures
All study procedures were approved by the University of 
Chicago Institutional Review Board. Immediately upon 
downloading the ExpiWell app and before completing 
any surveys, participants provided informed consent. 
Participants were instructed that some study elements 
were required and others were optional, but participants 
were paid for all completed surveys regardless of whether 
they met the requirements.

All participants were asked to complete a required 
Background (Baseline) survey, completed via Qualtrics, 
which took approximately 15–20 min and for which they 
were paid $25. This survey asked about a variety of dif-
ferent individual differences (e.g., personality, trait impul-
sivity, depression symptoms, etc.) and evaluations of 
their home and neighborhood environments. Of greatest 

https://osf.io/pjfcd
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relevance to the current work, participants provided their 
gender and year of birth which was used to calculate age. 
Participants were also asked to complete between 5 and 
10 outdoor environment surveys. These surveys could be 
completed in any outdoor location in Chicago but each 
survey was to be in a distinct location. Participants were 
paid $5 per outdoor survey, which took 3–4 min each.

Outdoor environment survey
The outdoor survey contained a number of survey ques-
tions for individuals to fill out in their immediate outdoor 
environments. Specifically, participants were instructed 
“Please fill out the following survey in an outdoor envi-
ronment in Chicago. Each survey must be in a unique 
location (at least 5 blocks apart)”. Of primary relevance 
to the current work, participants were asked to evaluate 
their perceived temperature, comfort of the temperature, 
and the D-FAW scale for current affective states [22]. The 
D-FAW is a 10-item affective state questionnaire that 
asks participants to rate the extent to which each emo-
tion word applies to them right now. It is composed of 
five positively valenced (Happy, At ease, Motivated, 
Calm, Active) and five negatively valenced (Anxious, 
Annoyed, Tired, Bored, Gloomy) emotions.

Climate modeled variables
In addition to the in-situ measurements collected from 
participants, we used the urbanized Weather Research 
and Forecast model (uWRF, version 4.0 [23, 24]), to pro-
vide the weather simulation over the summer of 2022. 
The simulation can offer an overview of the near-surface 
weather conditions covering the walking routes and sur-
vey areas, including near-surface air temperature, humid-
ity, wind speed, pressure, and solar irradiance, which are 
the primary factors affecting outdoor thermal comfort. 
The weather simulation provides hourly spatial-gridded 
data frames over the city of Chicago, thus they compre-
hensively reflect the spatial variance and temporal evo-
lution of heat stress based on the heterogeneity of the 
urban fabric. It provides additional information with the 
survey and serves as a reference to the city-wide weather 
conditions.

The specific configuration of uWRF consists of three 
two-way nested domains with the outermost boundary 
covering the east-north central region of the Midwest US 
and the innermost domain covering the Chicago Metro 
Area (CMA, Fig.  1a) and its surrounding metropolis 
(Fig. 1b). The spatial resolutions of the three domains are 
9 km, 3 km, and 1 km, respectively. The lateral boundary 
conditions are from North American Regional Reanaly-
sis (NARR) from the National Center for Environmental 

Fig. 1  (a) Land cover types over the Chicago Metro Area that are used in WRF simulation; (b) Location and coverage of nested domain setup used in WRF
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Prediction (NCEP, https://rda.ucar.edu/datasets/
ds608.0/) with a 32-km horizontal spatial resolution and 
a 3-hr temporal resolution. In this implementation, we 
use the single-layer urban canopy model for impervious 
urban surfaces [23] and the Noah-land surface model 
(Noah-LSM [25]), for natural land and the previous por-
tion of the urban grids. We also used the WRF Single-
Moment 6-class microphysics scheme, which is suitable 
for high-resolution simulations [26]. Longwave and 
shortwave radiation are parameterized using the Rapid 
Radiative Transfer Model (RRTMG [27]). Sub-grid scale 
cumulus convective parameterization is turned on only 
for the two outermost domains (9 km and 3 km) corre-
sponding to the Kain-Fritsch scheme [28]. The planetary 
boundary layer is simulated by the Yonsei University 
scheme [29], while the surface layer is parameterized by 
the Monin-Obukhov similarity scheme. The configura-
tion and physical schemes were well-tested in multiple 
previous studies in Chicago [30, 31]. The simulation 
period is 2022-05-01 00:00:00 to 2022-09-30 23:00:00 
(UTC time, 153 days). Using the time and GPS coordi-
nates of the participants’ outdoor surveys, simulated 
temperature (degrees C), wind speed, relative humidity, 
solar radiation, and pressure were linked to each survey.

Analytic approach
The dataset that was used was collected during the sum-
mer months (end of May 2022 through mid-September 
2022). Overwhelmingly, the surveys reflected variability 
between neutral and hot temperatures. However, there 
were some unseasonably chilly days included in the data 
as well. As the primary aim is to examine the effects of 
heat, and as thermal comfort is affected by extremes of 
either cold or hot (and therefore cannot be modeled lin-
early), we first removed all surveys in which participants 
gave the ‘thermal perception’ rating anything less than a 
‘4’ (neither hot nor cold), so that the range of responses 
only included neutral (4) to extremely hot (7). This analy-
sis is the primary one reported in the current paper, and 
led to the removal of an additional 345 out of 2293 sur-
veys. However, as a robustness check, we ran all analyses 
using a modeled temperature cutoff of greater than 22 
degrees C / 71.6 degrees F (i.e., ‘room temperature’). This 
led to the removal of 338 out of the 2293 surveys.

Next, histograms of participant-reported variables 
(positive affect, negative affect, temperature perception, 
and temperature comfort) were generated to assess the 
normality of data distributions. Negative affect, in partic-
ular, was highly right-skewed, and due to this (and plot-
ted residuals from regression models), models predicting 
negative affect are conducted on both the raw values (1–7 
scale) and a transformed version (using a 1/x function) 
to generate a less skewed distribution. While the results 
did not change in most regressions whether negative 

affect was transformed, QQ-Plots and histograms of the 
residuals on the 1/x transformed variable were substan-
tially better than those using the raw negative affect vari-
able. Only two statistical tests differed based on the raw 
vs. transformed variable, and this discrepancy is noted in 
the results section. For any analyses with multiple predic-
tors, all predictor variables were first z-scored, allowing 
for direct comparison of the beta values across predictors 
as needed.

All statistical analyses were conducted using R [32] ver-
sion 4.1.1. The primary analytical approach used linear 
mixed-effects regressions predicting the outcome vari-
ables from one or more predictors plus a random inter-
cept for each participant (as participants had between 
1 and 10 surveys each). As applicable, bivariate rela-
tionships were examined via Pearson’s correlations or 
fixed-effects regressions. For analyses with categorical 
variables (i.e., gender), independent sample t-tests and 
fixed-effects regressions were used.

The ‘lmer’ function from the ‘lme4’ package [33] was 
used for mixed effect regressions. When applicable, the 
‘anova’ function from the ‘car’ package [34] was used to 
compare models. The ‘anova’ function here tests whether 
the more complex model is significantly better at captur-
ing the data than the simpler model, where significance 
is defined as a p-value < 0.05 from a χ2 test. The ‘summ’ 
function from the ‘jtools’ package [35] was used to gener-
ate the Pseudo-R2 for fixed effects and total (fixed + ran-
dom) effects. Pseudo-R2 values were calculated using the 
procedures established by Nagakawa and Schielzeth [36]. 
Bivariate correlations were conducted using the ‘cor.test’ 
function of the base R ‘stats’ package and the correlo-
gram was generated using the ‘ggcorrplot’ package [37]. 
Prediction plots were created using the ‘ggpredict’ func-
tion from the ‘ggeffects’ package [38], and scatterplots 
and descriptive figures were generated using the ‘ggplot2’ 
[39] and ‘yarrr’ libraries [40]. The function ‘qqPlot’ from 
the ‘car’ [34] package was used to check model residuals. 
Full analysis code and output can be accessed on the OSF 
repository for this project: https://osf.io/4y8eq/.

Results
Prior to running regression analyses, bivariate correla-
tions were examined to check for multicollinearity. Fig-
ure  2 shows the correlations between the key variables 
examined in the regressions below. As seen in Fig.  2, 
none of the key variables of interest show high enough 
correlation coefficients (i.e., r > 0.7) to warrant concerns 
over multicollinearity.

Predicting thermal comfort and perception from climate 
modeled variables
In models predicting both thermal comfort ratings and 
temperature perception ratings, we ran mixed-effects 

https://rda.ucar.edu/datasets/ds608.0/
https://rda.ucar.edu/datasets/ds608.0/
https://osf.io/4y8eq/
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regressions using model-simulated temperature (variable 
expected to be the strongest predictor) as well as regres-
sions using temperature, humidity, wind, solar radiation, 
and air pressure. We then compared the model fits for 
the simple (temperature only) vs. more complex (all vari-
ables) regressions.

Modeled temperature was significantly and positively 
predictive of thermal perception in the simple model 
(raw temperature β = 0.07, p < 0.001). The beta for the 
unstandardized temperature variable suggests that a 
1-degree C increase in temperature is associated with a 
0.07 unit increase in temperature perception. In the full 
model, z-scored temperature (β = 0.25, p < 0.001), solar 
radiation (β = 0.16, p < 0.001), and unexpectedly, wind 
speed (β = 0.06, p < 0.001) were all positively predictive 
of hotter perceptions. In the simple model, the estimated 
variance explained (pseudo-R2) was 10% for the fixed 
effects and 25% for the total effect. In the full model, the 
pseudo-R2s were slightly higher (13% variance explained 
for fixed effects and 27% for the total), and the model 
comparison test showed that the model with all weather 
variables was significantly better (p < 0.001), account-
ing for both parsimony and predictive power. Full model 
results can be found in Table 1.

When thermal comfort was the outcome variable, 
raw modeled temperature (degrees C) was significantly 

Table 1  Mixed effects regressions predicting temperature 
perception. Model includes z-scored simulated weather variables. 
Estimates are β values with 95% CIs. Fixed effects Pseudo-R2 
reports the variance explained across participants, whereas total 
effects Pseudo-R2 account for fixed effects + participant-level 
variability

Model 1 Model 2
Intercept 4.87 *** 4.88 ***

[4.82, 4.93] [4.82, 4.93]
Temperature 0.30 *** 0.25 ***

[0.26, 0.34] [0.20, 0.31]
Relative Humidity 0.02

[-0.02, 0.07]
Solar Radiation 0.16 ***

[0.11, 0.20]
Wind Speed 0.06 **

[0.02, 0.11]
Air Pressure -0.00

[-0.05, 0.05]
N 1948 1948
N (UniqueID) 313 313
AIC 4924.28 4894.70
BIC 4946.58 4939.30
Pseudo-R2 (fixed) 0.10 0.13
Pseudo-R2 (total) 0.25 0.27
*** p < 0.001; ** p < 0.01; * p < 0.05

Fig. 2  Correlations between variables of interest. Values reflect Pearson’s correlation coefficients
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predictive of thermal discomfort in the simple model (β 
= -0.05, p < 0.001). In other words, a 1 degree C increase 
in temperature is associated with a 0.05 unit decrease in 
temperature comfort. In the full model, z-scored temper-
ature (β = -0.18, p < 0.001) and solar radiation (β = -0.16, 
p < 0.001) were both significantly associated with more 
thermal discomfort. In the simple model, the variance 
explained for fixed effects was 2% and 19% for the total 
effect. In the full model, these increased slightly (3% for 
fixed effects, 21% for total effect). Results of the model 
comparison showed that the full model was again bet-
ter than the simple one (p = 0.004). Full model results can 
be found in Table  2. Relationships between perception, 
comfort, and actual temperature can be seen in Fig. 3.

Predicting affect from perception, comfort, and climate 
modeled variables
First, negative affect was examined as a function of 
z-scored thermal comfort and temperature perception 
only (without the weather variables), and subsequently, 
modeled by perception, comfort, and simulated weather 
variables. As before, the two models are compared, and 
in this case, to test whether the inclusion of ‘objective’ 
temperature and other weather variables improves the 
model prediction above and beyond what participants 
simply report feeling while minimizing model overfitting.

The first model predicted negative affect from z-scored 
thermal comfort and temperature perception, and only 

thermal comfort (β = -0.10, p < 0.001) predicted negative 
affect, with no effect of perception (ps = 0.86). 1% of the 
total variance could be explained by the fixed effects and 
49% of the variance in negative affect could be explained 
by the total effect.

When weather variables were included, thermal com-
fort remained a significant predictor of negative affect, 
though temperature itself was not predictive. The only 
weather variable that predicted negative affect was sun-
shine (e.g., solar radiation), which was associated with 
less negative affect (β = -0.05, p = 0.02). The fixed effects 
variance explained was only 2%, and the total effect vari-
ance explained was 48%. The model comparison did sug-
gest that the more complex model was the better one 
again (p = 0.004). The full model output for these two can 
be seen in Table 3.

For positive affect, only thermal comfort was predic-
tive across the two models (both β = 0.14, p < 0.001), with 
none of the weather variables or thermal perception as 
significant predictors. Model comparison suggested that 
the simpler model was better in this case, as it was more 
parsimonious and not better than the more complex 
model in predictive power (ps = 0.16). See Supplementary 
Materials (Table S1) for detailed output.

Moderation by age
To examine the effects by age, we first conducted mixed 
effects regressions to examine age as a moderator pre-
dicting thermal comfort from temperature and thermal 
perception from temperature. Age and other predictor 
variables were z-scored before being entered into the 
regression model.

Results from the regression predicting thermal percep-
tion from temperature and age showed a significant main 
effect of temperature (β = 0.30, p < 0.001) and an interac-
tion of temperature by participant age (p = 0.02). Plot-
ting the relationship (Fig. 4) showed that the relationship 
between a hotter perception and higher temperatures 
was larger in older vs. younger adults. For comfort, the 
regression showed a main effect of temperature (β = -0.20, 
p < 0.001), but not of age. Again, there was a temperature-
by-age interaction (p = 0.002). Again, older adults showed 
a larger relationship between hotter temperatures and 
more discomfort than younger adults. Full results for the 
regressions predicting comfort and perception can be 
found in Table 4.

Next, we examined whether age moderated any rela-
tionships between negative affect and (1) thermal com-
fort, (2) thermal perception, and (3) actual temperature.

The first model (1) showed a significant interaction 
between age and thermal comfort in predicting negative 
affect (β = 0.04, p = 0.02). Here, younger adults showed a 
stronger relationship between thermal comfort and nega-
tive affect, whereas the relationship was weaker in older 

Table 2  Mixed effects regressions predicting temperature 
comfort. Model includes z-scored simulated weather variables. 
Estimates are β values with 95% CIs. Fixed effects Pseudo-R2 
reports the variance explained across participants, whereas total 
effects Pseudo-R2 account for fixed effects + participant-level 
variability

Model 1 Model 2
Intercept 4.92 *** 4.92 ***

[4.83, 5.02] [4.82, 5.02]
Temperature -0.20 *** -0.18 ***

[-0.27, -0.13] [-0.27, -0.08]
Relative Humidity -0.08

[-0.16, 0.01]
Solar Radiation -0.16 ***

[-0.23, -0.08]
Wind Speed -0.04

[-0.11, 0.04]
Air Pressure 0.04

[-0.05, 0.13]
N 1946 1946
N (UniqueID) 313 313
AIC 7026.99 7033.53
BIC 7049.29 7078.12
Pseudo-R2 (fixed) 0.02 0.03
Pseudo-R2 (total) 0.19 0.21
*** p < 0.001; ** p < 0.01; * p < 0.05
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adults (See Fig. 4). Full Model output can be seen in Sup-
plementary Materials Table S2.

The second model (2) predicting negative affect from 
perception and age did not yield an interaction between 
perception and age (ps = 0.9). Full model output can be 
found in the Supplementary Materials Tables S3.

Lastly, when examined as a function of (3) actual 
temperature and age, 1/x transformed negative affect 

yielded an interaction between temperature and age (β 
= -0.01, p = 0.034), where there was a stronger relation-
ship between temperature and negative affect in younger 
adults vs. older adults. However, when raw negative affect 
scores were examined, the interaction between tempera-
ture and age was not significant (ps = 0.21). Full output for 
both versions of these models can be found in the Sup-
plementary Materials Table S4 and S5.

Fig. 3  Relationships between modeled temperature, perception, and comfort. Violin plots show distributions of data plotted as a function of Modeled 
Temperature and Comfort (Top), between Comfort and Perception (Middle), and between Modeled Temperature and Perception (Bottom). Perception 
ratings are on a 4–7 scale (4 = Neutral and 7 = Very Hot). Comfort ratings are on a 1–7 scale (1 = Very Uncomfortable and 7 = Very Comfortable)
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A parallel set of analyses were conducted examining 
positive affect. Overall, older adults showed more posi-
tive affect overall (indicated by significant main effects in 
all three regressions). A significant interaction between 
age and comfort was found where the relationship 
between comfort and affect was larger in younger adults. 
No other significant main effects or interactions were 
found in the models using modeled temperature or tem-
perature perception as predictors.

Overall, this pattern of effects suggests that while older 
adults may be more affected by the actual temperature in 
terms of how it feels and the discomfort it causes, older 
adults are generally less likely to experience negative 
affect and more likely to experience positive affect (see 
scatterplots in Fig. 5). The overall better affective states in 
older adults appears important, as while they experience 
more thermal discomfort, they are less likely to have this 
discomfort lead to worsened affect compared to younger 
adults.

Moderation by gender
In all analyses incorporating gender, we included three 
categories: female (n = 221), male (n = 80), and nonbi-
nary or gender nonconforming (n = 12). Welch’s indepen-
dent sample t-tests were conducted to examine overall 

differences in positive and negative affect between each 
group irrespective of temperature conditions. While no 
significant pairwise comparisons were found for nega-
tive affect, there were significant differences in positive 
affect for uncorrected t-tests, wherein male participants 
had greater positive affect than female participants 
(t(125.4) = 2.66, p = 0.009) and nonbinary participants 
(t(15.5) = 2.62, p = 0.019), but no differences were found 
between female and nonbinary participants (ps = 0.16). 
However, the difference with nonbinary participants is 
not statistically significant if Bonferroni correction for 
multiple comparisons is applied (α = 0.05/3 = 0.0167). Due 
to this overall difference between female and male partic-
ipants, but a lack of difference between female and non-
binary participants, it seemed likely that the reference 
category for regressions may matter. As such, regressions 
were run twice: with both the female participants and 
male participants as reference group.

However, regardless of reference category, no signifi-
cant effects were found for gender as an independent 
predictor of temperature perception or comfort (bivari-
ate regressions), as a moderator when simulated temper-
ature was used to predict comfort or perception, or when 
included as a moderator of the relationship between 
perception or comfort in predicting positive or nega-
tive affect. In sum, while there were gender differences 
in overall positive affect, no analyses incorporating tem-
perature, perception, or comfort yielded any significant 
moderation effects.

Acclimatization effects
Lastly, we examined the effects of Study Wave as accli-
matization over the course of the summer months can 
impact both perception and comfort as individuals 
become more physiologically adapted to hotter weather. 
The analyses paralleled the age and gender moderator 
analyses, where all the models run had an interaction 
term (“Wave”) and the primary effect of interest was the 
interaction between Wave and the other variable.

Interactions predicting comfort and perception from 
study wave and modeled temperature both yielded sig-
nificant interactions. For comfort, this was a positive 
interaction (β = 0.07, p < 0.001), suggesting that similarly 
hot temperatures were perceived as more comfortable 
towards the end of summer. For perception, the inter-
action was negative (β = -0.02, p = 0.02), suggesting that 
over time, similar temperatures were perceived as cooler. 
Full output for these analyses can be found in Supple-
mentary Materials Tables S6 and S7. These analyses do 
suggest that acclimatization is occurring in this sample. 
However, none of the analyses predicting affective states 
yielded any significant interactions. In other words, 
acclimatization did not impact the relationship between 

Table 3  Mixed effects regressions predicting negative affect. 
Model includes z-scored simulated weather variables. Estimates 
are β values with 95% CIs. Fixed effects Pseudo-R2 reports the 
variance explained across participants, whereas total effects 
Pseudo-R2 account for fixed effects + participant-level variability

Model 1 Model 2
Intercept 2.10 *** 2.10 ***

[2.03, 2.18] [2.02, 2.18]
Thermal Comfort -0.10 *** -0.10 ***

[-0.13, -0.06] [-0.13, -0.06]
Temperature Perception 0.00 0.02

[-0.03, 0.04] [-0.02, 0.05]
Temperature -0.03

[-0.09, 0.02]
Relative Humidity -0.00

[-0.05, 0.04]
Solar Radiation -0.05 *

[-0.08, -0.01]
Wind Speed 0.01

[-0.02, 0.05]
Air Pressure -0.04

[-0.09, 0.00]
N 1946 1946
N (UniqueID) 313 313
AIC 4477.49 4500.14
BIC 4505.36 4555.88
Pseudo-R2 (fixed) 0.01 0.02
Pseudo-R2 (total) 0.49 0.48
*** p < 0.001; ** p < 0.01; * p < 0.05
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affective states and modeled temperature, temperature 
comfort, or temperature perception.

Robustness check: exclusion based on modeled 
temperature
All analyses reported above use data where tempera-
ture perception falls between neutral (4) and extremely 
hot (7). As a robustness check, the same analyses were 
conducted where modeled temperature (> 22 degrees 
C) is used as a cutoff rather than perception. The full 
results of this analysis can be accessed at the OSF proj-
ect page https://osf.io/4y8eq and can be compared with 

the identical analysis output with the perception cutoff 
available on that page. Overwhelmingly, the exclusion 
approach does not affect the pattern of analyses, though 
there are a few minor differences with this new thresh-
old. These differences are detailed below, and Figs. 6 and 
7 graphically highlight where the exclusion criteria influ-
ences the results.

Negative affect
In the analyses predicting negative affect from all weather 
variables, higher air pressure is now a significant predic-
tor of higher raw negative affect (β = -0.05, p = 0.041).

Fig. 4  Prediction plots for analyses with age moderator. Prediction plots generated from fixed-effects estimates, split by +/-1 SD from mean age

 

https://osf.io/4y8eq
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Age moderator
In the analyses with age as a moderator, the analysis pre-
dicting 1/x transformed negative affect from comfort 
and age was previously significant and is not significant 
(p = 0.06) in the new analysis. In the analyses predicting 
1/x transformed negative affect from modeled tempera-
ture and age was previously significant but is no longer 
significant.

Gender moderator
While there still proved to be no moderating effect of 
gender in predicting affective states from any variables 
examined, this subset of the data did show a weak but 
significant interaction predicting temperature percep-
tion from gender and modeled temperature. Specifically, 
it appears that the relationship between higher modeled 
temperature and temperature perceptions is stronger in 
female (p = 0.042) and non-binary/gender non-conform-
ing (p = 0.021) participants relative to male participants.

Acclimatization effects
The analyses using study wave as an interaction term 
showed some different results when using this cutoff. The 
interaction predicting comfort from wave and modeled 
temperature was no longer significant in this analysis 
(ps = 0.14) suggesting that the effects of acclimatization 
may be stronger when cooler modeled temperatures are 
excluded from the dataset. This may be due to the fact 
that cooler temperatures later in the summer time are 
perceived as even colder and less comfortable. Full out-
put for these analyses can be found in Supplementary 
Materials Tables S8 and S9. As with the primary analy-
ses reported, no significant interactions were found with 
wave in predicting negative affect. However, in this sub-
set of data, there were significant interactions for posi-
tive affect. Specifically, hotter temperatures (p = 0.02) and 
hotter perceptions (p = 0.01) were associated with more 
positive affect at the start of summer compared to the 
end of summer.

Discussion
A better understanding of the consistency and variability 
of negative emotional responses to hot weather in sum-
mer is needed to generate mechanistically accurate mod-
els of the relationships between heat and crime or mental 
health. One potential caveat to this approach, however, 
was the possibility that due to inter-individual variability 
in thermal comfort and perception [41, 42], a psychol-
ogy-informed model may not emerge from these data. 
That is, there may or may not be a meaningful threshold 
of temperature plus other weather variables that consis-
tently lead to both discomfort and negative affect.

The current work sought to test exactly this and iden-
tify whether there is indeed sufficient consistency across 

Table 4  Mixed effects regressions predicting thermal comfort 
and perception from modeled air temperature and age. Model 
includes z-scored temperature and age. Estimates are β values 
with 95% CIs. Fixed effects Pseudo-R2 reports the variance 
explained across participants, whereas total effects Pseudo-R2 
account for fixed effects + participant-level variability

Thermal comfort Temperature perception
Intercept 4.92 *** 4.88 ***

[4.82, 5.02] [4.82, 4.93]
Temperature -0.20 *** 0.30 ***

[-0.27, -0.13] [0.26, 0.34]
Age 0.01 0.02

[-0.09, 0.11] [-0.04, 0.07]
Temperature*Age -0.11 ** 0.05 *

[-0.18, -0.04] [0.01, 0.09]
N 1946 1948
N (UniqueID) 313 313
AIC 7040.26 4944.12
BIC 7073.71 4977.57
Pseudo-R2 (fixed) 0.02 0.11
Pseudo-R2 (total) 0.20 0.25
*** p < 0.001; ** p < 0.01; * p < 0.05

Fig. 5  Scatterplots of averaged negative and positive affect by age. Scat-
terplots with regression line and 95% CI (shaded) for negative affect (top) 
and positive affect (bottom)

 



Page 12 of 16Meidenbauer et al. BMC Psychology          (2024) 12:504 

individuals in terms of their thermal perception, com-
fort, and emotional responses to hot weather to inform 
these large-scale models. Through a series of analyses 
examining the relationships between more objective 
temperature and weather variables, as well as thermal 

perceptions, comfort, and affective states, there was lim-
ited consistency across individuals, though better predic-
tive power when accounting for within-person effects. 
Though perception and actual temperature were pre-
dictive of thermal comfort, neither predicted negative 

Fig. 6  Summary of results: main effects and demographic moderators. Color-coded tables show whether a result is significant (green), non-significant 
(blue) or significance is affected by how non-hot temperatures are defined for exclusion (yellow). Sign/direction (Positive or Negative) is included for main 
effects and short description is used for interaction effects
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affect alone. In fact, only thermal discomfort showed 
a significant association with negative affective states. 
While a strong test of the underlying mechanisms can-
not be performed with the current design, this does sug-
gest that temperature (either via subjective perception or 
objective modeled weather data) must first be interpreted 
or appraised as uncomfortable in order for the negative 
affective response to occur.

Due to this, the current results suggest that using a 
psychologically-informed model of the heat-crime or 
heat-mental illness relationship may be a challenge. 
The variability is such that even at quite high tempera-
tures (38 °C or 100 °F), not all participants perceived the 
temperature as particularly hot or uncomfortable. Addi-
tionally, the fixed effects R2, which reflect the variance 
explained in negative affect by any heat measure across 
participants generally (not accounting for within-person 
effects) were quite low - between 1% and 3%. While the 
variance explained for the total effect (including within 
individual effects) was considerably better (pseudo-R2 
around 50%), this poses a problem for analyses that focus 
on temperature and aggregate outcomes where measures 
of individual experiences are not available. However, it’s 
worth noting that data of this sort could potentially be 
used to inform simulation studies in the form of Agent-
based Models (ABMs; [43, 44]), which allow for differing 
levels of heat tolerance and affect across the simulated 
population. Informed by a mechanistic model of tem-
perature responses, these ABM predictions could then be 

tested against the actual, observed relationships between 
heat and crime, and provide insight into the relative 
contributions of negative affect vs. other factors such as 
bringing more people outdoors (i.e., what is proposed by 
the Routine Activities Theory [45]).

These results are consistent with the variability noted 
in prior research examining individual differences in 
thermal preferences and comfort, however, these studies 
have typically utilized relatively small samples and con-
trolled indoor environments, such as office buildings or 
experimental temperature chambers [46–48]. Studies 
of this nature also differed in the extent to which they 
looked at large or small deviations from “room tempera-
ture”. It could reasonably be argued that when examined 
in a relatively restricted range of temperatures, inter-
individual differences in comfort may be larger, as people 
may be more likely to show consensus at temperature 
extremes than in more temperate conditions. However, 
the current study suggests that even in a wider range of 
temperature conditions, the inter-individual differences 
remain extensive.

In terms of simply predicting perception and comfort 
from climate-modeled weather data, it is notable that 
both air temperature and solar radiation were robustly 
predictive, but other factors such as relative humid-
ity, were not. However, this lack of relationship is likely 
due to the inverse correlation between temperature and 
humidity in these data (r’= -0.48), and that humidity 
may increase feelings of heat when it is already hot and 

Fig. 7  Summary of results: seasonality effects. Color-coded tables show whether a result is significant (green), non-significant (blue) or significance is 
affected by how non-hot temperatures are defined for exclusion (yellow)
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individuals are sweating [49], but not when it is more 
temperate. Solar radiation is also an interesting variable 
in that it predicts both hotter perception and thermal dis-
comfort, but also better affective states. This is consistent 
with both the lay notion and empirical evidence backing 
sunshine as a mood booster [50], and demonstrates the 
complex dynamics between weather, perception, com-
fort, and affect again.

Interestingly, the analyses incorporating participant age 
suggest that the tendency to experience negative affect 
may indeed be the most important predictor of the heat-
affect relationship. Specifically, and consistent with prior 
research, older adults perceived increasing temperatures 
as hotter and more uncomfortable than younger adults 
[51]. However, older adults also showed overall less nega-
tive affect and more positive affect. When negative affect 
was the outcome variable of interest, stronger associa-
tions between comfort and objective temperature were 
found for younger adults. In other words, it seems that 
though older adults are more physiologically affected by 
heat (or at least perceive it to be hotter) than younger 
adults, younger adults’ tendency towards experiencing 
negative affect heightened the relationship between ther-
mal discomfort and affective states. This effect further 
emphasizes a relatively weak role of objective or subjec-
tive temperature in predicting negative emotions alone 
and instead demonstrates the importance of individual 
differences.

This effect is an important addition as studies examin-
ing the effects of age and gender have been inconsistent 
[42]. Specifically, there is evidence that both age and gen-
der may have ‘some’ influence on thermal preferences 
[47, 49, 52] but the nature of these effects seems varied. 
For example, a review from 2012 demonstrated that 
women seem overall more dissatisfied and uncomfort-
able due to deviations from room temperature in either 
the hot or cold direction [53]. Additionally, in an indoor 
setting, older adults appear to perceive the same temper-
ature as slightly colder and less comfortable than younger 
adults [51].

We failed to find an effect of gender as a moderator in 
these data. Though men showed slightly more positive 
affect overall, gender did not yield any interactions in 
predicting comfort, perception, or affective states. Prior 
work examining the effects of gender has found mixed 
evidence- while some studies demonstrate that women 
prefer warmer temperatures, others find that women are 
more sensitive to temperature changes in either direc-
tion and yet others find no association (see [48, 53] for 
reviews). The null results in this study suggest a lack of 
association, however, it is also possible that the unequal 
sample sizes of men and women reduced the ability to 
detect an effect here. However, given the reasonably large 
sample size overall, a more likely scenario is that even if 

the effect is present, it is a very small one, and may lack 
practical significance [54]. Additionally, we were very 
likely underpowered to detect differences between men 
and women vs. nonbinary/gender nonconforming indi-
viduals. This would be an important question to investi-
gate in further research, as much of the prior work has 
focused solely on a male/female distinction in cisgender 
individuals without investigating the effects in other gen-
der identity groups.

Acclimatization is another key factor that may influ-
ence thermal comfort due to physiological changes which 
impact thermoregulation efficiency [52, 55]. While this 
study did not track the same participants over the entire 
summer, some of our results are consistent with acclima-
tization effects. Specifically, comfort and perception in 
hotter temperatures are perceived as more comfortable 
and neutral at the end of summer vs. the start of sum-
mer. However, the time at which participants were tested 
did not have any impact on negative affective states - the 
main effect of comfort was still the only predictor of neg-
ative affect. This suggests that while acclimatization may 
impact the relationship between temperature and com-
fort, discomfort alone predicts negative emotional states 
regardless of when individuals participated.

There are some limitations to the current work. While 
we were able to examine these relationships in a highly 
ecologically valid setting, there are trade-offs to this 
approach. For one, we cannot account for all variables 
that may have affected temperature perceptions, includ-
ing participants’ attire and whether they were in a shaded 
or unshaded area. Both clothing choice and shade likely 
influence perception and comfort, increasing the vari-
ability in our study relative to a controlled environment 
where these could be accounted for. However, in the 
context of the overarching goal of this study (informing 
large-scale models of the relationship between tempera-
ture and affect in predicting aggregate outcomes), we 
would not be able to account for these possibilities any-
way. Thus, while this limits our overall predictive power, 
it does not affect the predictive power that would be 
implemented in using a psychologically-informed model 
of heat and crime or mental illness.

Another important limitation is that the relationship 
between thermal discomfort and affective states may 
have been influenced by the act of completing the survey 
itself. That is, it is possible that reflecting on one’s cur-
rent feelings of comfort or discomfort may amplify the 
subsequent reporting of emotional states. However, this 
may be an important mechanism for understanding the 
heat-affect relationship, rather than a confound per se. 
An alternative explanation is that already being in a nega-
tive affective state increases the likelihood of perceiving 
temperature as uncomfortable. This idea is somewhat 
supported by the age effects - where younger individuals 
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show a stronger relationship between temperature, 
comfort, and affect than older adults and had an overall 
stronger tendency towards negative affect. Unfortunately, 
the current study design cannot disentangle these rela-
tionships, and it is very plausible that both mechanisms 
are at play. Future work in an experimental setting where 
heat is induced may shed greater light on the underlying 
mechanisms.

Additionally, while our study provides unique insights 
into the relationship between real, modeled temperatures 
as opposed to purely relying on perception or using low-
spatial resolution weather records, there are limitations 
to the WRF model used here. Simulating street-level 
temperature variability, particularly within the highly 
heterogeneous urban environment, remains challenging 
in urban climate studies. While our study synchronized 
GPS coordinates and time for a matched survey-model 
comparison, the inherent limitations of current urban 
climate models prevent us from achieving meter-level 
resolution across entire cities for extended periods due 
to impractical computational costs and model instability 
issues. The 1 km resolution used in this study, although 
state-of-the-art, may not fully capture the temperature 
variability experienced by pedestrians. From this per-
spective, our findings reflect the broader issue of the dis-
crepancy between perceived heat and modeling results. 
These limitations underscore the need for continued 
development in both modeling techniques and computa-
tional capabilities.

Lastly, while the current work did include an exami-
nation of some participant-level factors (age, gender) 
which may influence the relationships of interest, there 
are other factors related to vulnerability to heat exposure 
which we do not account for here. For example, typical 
heat exposure at home, limited access to AC, low socio-
economic status, and present or past mental health con-
ditions could all exacerbate the effects of heat exposure 
on emotional states. While outside the scope of the cur-
rent paper, these are undoubtedly important moderating 
factors that can be investigated in subsequent analyses.

Despite these limitations, the results of this work pro-
vide unique insights into the variability of thermal per-
ceptions, comfort, and affect in a large and diverse 
sample of individuals in a range of outdoor environ-
ments in summertime. By combining not only subjec-
tive reports of comfort, perception, and affect, but also 
high spatiotemporal resolution simulated weather data, 
the role of ‘objective’ and ‘subjective’ heat was investi-
gated in individuals’ daily lives. As the effects of climate 
change continue to wreak havoc on weather patterns, a 
better understanding of the emotional consequences 
of temperature variability is of crucial importance. This 
study identifies the importance of individual differences 
broadly, as well as the specific effects (or lack thereof ) of 

age and gender in our sample. It also paves the way for 
future work investigating the fundamental mechanisms 
driving heat-related negative affect in more controlled 
environments.
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