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ABSTRACT
Background: The Neotropics harbors the largest species richness of the planet;
however, even in well-studied groups, there are potentially hundreds of species that
lack a formal description, and likewise, many already described taxa are difficult to
identify using morphology. Specifically in small mammals, complex morphological
diagnoses have been facilitated by the use of molecular data, particularly from
mitochondrial sequences, to obtain accurate species identifications. Obtaining
mitochondrial markers implies the use of PCR and specific primers, which are largely
absent for non-model organisms. Oxford Nanopore Technologies (ONT) is a new
alternative for sequencing the entire mitochondrial genome without the need for
specific primers. Only a limited number of studies have employed exclusively ONT
long-reads to assemble mitochondrial genomes, and few studies have yet evaluated
the usefulness of such reads in multiple non-model organisms.
Methods: We implemented fieldwork to collect small mammals, including rodents,
bats, and marsupials, in five localities in the northern extreme of the Cordillera
Central of Colombia. DNA samples were sequenced using the MinION device and
Flongle flow cells. Shotgun-sequenced data was used to reconstruct the
mitochondrial genome of all the samples. In parallel, using a customized
computational pipeline, species-level identifications were obtained based on
sequencing raw reads (Whole Genome Sequencing). ONT-based identifications were
corroborated using traditional morphological characters and phylogenetic analyses.
Results: A total of 24 individuals from 18 species were collected, morphologically
identified, and deposited in the biological collection of Universidad EAFIT. Our
different computational pipelines were able to reconstruct mitochondrial genomes
from exclusively ONT reads. We obtained three new mitochondrial genomes and
eight new molecular mitochondrial sequences for six species. Our species
identification pipeline was able to obtain accurate species identifications for up to
75% of the individuals in as little as 5 s. Finally, our phylogenetic analyses
corroborated the identifications from our automated species identification pipeline
and revealed important contributions to the knowledge of the diversity of
Neotropical small mammals.
Discussion: This study was able to evaluate different pipelines to reconstruct
mitochondrial genomes from non-model organisms, using exclusively ONT reads,
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benchmarking these protocols on a multi-species dataset. The proposed
methodology can be applied by non-expert taxonomists and has the potential to be
implemented in real-time, without the need to euthanize the organisms and under
field conditions. Therefore, it stands as a relevant tool to help increase the available
data for non-model organisms, and the rate at which researchers can characterize life
specially in highly biodiverse places as the Neotropics.

Subjects Biodiversity, Bioinformatics, Molecular Biology, Zoology
Keywords Species identification, Cryptic species, Non-model organisms, Mitochondrial genomes,
Computational pipeline, Shotgun sequencing, Third generation sequencing

INTRODUCTION
The Neotropics holds some of the greatest species richness and endemism in the world;
however, a large fraction of such diversity is still unknown and hidden within “cryptic
diversity” (Field et al., 2009; Antonelli & Sanmartín, 2011; Moreno et al., 2018; Parsons
et al., 2022). For the past three decades, the recognition and description of metazoan
cryptic species has been based on the complementary use of DNA sequences (with
emphasis on mitochondrial DNA) and extremely detailed morphological characters
(Byrne, 2023; Nachman et al., 2023). Particularly for small mammals (rodents, bats,
opossums), the diagnostic characters—traits unique to a species which are vital for its
identification—are almost entirely based on cranial, dental, or soft-tissue morphology that
inevitably requires the collection (euthanization) of animals to be prepared as study
specimens (Byrne, 2023; Nachman et al., 2023). Nevertheless, euthanizing individuals may
be highly undesirable, especially in conservation scenarios such as the presence of
endangered species (Kyle & Wilson, 2007; Cleman et al., 2014; Costello et al., 2016).

DNA sequencing has emerged as a vital tool to overcome the challenges associated with
species identification solely based on morphological traits (Bickford et al., 2007; Schlegel
et al., 2012; Lopez-Baucells et al., 2018), and in particular, mitochondrial DNA (mtDNA)
has become the ideal source of data for species identification, given to its—compared to the
nuclear DNA—relatively short coalescent time, small effective population size, and high
mutation rate (Brown, George & Wilson, 1979; Moore, 1995). Although, within this
genome, the Cytochrome Oxidase C Subunit I (COI) has gained prominence for the
identification of a wide range of Metazoan organisms (Gostel & Kress, 2022; Hebert,
Ratnasingham & de Waard, 2003; Hebert et al., 2003), other various mitochondrial
markers (e.g., 12S, 16S, CYTB, NAD) have been historically used for species identification
in particular clades (for some examples see Parson et al., 2000; Rastogi et al., 2007; Milan
et al., 2020). Consequently, these multiple mtDNA markers have produced heterogeneous
sequence databases (Kowalczyk et al., 2021; Antil et al., 2022), which pose a great challenge
for species identification because of the absence of complete datasets of orthologues needed
for comparison.

Obtaining particular amplicons for a molecular-based species identification is still
commonly done using PCR-based amplification (e.g., Nowak et al., 2014; Schäffer, Zachos
& Koblmüller, 2017; Pomerantz et al., 2018, 2022). However, although very useful, PCR
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requires the use of specific primers which can be absent for multiple non-model
organisms (Schäffer, Zachos & Koblmüller, 2017; Cicero et al., 2021). In many taxonomic
groups, there are primer cocktails designed for a vast range of species, but the
construction of such “universal primers” relies on genomes already available in databases
(usually from model organisms), where there is limited representation of Neotropical
genetic diversity (Naidu et al., 2012; Schlegel et al., 2012; da Fonseca et al., 2016). Hence,
in the presence of understudied species, the use of these primers can lead to the
inability to obtain the DNA fragment of interest, problems of specificity, or
obtaining the wrong DNA fragment (Naidu et al., 2012; Schlegel et al., 2012; da Fonseca
et al., 2016).

One way to deal with the heterogeneity of mtDNA databases is to sequence the entire
mitochondrial genome and have all the potential markers for the species identification
regardless of the marker available in the DNA repository. Sequencing the mitogenome has
been traditionally achieved through long-range PCR (Groenenberg et al., 2017), back-to-
back PCRs (Emser et al., 2021) and shotgun or targeted massive parallel sequencing
(Zhang, Cui & Wong, 2012; Clarke et al., 2014). Although, any of these methods has been
sufficient for obtaining (routinely) mitochondrial genomes, it requires sequencing
platforms (e.g., Sanger, Illumina) and molecular biology facilities which are often
unavailable in developing countries (Ciocca & Delgado, 2017; Galina, Martínez &Murphy,
2023). Consequently, a typical sequencing approach involves exporting the DNA or
amplicons to sequencing facilities, adding paperwork, time and budget to this process
(Salager-Meyer, 2008; Rios & de Regules, 2022; Zarog, 2023). The cumulative impact of the
mentioned problems hinders accurate species identification using DNA sequences,
affecting the efficiency of data collection (i.e., DNA sequences) and the expansion of
databases (Rios & de Regules, 2022; Zarog, 2023).

The development of the third-generation sequencing platform of Oxford Nanopore
Technologies (ONT), has resulted as a promising alternative to obtain sequences on-site
without the need of complex facilities. In fact, the portable MinION sequencing platform
has already been used to shotgun-sequence—without the need of primers—complete
mitochondrial genomes in multiple taxonomic groups such as invertebrates (Gan et al.,
2019; Baeza, 2020; Filipović et al., 2022), vertebrates (Wiley & Miller, 2020; Kryukov et al.,
2020; Malukiewicz et al., 2021; Baeza & García-De León, 2022), fungi (Sa et al., 2020) and
plants (Jackman et al., 2020). Furthermore, ONT has emerged as a viable alternative for
species identification, primarily within a DNA barcoding framework, which involves the
sequencing of PCR-based amplicons, and it has already proven to be effective in diverse
taxonomic groups including bacteria and viruses (Benítez-Páez, Portune & Sanz, 2016;
Riaz et al., 2021), plants (Antil et al., 2022), invertebrates (Kneubehl et al., 2022) and
vertebrates (Krehenwinkel, Pomerantz & Prost, 2019; Srivathsan et al., 2019, 2021; Johri
et al., 2019). Notably, in recent years a few studies have shown the capabilities of this
sequencing technology for real-time and onsite species identification (Parker et al., 2017;
Pomerantz et al., 2018, 2022; Maestri et al., 2019).

Some studies have already used ONT shotgun sequencing reads for species
identification, offering an alternative approach to circumvent the challenges associated
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with the amplification of specific markers (Baeza, 2020; Imai et al., 2020; Baeza & García-
De León, 2022; De Vivo et al., 2022). These studies mostly provide identifications
implementing phylogenetic analyses, but at least one study uses ONT reads followed by a
custom-made bioinformatic pipeline to provide species-level identification of a non-model
mammal species (Franco-Sierra & Díaz-Nieto, 2020). Despite the advancements that these
projects made in the field of ONT-based species identification, they usually include one or
few individuals of closely related species, and they have failed to test their laboratory and
computational methods with multiple individuals across a broader taxonomical sampling
(different families or orders). Also, these studies rely on expensive flowcells (ca. 900 USD)
with massive sequencing capacity, which although generate the amount of data needed for
species identification, the benefit to cost ratio for a small mitochondrial genome (ca. 17 kb)
can be considered extravagant. Currently, Oxford Nanopore Technologies have produced
a small-essay sequencing flowcell, the Flongle, which is available at a reduced cost
(compared to the regular flow cells) and offers a remarkable level of precision with a mere
5% chemical error rate in the R9 series. Our research aims to evaluate the feasibility of
using ONT shotgun reads obtained with the Flongle sequencing flowcell for the
identification of multiple species of non-model organism of mammals.

MATERIALS AND METHODS
Fieldwork
We conducted fieldwork in five different localities near the city of Medellín so we could
rapidly process tissue samples of captured specimens. These localities include cloud
mountain forest, low tropical mountain forest, tropical dry forest, and urban ecosystems
(Fig. 1 and Appendix 1). We sampled each locality for 8 days implementing the trapping
methodologies specific for each focal group (bats, rodents, and marsupials) proposed by
Voss & Emmons (1996). For volant mammals (bats) we used eight nets of three different
sizes (6 m × 3 m, 9 m × 3 m, and 12 m × 3 m) per night. For terrestrial small mammals, at
each locality, we used 100 standard Sherman folding live traps (80 cm × 90 cm × 230 cm)
per night. Finally, we baited traps every morning with a mixture of oats, banana, and
vanilla essence, or with a single slice of banana.

To validate the results obtained from our species identification pipeline (see section
“Species identification pipeline with ONT raw reads”), it is essential to compare them
against an accurate species identification, which in our case is based on morphology and
phylogenetic systematics. Therefore, it was still necessary to collect the individuals and
deposit them as voucher specimens in a museum collection. We followed all the methods
of capture and handling approved by the American Society of Mammalogists Animal Care
and Use Committee (Sikes & Bryan, 2016). Specimens selected for collection were
sacrificed using cervical dislocation or exposure to high concentrations of CO2 (carbon
dioxide displacement rate of 60% volume per minute over a duration of 2 min), in
accordance with the AVMA Guidelines for the euthanasia of animals: 2020 edition
(American Veterinary Medical Association (AVMA), 2020). Cervical dislocation was used
primarily for bats, while terrestrial mammals were euthanized with CO2. For the
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morphological identification, we used specialized literature for each group as needed. All
the material collected is deposited at the biological collection of Universidad EAFIT
(Medellín, Colombia). All the methodological procedures of this project were approved by
the Ethics Committee of the Universidad EAFIT. The approval of the field work permit
was granted by the National Environmental Licensing Authority (ANLA) through
Resolution No. 1160 of 2023.

Laboratory work and Oxford Nanopore Sequencing
For the DNA extraction we removed six millimeters from the distal section of the tail of
rodents and opossums, and three patagium (wing membrane) samples with a 3 mm
dermatological punch for bats. We washed each tissue sample with molecular biology
grade ethanol to remove external contaminants. Subsequently, we performed whole
genome DNA extraction using the DNeasy Blood and Tissue Kit (Qiagen Venlo, The
Netherlands) following manufacturer’s instructions, and measured DNA concentration by
fluorometry using the dsDNA BR assay from Qubit 3.0 (Thermo Fisher Scientific,
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Figure 1 Map of the northern section of the Cordillera Central in Colombia showing the localities of our fieldwork.Map made by the authors,
using the QGIS program (https://www.qgis.org/en/site/index.html) and spatial data from DIVA-GIS (http://diva-gis.org/). Both repositories are Free
and Open Source Geographic Information System. Full-size DOI: 10.7717/peerj.17887/fig-1
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Waltham, MA, USA). Next, for Whole Genome Sequencing, we used the MinION device
with Flongle flow cells (FLO-FLG001, R9.4.1 chemistry). Library preparation was the same
for all samples using the Ligation Sequencing Kit SQK-LSK110 following the Genomic
DNA by Ligation SQK-LSK110-Flongle Nanopore Protocol (version
GDE_9108_v110_revL_10Nov2020). Noteworthy, we conducted the adapter ligation
clean-up step using LFB buffer to enhance the recovery of longer DNA fragments (>3 Kb).
For the library loading step, we used 6 ml of DNA library in addition to the sequencing
Buffer II (SBII) and Loading Beads II (LBII) from the Flongle Expansion kit which are
stored in glass vials. We loaded the library (sequencing mix) dropwise onto the sample port
ensuring that the mix entered the Flongle cell by capillary action. We controlled the
MinION sequencing run from a Dell laptop (processor Intel� Xeon� CPU E3-1505M v5
@ 2.8 Hz × 4 and 32 Gb ram) using the MinKNOW software v21.05 setting a runtime of 24
h for each sample without live basecalling. After sequencing, we basecalled the raw signal
(FAST5 files) using the ONT Guppy Sequencing Pipeline software 5.0.11 to obtain
sequencing reads in FASTQ format. Subsequently, we used the sequencing summary file
from the basecalling process to obtain sequencing performance statistics using NanoPlot
1.39 (De Coster et al., 2018). We filtered the data from each run by quality with NanoFilt
2.8.0 (De Coster et al., 2018) and only retained the reads with Q-score ≥ 7.

Mitogenome reconstruction
The reconstruction of mitochondrial genomes was conducted under two distinct scenarios
(Fig. 2). First, when there is no prior knowledge about the species identity of the organism,
we implemented the mitochondrial genome reconstruction based on Whole Genome
Sequences. Second, when there is prior information available on the identification of the
organism (e.g., order or family)—and more importantly—when there is availability of
closely related reference mitogenomes in databases, we used a mitochondrial-filtered
approach. For this latter approach we filtered the mitochondrial reads implementing both
Minimap2 (Li, 2018) and the mtBlaster script (Franco-Sierra & Díaz-Nieto, 2020). For
both scenarios, we applied two distinct assembly methods: a de novo assembler
implemented in Flye 2.9 (Kolmogorov et al., 2019), and a reference-based assembler
implemented in Rebaler 0.2.0 (available at https://github.com/rrwick/Rebaler). We used
the –meta flag for Flye which has been designed for metagenome/uneven coverage
assemblies and is able to recover different genomes within the same sample, an ideal fit for
the mitochondrial/nuclear genome uneven scenario obtained with the WGS data
(Kolmogorov et al., 2019, 2020). As Rebaler is a reference-based assembler, we used as
reference the mitochondrial genome from the most closely related species available in the
NCBI. This selection was based on the initial morphological identifications of each species.
In total, we implemented six (6) different routines based on the data type (WGS and
mtDNA-filtered) and assembly method (Flye and Rebaler) (Fig. 2). The first two pipelines
started from WGS data, referred to as WGS (Fig. 2, pipelines 1 and 2), and a second set of
pipelines used mitochondrial-filtered reads, referred to as Minimap2-filtered and
mtBlaster-filtered (Fig. 2, pipelines 3–6). The name given to the resulting mitochondrial
genome assemblies indicates the data type and assembler used to reconstruct them. For
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example, if a genome was reconstructed using mitochondrial data filtered with Minimap2
and subsequently assembled with Flye, the resulting genome would be labeled as
Minimap2+Flye.

Figure 2 Computational workflow implemented for the reconstruction of mitochondrial genomes
from ONT shotgun sequencing data. Pipelines 1 and 2 use WGS reads and use de novo (Flye) and
reference based (Rebaler) assemblers. Pipelines 3 to 6, initially filter the mitochondrial reads imple-
menting Minimap2 (pipelines 3 and 4) or mtBlastr (pipeline 5 and 6) to subsequently execute the
assemble step (Flye and Rebaler). The final steps (below red triangle) that include annotation and pol-
ishing are common to all six pipelines. Full-size DOI: 10.7717/peerj.17887/fig-2
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We annotated the resulting assemblies (final assembly generated by either Flye or
Rebaler, “draft assembly”) using the command line version of MitoZ v2.4.1 (Meng et al.,
2019), then we polished the annotated genomes using NanoPolish 0.14.0 (Loman, Quick &
Simpson, 2015), and finally re-annotated the polished genomes (“annotated polished
assemblies” in Fig. 2). We evaluated the quality of all the annotated mitogenomes (polished
and not polished) using two distinct assembly criteria: hits and errors. Assembly hits
correspond to complete coding genes with open reading frames (complete genes) and
complete non-coding genes (complete rRNA, tRNA). On the other hand, assembly errors
are coding genes with premature stop codons (denoted as stop codons), incomplete genes
(incomplete), absent genes within an assembly (null), and not assembled genomes (not
assembled). We aligned each mitochondrial genome assembly to a closely related reference
genome (the same used for Rebaler) to evaluate the hit and error criteria (Tables S2–S5).

Species identification based on phylogenetic analyses
Because it is essential to demonstrate the accuracy of the identifications obtained with the
species identification pipeline (see below), it was necessary to provide a reliable
identification with an independent line of evidence, which in our case was done with
phylogenetic inference analyses. For this purpose, we extracted the mitochondrial DNA
markers COI and Cytb—which are widely implemented for species identification in
mammals (Parson et al., 2000; Hebert, Ratnasingham & de Waard, 2003)—from each of
the annotated mitochondrial genomes, but we only extracted those sequences with
sufficient quality (i.e., Open Reading Frame, ORF). Then, we downloaded all the available
sequences from GenBank for each of these two loci and constructed datasets for each
genus, consequently, each dataset includes as ingroup all the GenBank sequences available
for a specific marker within a particular genus, along with our extracted sequences
(Table S1, File S2). We removed all duplicate sequences with the Dedupe algorithm
implemented in Geneious 9.1.8 (Kearse et al., 2012) and used a sequence from a species of
the sister genus as outgroup (Table S2). We aligned each dataset using MUSCLE (Edgar,
2004) and conducted independent gene tree analyses for each locus (COI and Cytb) based
on a Maximum Likelihood approach. The best-fitting nucleotide substitution model for
each alignment was determined using the Bayesian Information Criterion (BIC) and nodal
support was evaluated with 1,000 bootstrap replicates using the Ultrafast Bootstrap
Approximation (Hoang et al., 2018). All the phylogenetic analyses were implemented in
the IQ-TREE software v2.2.0 beta COVID-edition (Nguyen et al., 2015). The resulting trees
were visualized and edited using iTOL V5 (Letunic & Bork, 2021).

Species identification pipeline with ONT raw reads
For an automated species identification using the ONT raw reads, we followed the
methodological approach of Franco-Sierra & Díaz-Nieto (2020) with some minor
modifications. First, to obtain exclusively mtDNA reads from our WGS, we ran a blastn
search using BLAST 2.13 (Camacho et al., 2009) implemented in the mtBlaster pipeline
(https://github.com/nidafra92/squirrel-project/blob/master/mtblaster.py) using a
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mitochondrial genome database of ten model organisms of Metazoa (see Franco-Sierra &
Díaz-Nieto, 2020). We defined an identity cutoff value of 90% based on an identity
threshold of 95% to safeguard homology at the nucleotide level plus the average ONT error
rate of ~5% (for the R9 ONT chemistry). Subsequently, we blasted the extracted
mitochondrial reads against a new custom-made database containing all (6,620,011)
metazoan mitochondrial sequences available in GenBank as of March 2023. For the
BLAST search, the strictness of the analysis ranged between medium to high level by
setting the parameters as follows: max_target_seqs =1, word_size = 11, gapopen = 1,
gapextend = 2, penalty = −4, reward = 1, max_hsps = 1, perc_identity = 90, and
task = blastn.

We simulated three different hypothetical scenarios, where the size of the search
database (custom database of mitochondrial sequences) varied depending on the amount
of taxonomic information available for each individual: (a) when no information is
available (complete Metazoa mtDNA dataset), (b) when sample identity is known at the
order level, and (c) when sample identity is known at the family level. For each individual
we conducted three independent searches, simulating all three scenarios (Metazoa, order,
and family). To enhance the time-efficiency of BLAST searches, we implemented the
program DC-BLAST (Yim & Cushman, 2017). For the order and family-level search
scenarios, we refined the complete Metazoa database informing the DC-BLAST program
with a text file containing a comprehensive list of NCBI Taxonomy IDs, specific to each
particular taxonomic level. Briefly, for flying mammals all specimens are part of the order
Chiroptera and families Molossidae, Phyllostomidae, and Vespertilionidae (Table 1);
non-flying small mammals are contained in the orders Didelphimorphia and Rodentia,
and families Didelphidae and Cricetidae, respectively (Table 1). For each level of analysis,
we also evaluated the time efficiency of DC-BLAST. We implemented all species
identification analyses in the computational cluster Apolo Scientific Computing Center
(Universidad EAFIT) using the DC-BLAST (Divide and Conquer BLAST for HPC) utility
(Yim & Cushman, 2017). The setup used for executions consisted of two HPC nodes with
32 cores per node, 64 GB RAM per node, Intel� Xeon� CPU E5-2683 v4 @ 2.10 GHz
processor. After obtaining the DC-BLAST results for all experiments, we ranked the hits
for each individual (reads from each mammal collected) at each level of analysis (Metazoa,
order, family) using two key parameters: first in ascending order of their e-values, followed
by percentage of identity in descending order (File S1). We consider the first hit in each
analysis as the most reliable identification.

RESULTS
Field work, laboratory work and Oxford Nanopore Sequencing
We collected a total of 24 individuals, representing 18 species, five families, and three
orders (Table 1). Our DNA extractions produced an average concentration of 35.7 ng/ml
(7–102 ng/ml; 17 samples) for bat patagium tissue, and 69.85 ng/ml (26.6–1,147 ng/ml; seven
samples) for terrestrial mammals. We found that library preparation reduced the DNA
concentration by approximately 53.81% for most samples; however, in some instances this

Velasquez-Restrepo et al. (2024), PeerJ, DOI 10.7717/peerj.17887 9/36

http://dx.doi.org/10.7717/peerj.17887/supp-2
http://dx.doi.org/10.7717/peerj.17887
https://peerj.com/


T
ab
le

1
M
or
ph

ol
og

ic
al

id
en
ti
fi
ca
ti
on

,
lo
ca
li
ty
,
D
N
A
ex
tr
ac
ti
on

ch
ar
ac
te
ri
st
ic
s,
an

d
O
N
T
se
qu

en
ce

pe
rf
or
m
an

ce
st
at
is
ti
cs

of
al
l
sp
ec
im

en
s
se
qu

en
ce
d
in

th
is
st
u
dy
.

E
A
FI
T
co
lle
ct
io
n

n
um

be
r

M
or
ph

ol
og

ic
al

ID
Lo

ca
li
ty

T
is
su
e

C
on

ce
n
tr
at
io
n

of
D
N
A

ex
tr
ac
ti
on

(n
g/
ml
)

C
on

ce
n
tr
at
io
n

of
D
N
A

li
br
ar
y
(n
g/
ml
)

N
um

be
r

of
ce
ll

po
re
s

Se
qu

en
ci
n
g

ru
n
yi
el
d

(M
bp

)

M
ea
n
re
ad

le
n
gt
h

(K
bp

)

N
um

be
r

of
re
ad
s

N
u
m
be
r

of
re
ad
s
≥

Q
–7

%
R
ea
ds

≥
Q
–7

%
m
tD

N
A

(M
in
im

ap
2)

%
m
tD

N
A

(m
tB
la
st
er
)

E
A
FI
T
-M

21
26

A
no
ur
a
ca
ud

at
a

H
ac
ie
nd

a
la
Si
er
ra

P
(2
)

13
7.
44

1
6.
96

7.
24

96
2

74
4

77
.3
4

–
–

E
A
FI
T
-M

21
06

M
yo
ti
s
ri
pa
ri
us

H
ac
ie
nd

a
la
Si
er
ra

P
(2
)

7
21
.4

54
26
5.
13

5.
23

50
,6
89

33
,9
47

66
.9
7

0.
02

0.
02

E
A
FI
T
-M

21
43

N
ep
he
lo
m
ys

pe
ct
or
al
is

H
ac
ie
nd

a
la
Si
er
ra

T
33
.8

24
.2

38
25
1.
67

3.
92

64
,0
68

56
,0
59

87
.5

0.
07

0.
08

E
A
FI
T
-M

21
07

H
is
ti
ot
us

hu
m
bo
ld
ti
i

H
ac
ie
nd

a
la
Si
er
ra

P
(2
)

11
.4

6.
88

85
13
3.
35

3.
73

35
,7
14

30
,0
19

84
.0
5

0.
06

0.
04

E
A
FI
T
-M

21
24

R
hi
pi
do
m
ys

la
ti
m
an

us
H
ac
ie
nd

a
la
Si
er
ra

T
76

21
.6

66
72
0.
86

2.
96

24
3,
74
2

21
2,
12
8

87
.0
3

0.
05

0

E
A
FI
T
-M

21
16

H
an

dl
ey
om

ys
al
fa
ro
i

H
ac
ie
nd

a
la
Si
er
ra

T
78
.2

17
.3

45
19
5.
09

2.
6

75
,0
00

57
,3
66

76
.4
9

0.
03

0.
04

E
A
FI
T
-M

21
60

St
ur
ni
ra

bo
go
te
ns
is

La
M
ie
l

P
(2
)

13
.7

7.
34

55
61
5.
41

3.
04

20
2,
20
6

17
0,
52
3

84
.3
3

0.
02

0.
04

E
A
FI
T
-M

21
57

C
ar
ol
lia

br
ev
ic
au

da
La

M
ie
l

P
(3
)

39
.8

6.
66

57
27
7.
84

2.
86

88
,6
80

69
,1
11

77
.9
3

0
0.
03

E
A
FI
T
-M

21
64

A
no
ur
a
ge
of
fr
oy
i

La
M
ie
l

P
(3
)

54
.4

51
69

75
2.
48

2.
97

25
3,
66
5

20
8,
81
9

82
.3
2

0.
09

0.
08

E
A
FI
T
-M

21
58

A
rt
ib
eu
s
lit
ur
at
us

U
ni
ve
rs
id
ad

E
A
FI
T

P
(3
)

10
2

9.
86

70
27
1.
02

2.
3

11
8,
00
0

10
1,
13
1

85
.7

0.
04

0.
03

E
A
FI
T
-M

21
67

G
lo
ss
op
ha
ga

so
ri
ci
na

U
ni
ve
rs
id
ad

E
A
FI
T

P
(3
)

22
42

18
17
8.
15

3.
64

51
,3
55

38
,7
91

75
.5
4

0
0

E
A
FI
T
-M

21
66

A
rt
ib
eu
s
lit
ur
at
us

U
ni
ve
rs
id
ad

E
A
FI
T

P
(3
)

43
.4

63
.6

–
65
3.
56

2.
66

24
5,
54
5

18
5,
90
9

75
.7
1

0.
02

0.
02

E
A
FI
T
-M

21
65

St
ur
ni
ra

bo
go
te
ns
is

La
M
ie
l

P
(3
)

58
.6

34
.8

39
25
8.
84

3.
15

82
,2
87

76
,7
68

93
.2
9

0
0.
03

E
A
FI
T
-M

21
68

C
ar
ol
lia

br
ev
ic
au

da
La

M
ie
l

P
(3
)

28
.6

33
88

56
2.
47

2.
95

19
0,
89
5

15
2,
74
4

80
.0
1

0.
01

0.
02

E
A
FI
T
-M

21
51

N
ep
he
lo
m
ys

ch
ild

i
Fi
nc
a
C
ya
th
ea

T
11
4

29
.6

94
92
1.
72

2.
08

44
3,
46
0

37
0,
53
6

83
.5
6

0.
08

0.
06

E
A
FI
T
-M

21
59

M
yo
ti
s
ca
uc
en
si
s

U
ni
ve
rs
id
ad

E
A
FI
T

P
(3
)

16
.2

15
.4

76
53
5.
48

3.
8

14
0,
84
8

11
6,
42
5

82
.6
6

0.
01

0.
01

E
A
FI
T
-M

21
50

N
ep
he
lo
m
ys

ch
ild

i
Fi
nc
a
C
ya
th
ea

T
41

49
.8

92
92
0.
81

3.
97

23
1,
98
9

19
4,
08
7

83
.6
6

0.
09

0.
06

E
A
FI
T
-M

21
52

M
ol
os
su
s
m
ol
os
su
s

U
ni
ve
rs
id
ad

E
A
FI
T

P
(3
)

41
69
.6

92
70
1.
68

3.
81

18
4,
27
9

15
2,
35
0

82
.6
7

0.
1

0.
06

E
A
FI
T
-M

21
61

A
ko
do
n
af
fi
ni
s

Fi
nc
a
C
ya
th
ea

T
26
.6

42
.8

90
75
5.
79

1.
66

45
6,
58
5

35
7,
35
3

78
.2
7

0.
04

0.
06

E
A
FI
T
-M

21
53

A
rt
ib
eu
s
lit
ur
at
us

Fi
nc
a
So
co
la
o

P
(3
)

37
.5

7.
06

0
0

0
0

–
–

–
–

E
A
FI
T
-M

21
54

Ph
yl
lo
st
om

us
di
sc
ol
or

Fi
nc
a
So
co
la
o

P
(3
)

46
.9

8.
2

0
0

0
0

–
–

–
–

E
A
FI
T
-M

21
56

M
ar
m
os
a
is
th
m
ic
a

Fi
nc
a
So
co
la
o

T
70
.8

27
.2

26
15
0.
51

2.
53

59
,3
98

48
,6
30

81
.8
7

0.
38

0.
28

E
A
FI
T
-M

21
55

M
ar
m
os
a
is
th
m
ic
a

Fi
nc
a
So
co
la
o

T
84
.2

65
.4

72
52
3.
36

3.
33

15
7,
39
0

12
3,
68
1

78
.5
8

0.
41

0.
28

E
A
FI
T
-M

21
62

Z
yg
od
on
to
m
ys
br
ev
ic
au

da
Fi
nc
a
So
co
la
o

T
10
4

40
.4

55
53
0.
42

3.
03

17
5,
15
3

14
2,
93
2

81
.6

0.
04

0.
03

N
ot
e: U
nd

er
th
e
co
lu
m
n
T
is
su
e
sa
m
pl
es
,P

m
ak
es

re
fe
re
nc
e
to

ba
t
pa
ta
gi
um

an
d
th
e
nu

m
be
r
in

pa
re
nt
he
se
s
ar
e
th
e
de
rm

at
ol
og
ic
al
pu

nc
he
s
sa
m
pl
ed
;T

co
rr
es
po

nd
s
to

ta
il
of

te
rr
es
tr
ia
lm

am
m
al
s.

Velasquez-Restrepo et al. (2024), PeerJ, DOI 10.7717/peerj.17887 10/36

http://dx.doi.org/10.7717/peerj.17887
https://peerj.com/


value increased compared to the initial concentration of the extracted DNA (Table 1). In
most sequencing runs we used Flongle flow cells with more than fifty pores available for
immediate sequencing, nonetheless, in three Flongles, the pores were clogged, most
likely because the use of cell priming and library loading reagents from the Ligation
Sequencing Kit stored in plastic vials, as opposed to the recommended use of reagents
stored in the glass vials of the Flongle expansion kit. This means that 21
sequencing runs were successful, while experiments EAFIT-M2126, EAFIT-M2153,
and EAFIT-M2154 had insufficient or no sequencing output, and therefore, they were not
considered in subsequent analyses. Our sequencing yield varied between 133.35 and
921.72 Mbp and was directly proportional to the number of available pores for immediate
sequencing but not to the DNA library concentration (Fig. 3, Table 1). After quality
filtering, an average of 82.58% of the reads from all our sequencing runs have a Q score ≥ 7,
which represents between 30,019 and 357,353 reads. Finally, the recovered mtDNA

Figure 3 Sequencing output (Mbp) as a function of available pores and concentration of DNA
extraction of the 21 individuals sequenced in this study. Available pores are shown in black dots
and the concentration of DNA extraction in blue diamonds.

Full-size DOI: 10.7717/peerj.17887/fig-3
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fraction was low, ranging between 0.07% and 0.05%, for Minimap2 and mtBlaster analyses,
respectively.

Mitogenome reconstruction
We implemented a total of 252 assembly runs, resulting in 176 successful assemblies
(complete and incomplete mitochondrial genomes), from which 100 yielded complete
mitochondrial genomes (Table S2). Rebaler (reference-based assembler) recovered a
higher number of assemblies regardless of the data type (WGS, Minimap2, mtBlaster) and
was able to reconstruct 90.47% of the 21 possible mitogenomes, while Flye (de novo
assembler) was only able to assemble 50% (Fig. 4, Table 2). On the other hand, Flye
assembled the majority of mitogenomes of sequencing runs with more than 550 Mbp, but
in sequencing runs with outputs below 550 Mbp Flye was only able to assemble 31.2% of
the genomes, regardless of data type (Table 2). In contrast, Rebaler does not seem to be
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affected by the amount of sequencing yield as it assembled 89.6% of mitogenomes, even in
runs with less than 550 Mbp regardless of data type (Table 2). Nonetheless, although
Rebaler assembles a larger number of mitogenomes, we found that Flye performs better
given the lower number of assembly errors (Fig. 4A, Table 3). On average, for all data types,
Flye has 6.7% more assembly hits, while Rebaler on average has 15.4% more assembly
errors (Table 3, S3). Our error composition comparison shows a higher number of errors
in those assemblies obtained from mtBlaster-filtered data (Fig. 4B, Table S3). Overall,
assemblies reconstructed with WGS and Minimap2-filtered data have a similar error
composition; however, WGS genomes have a better quality than those obtained from a
mtDNA filtering processes (mtBlaster or Minimap2) (Fig. 4A, Table S3). If the
unassembled genomes are not considered, the mtBlaster+Rebaler pipeline generated the
poorest quality assemblies, while those reconstructed using WGS+Flye had the best
quality. Therefore, Flye outperformed Rebaler—in terms of assembly quality—in the
genomes that were able to reconstruct (Figs. 4A, 4C). Noteworthy, we found that polishing
with Nanopolish had a homogeneous effect for all assemblies with no quality
improvement, regardless of data type or assembler used (de novo, or reference-based)
(Fig. 4D, Table S4).

The mitochondrial genome depth (X) exhibited variations depending on the data type
and assembler. In general, for WGS+Flye assemblies, the depth ranged from 3X to 17X
(Table S2), while for genomes obtained through the WGS+Rebaler pipeline, the average
depth ranged from 0.04X to 55.59X (Table S2). It is worth noting that pipelines based on

Table 2 Percentage of mitogenomes assembled by Flye and Rebaler for each data type, according to
sequencing yield range.

Assembler Sequencing yield (Mbp) % Assembled mitogenomes

WGS Minimap2 mtBlaster

Flye ≥550 77.8 77.8 66.7

<550 25.0 33.3 33.3

Rebaler ≥550 88.9 100.0 88.9

<550 91.7 83.3 91.7

Table 3 Assembly quality evaluation based on the assembler and dataset treatment used.

Assembler WGS Minimap2 mtBlaster

Assembly hits

Flye 8.57% 27.75 5.47% 27.23 6.06% 26.05

Rebaler 25.37 25.74 24.47

Assembly errors

Flye 9.25 9.77 10.95

Rebaler 20.47% 11.63 13.23% 11.26 12.60% 12.53

Note:
Assembly hits (coding genes and non-coding genes) and assembly errors (incomplete, null, and stop codon) excluding
non-assembled genes of the mitogenomes assembled by Flye and Rebaler for each data type. The percentage corresponds
to the increment of assembly hits (bold) or assembly errors (underline).
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mitochondrial reads filtering tended to yield higher average depth values than the
WGS-based genome assemblies (Table S2). For example, the assemblies obtained through
Minimap2+Flye showed depth values ranging from 4.16X to 63.17X, and those from
Minimap2+Rebaler had average depths between 2.42X and 140.53X (Table S2). Likewise,
genomes obtained from the mtBlaster+Flye pipeline ranged between 3.09X and 57.66X,
and mtBlaster+Rebaler between 2.92X and 95.71X (Table S2).

Species identification based on phylogenetic analyses
From our assembled mitochondrial genomes, we were able to obtain 15 Cytb (12 species)
and 13 COI (10 species) good-quality sequences susceptible to be included in phylogenetic
analyses (Tables 4 and S1). For individuals of the genus Carollia (EAFIT-M2157 and
EAFIT-M2168) only good-quality Cytb sequences were obtained, and the species
(morphologically identified) Anoura geoffroyi, Glossophaga soricina, Molossus molossus,
Sturnira bogotensis (one individual), and Zygodontomys brevicauda lacked sufficient
quality for both mitochondrial markers (showed stop codons) and were excluded from the
phylogenetic analyses (Table S1). We obtained nine Cytb datasets (alignments) which
include 2,578 sequences (File S2) distributed in nine genera (ingroups). The sequence
lengths range between 180 and 1,143 bp, resulting in 87.94% nucleotide coverage
(Table S1). Similarly, for COI we obtained eight datasets, for eight different genera
(ingroups), which include 2,395 sequences (File S2). COI sequences range in length
between 201 and 657 bp, representing an average nucleotide coverage of 98.48%
(Table S1).

The Cytb and COI topologies are consistent with the literature and show in most cases
monophyletic clades currently recognized as species or subspecies (Gutiérrez, Jansa &
Voss, 2010; Moratelli et al., 2013; Velazco & Patterson, 2013; Almendra et al., 2018;
Giménez, Giannini & Almeida, 2019; Rodríguez-Posada et al., 2021), but clades that exhibit
paraphyletic “species” (see Myotis) are just the result of the current lack of resolution on
their systematics (Larsen et al., 2012). Noteworthy, all of the Cytb and COI phylogenetic
analyses match the morphological identification (Table 4). For our Cytb analyses,
sequences of the species Akodon affinis, Artibeus lituratus, Carollia brevicauda, Histiotus
humboldti, Myotis riparius, Sturnira bogotensis, Marmosa isthmica, and Handleyomys
alfaroi, each formed a strongly supported monophyletic group with other sequences of the
same species (Fig. 5). The species Myotis caucensis, Nephelomys childi, and N. pectoralis
were not part of monophyletic groups with other conspecifics because there are no
available Cytb sequences of these species in the Genbank and consequently they represent
new genetic data for these lineages (Fig. 5). For the COI marker, the species Artibeus
lituratus, Myotis caucensis, M. riparius, Sturnira bogotensis, Handleyomys alfaroi,
Nephelomys childi, and N. pectoralis are part of haplogroups with other conspecific
sequences, whileHistiotus humboldti, Akodon affinis, andMarmosa isthmica represent the
first available sequence for each species (Fig. 6).
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Figure 5 Maximum Likelihood reconstructions of the Cytb mitochondrial marker for all the genera represented in our taxon sampling. (A)
Akodon, (B) Artibeus, (C) Sturnira, (D) Handleyomys, (E) Nephelomys, (F) Histiotus, (G) Carollia, (H) Marmosa, (I) Myotis. Terminals of non--
collapsed clades include GenBank accession numbers. Phylogenies that exhibit paraphyletic species show the corresponding localities of each
sequence. Colored terminals correspond to our sequenced material. Bootstrap support values above 75% are shown above branches.

Full-size DOI: 10.7717/peerj.17887/fig-5
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Species identification pipeline with ONT raw reads
In 20 of the analyzed datasets, it was possible to recover mitochondrial reads, a single
dataset was excluded from subsequent analyses (EAFIT-M2124 corresponding to the
species Rhipidomys latimanus) because mtBlaster was unable to recover mitochondrial
reads (Table S2). Our species identification pipeline did not show any relevant difference

Figure 6 Maximum Likelihood reconstructions of the COI mitochondrial marker for all the
genera represented in our taxon sampling. (A) Artibeus, (B) Handleyomys, (C) Marmosa, (D) Myo-
tis, (E) Akodon, (F) Sturnira, (G) Histiotus, (H) Nephelomys. Terminals of non-collapsed clades include
GenBank accession numbers. Phylogenies that exhibit paraphyletic species show the corresponding
localities of each sequence. Colored terminals correspond to our sequenced material. Bootstrap support
values above 75% are shown above branches. Full-size DOI: 10.7717/peerj.17887/fig-6
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between the three taxonomic levels of analyses with respect to the “top” (most reliable)
identification (Table 4). In all three analyses (Metazoa, order, family), for 10 samples, our
pipeline matched the identification of the morphological+phylogenetic analyses (species
Artibeus lituratus, Glossophaga soricina, Myotis riparius, Sturnira bogotensis, Handleyomys
alfaroi, Nephelomys childi, Marmosa isthmica), four other samples were recovered by our
pipeline with the correct genus but the species was incorrect due to misidentification of the
sequence in the DNA library (species Carollia brevicauda, Myotis caucensis, Akodon
affinis, Nephelomys pectoralis), and for one sample we also recovered the correct genus but
the species was incorrect because of the lack of sequences of such species in the mtDNA
library (Nephelomys pectoralis) (Table 4). Conversely, for five samples our pipeline
recovered an incorrect identification even though the mtDNA library contains sequences
of each species; however, from those four samples, only one recovered the incorrect genus
and species (Handleyomys rhabdops instead of the correct Zygodontomys brevicauda), but
the remaining four were allocated in the correct genus (Anoura, Histiotus, Molossus,
Sturnira) (Table 4).

We also evaluated the effectiveness of the species identification pipeline for the genus
and species by calculating the percentage of reads corresponding to the correct genus and
species for each dataset at all levels of analyses (Metazoa, order, family). For our three
levels of analyses, only three samples did not show any reads associated with the correct
identification of the species; however, one of those datasets did not contain mitochondrial
sequences for the species (Nephelomys pectoralis) whereas the other two datasets were
unable to associate the reads with its correct species (Molossus molossus, Zygodontomys
brevicauda) (Table 4, Fig. 7). For the other remaining 17 samples, all analyses—at all three
levels—included reads associated with the correct species (Table 4). Overall, the analyses
showed a consistent pattern, they were more effective at providing the correct
identification as more taxonomic information was available, that is, a higher number of
correct reads for the order and family databases than for the Metazoa database (Table 4,
Fig. 7). We found that 10 of the order and family datasets provided more than 80% of the
reads with the correct genus identification and seven datasets with at least 65% of their
reads associated with the correct species (Fig. 7). There seems to be an additional pattern,
the more sequences of the correct genus and species in the databases, the greater the
number of reads associated with the correct species (Fig. 7). Generally, mitochondrial
datasets (order and family) with more than 812 sequences provided >80.09% of correct
identifications at the genus level, and datasets larger than 97 sequences produced >66.67%
of correct identifications at the species level (Fig. 7).

We observed variations in the processing time among the three taxonomic levels of
analyses. When conducting a BLAST search without any prior sample identification (i.e.,
Metazoa), the analysis took between 01:26:37 and 01:38:57 h for datasets with the smallest
and highest number of potential mitochondrial reads respectively (92 and 817 reads). In
contrast, the analysis against the order-level dataset required only between 00:00:08 s and
00:01:28 min, while the family-level analysis took between 00:00:05 to 00:00:32 s. These
findings highlight the substantial differences in computational time required depending on
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the database size and the relevance of additional taxonomic information when performing
these identifications.

DISCUSSION
Mitogenome reconstruction
In this study, we evaluated various computational routines for reconstructing
mitochondrial genomes from non-model organisms, exclusively using ONT reads and
found that this sequencing technology still exhibits limitations in comparison to other
technologies. It maintains a higher raw sequencing error rate, approximately 5% (with the
now deprecated R9 chemistry), which is notably higher than the approximately 0.3% error
rate seen in Illumina (Baeza & García-De León, 2022). These errors are mainly attributed
to mismatches between the raw signal and the basecalling process, generating modified
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Figure 7 Accuracy comparison of our species identification pipeline based exclusively on ONT reads, using three different taxon-level
databases (Metazoa, order, family). Percentage of reads that match the correct identification of the genus (left) and species (right) based on
our morphological and phylogenetic systematics identification. The size of the dots indicate the number of available NCBI sequences for each genus
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nucleotides and homopolymer sequences (Magi, Giusti & Tattini, 2017). To address this
issue, progress has been made in basecalling algorithms such as Guppy, improving the
accuracy of basecalling compared to the older Albacore software (Baeza, 2020; Baeza &
García-De León, 2022). Another strategy is based on error correction by implementing
polishing programs specialized to deal with noisy long reads (Filipović et al., 2022).
However, consistent with previous findings (Baeza & García-De León, 2022), we did not
observe any noticeable improvement in the quality of the assemblies after applying a round
of polishing with Nanopolish (Fig. 3).

The error rate limitations of ONT can also be effectively addressed through strategies
such as maintaining a high read depth (Pollard et al., 2018; Ramón-Laca, Gallego &
Nichols, 2023). Studies using PCR-free genome skimming approach with long reads, to
reconstruct complete mitochondrial genomes have reported varying average genome
depths, between 9X and 78X (Malukiewicz et al., 2021; De Vivo et al., 2022; Franco-Sierra
& Díaz-Nieto, 2020). In our study, although most genomes assembled with either Flye or
Rebaler exhibited depth values that fell within the range observed in the previously
mentioned studies, only three routines produced high quality and error-free genomes:
Nephelomys childi EAFIT-M2150 (17.00X), EAFIT-M2151 (36.62X), and Akodon affinis
EAFIT-M2161 (26.09X), with NCBI accession numbers PP556414, PP555285 and
PP556413 respectively (Table S2). We also observed that mitochondrial filtering increased
depth values regardless of the assembler or filtering pipeline used (Table S2). This could be
a signal that when the primary objective is to obtain good quality mitogenomes, filtering
out the mitochondrial reads can increase the depth and thus the quality of the recovered
genome (Ramón-Laca, Gallego & Nichols, 2023). Although depth is a key factor for
reconstructing good quality genomes, our species identification pipeline does not heavily
depend on this variable. Many datasets with shallow depths provided accurate
identifications. For instance, the highest depth for the assembly of dataset EAFIT-M2158
was 4.72X (mtBlaster+Rebaler); however, this dataset produced correct identifications at
all three levels of analyses (see below). However, although mtDNA filtering can increase
genome depth, our analyses show that filtering with Minimap2 or mtBlaster does not
necessarily increase the number of successful assemblies, in fact, we observe an increase in
the number of errors such as incomplete genes, null genes, and premature stop codons
(Fig. 4). This phenomenon may occur because the implemented algorithms fail to obtain
all the mitochondrial reads or might recover erroneous mitochondrial sequences, such as
NUMTs.

As for the assemblers, Flye is more accurate and has better quality overall; however, it
requires higher sequencing throughput (≥550 Mpb) to assemble genomes, compared to
Rebaler which, although it is able to assemble most mitogenomes, even from datasets with
limited sequencing yield (<550 Mbp), it exhibits higher error rate (Table 2). Indeed, recent
studies that have conducted comparisons of the resulting mitogenomes using these two
assemblers have found similar results (Baeza, 2020; Baeza & García-De León, 2022). This
phenomenon may have two different explanations. On the one hand, Rebaler uses
Minimap2 for mapping potential mitochondrial reads to reference genomes, which has

Velasquez-Restrepo et al. (2024), PeerJ, DOI 10.7717/peerj.17887 21/36

http://www.ncbi.nlm.nih.gov/nuccore/PP556414
http://www.ncbi.nlm.nih.gov/nuccore/PP555285
http://www.ncbi.nlm.nih.gov/nuccore/PP556413
http://dx.doi.org/10.7717/peerj.17887/supp-4
http://dx.doi.org/10.7717/peerj.17887/supp-4
http://dx.doi.org/10.7717/peerj.17887
https://peerj.com/


been shown to be difficult and leading to a decrease in the quality of resulting assemblies
(Baeza, 2020; Baeza & García-De León, 2022). On the other hand, Flye implements a
graph-based approach for single-molecule sequencing data that enhances genome
assembly quality of noisy long-reads, like the ones generated by ONT (Kolmogorov et al.,
2019; Zhang et al., 2022). Additionally, the option for metabarcoding assemblies included
in Flye seems to work well in genomes that have low or uneven coverage (Kolmogorov
et al., 2019), which is the case of mitochondrial genomes from whole genome shotgun
sequencing.

Species identification pipeline with ONT raw reads
The implemented methodology exhibits promising results in the field of species
identifications without the need of industrious laboratory work (no PCR), or expert
knowledge on taxonomy and phylogenetic systematics; however, it will still need to
optimize two main aspects before it can be extensively implemented for species
identification. First, our methodology employs a Flongle flow cell (non-reusable; 100 USD)
for sequencing, which yields up to 900 Mb of data and enables the identification of a single
individual. However, the mtDNA fraction for species identification constitutes only 0.07%
of the total sequencing output, resulting in most of the economic expenditure being
allocated to sequencing data not used for identification purposes. Second, our
methodological approach is not yet real-time, as it needs a minimum of 25 h to achieve
species identification (24 h of sequencing plus <1 h for the species identification pipeline).
Both problems can be addressed by using the standard and reusable Flow Cell (up to
50 Gb). This Flow Cell enables sequencing of the necessary output for individual species
identification. It can be washed and reused for subsequent sequencing experiments,
reducing sequencing costs per individual. In cases where time constraints are significant, it
may be preferable to choose a Flow Cell that can produce the minimum sequencing output
required for identification in a shorter time frame.

Our pipeline was able to correctly identify most (95%) of the samples to the genus level
and half of the samples (50%) to the species level, but this last value can be up to 75% if we
correct the identification of the sequences from BOLD or NCBI (Table 4). We found that
species identification effectiveness was partially dependent on the sequencing output
(Fig. 3). Overall, datasets that exceeded 550 Mbp, had more effective identifications
compared to those that were below this sequencing yield. In some cases, not only the
amount of data but the quality of the reads was related to the inability of our pipeline to
accurately assess the taxon identity. In fact, in datasets containing low-quality reads, we
encountered challenges not only in obtaining effective identifications, but also in extracting
mitochondrial markers with sufficient quality for phylogenetic reconstructions as was the
case for datasets EAFIT-M2160, EAFIT-M2164, EAFIT-M2152, and EAFIT-M2162
(Table 4).

Accuracy of identifications at the species and genus-level seems to be dependent on the
availability of sequences in DNA repositories (GenBank, BOLD). Our results show that as
more mitochondrial DNA data is available, there is a noticeable increase in the frequency
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of successful matches (blasted reads) accurately identifying the correct genus and species
(Fig. 7). For instance, at the three levels of analysis (Metazoa, order, family) our species
identification pipeline identified our N. pectoralis individual (dataset EAFIT-M2143) as
N. albigularis, which can be explained by two facts. First, as of March 2023, there were no
N. pectoralis sequences available in GenBank or BOLD. Second, N. pectoralis is an endemic
species from Colombia, recently split from N. albigularis which is currently recognized as a
species restricted to Peru and Ecuador (Weksler, Percequillo & Voss, 2006), thus, it makes
sense that the most reliable identification is from a closely related lineage.

Meanwhile, automated species identification methods, including our approach, depend
heavily on the identification—scientific name—assigned to sequences from repositories
like BOLD and GenBank. Consequently, misidentifications or outdated names in the
sequences from DNA databases will obviously produce incorrect identifications. Three
cases in our analyses illustrate this scenario. Our two individuals morphologically
identified as Carollia brevicauda, were defined by our species identification pipeline as
C. perspicillata. Historically, these two species have been frequently misidentified due to
their morphological similarities (Ruelas & Pacheco, 2022). However, we were able to obtain
high-quality mitochondrial markers for both datasets and their analyses with other
congeneric sequences confirmed our initial morphological identification. Moreover, while
the “top” identification retrieved through the species identification pipeline was
C. perspicillata, most of the recovered hits corresponded to C. brevicauda (File S1).
Therefore, although we were unable to examine the vouchers, we are inclined to believe
that the specimen from GenBank corresponding to the most reliable hit is an example of
misidentification.

A similar example occurs with the individual EAFIT-M2159, morphologically identified
as Myotis caucensis, which was identified by our species identification pipeline as
M. nigricans. Our morphological identification was based on the original description of the
species (Moratelli et al., 2013). We found that although dorsal and ventral coloration
patterns follow more closely the description of M. handleyi, dental characters are more
closely related to M. caucensis (Moratelli et al., 2013). In particular, the upper second
premolar which is evidently visible in lateral view on the latter species, and is also present
in our material (Moratelli et al., 2013). Additionally, M. handleyi is a recently described
species believed to be sister toM. caucensis (Moratelli et al., 2017), consequently, molecular
data uploaded to databases before these taxonomic updates may not accurately reflect the
current taxonomy. Sequences previously labeled as M. nigricans could pertain to either
M. handleyi or M. caucensis. In fact, our phylogenetic analysis of Cytb supports this
hypothesis, as our sequence is sister to M. handleyi (Fig. 5). In conclusion, the absence of
updated taxonomy associated with sequences poses challenges for the use of genetic data
within automated species identification pipelines, such as the one presented here.

The third example corresponds to an individual of the species Akodon affinis (EAFIT-
M2161). Using the Metazoa and order databases, our sample could not be identified to the
species level because the most reliable hit in both cases corresponds to the name Akodon
sp. (NCBI:txid2964413). Two lines of evidence lead us to believe that this last specimen
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corresponds to the species A. affinis. First, the specimen was collected in Cauca
(Colombia), a locality reported to be within the distribution range of A. affinis (Patton,
Pardiñas & D’Elía, 2015). Second, our phylogenetic analysis supported our morphological
identification, as our sequence formed a highly supported monophyletic group with
another A. affinis sequence (Fig. 5). As in the two previous examples, misidentification
decreases the effectiveness of our species identification pipeline.

The mtDNA “in silico enrichment” strategy which uses DC-BLAST to isolate
mitochondrial reads fromWGS sequencing data, proposed by Franco-Sierra & Díaz-Nieto
(2020) and optimized here, was highly efficient in reducing computational time and
increasing the effectiveness (accuracy) of species-level identifications. Consequently, the
availability of multiple mitochondrial markers for diverse metazoan organisms allows to
simplify species identification process by only using the mitochondrial fraction of the
sequenced genome (Hebert, Ratnasingham & de Waard, 2003; Stoekle, 2003; Page &
Hughes, 2010; Armani et al., 2017; Elyasigorji et al., 2023). Noteworthy, our results indicate
that the computational pipeline for species identification can be more efficient, but only
slightly more accurate, depending on the size of the database implemented for DC-BLAST
(Metazoa, order, family). This is because a smaller reference database reduces the amount
of computational load, but the gain in accuracy was only reduced to one (see Akodon
affinis) out of 20 analyses.

Furthermore, automated species identification methods such as the one used in this
study should always undergo a critical review process to analyze their results. Although an
e-value very close to zero indicates a high level of confidence in a particular identification
(Kerfeld & Scott, 2011; Shah et al., 2019), it is important to consider other output
parameters. For example, it is important to account for the read length, as short reads can
produce very low e-values because the shorter the sequence the more likely it is to match
the nucleotides of a reference sequence (Kerfeld & Scott, 2011; Shah et al., 2019). Although
short reads (ca. 100 bp) can be useful for identification purposes in a phylogenetic scenario
(Díaz-Nieto, Jansa & Voss, 2016; Teta & Díaz-Nieto, 2019), their usefulness seems to be
reduced with alignment search algorithms. It is therefore important to examine the
proposed identification considering basic natural history information such as distribution
and habitat, to determine the validity and meaningfulness of the recovered identification,
as explained with the Nephelomys pectoralis case.

It is clear that our species identification pipeline is not infallible, and it will likely be
benefited from the new ONT chemistry (Ligation Sequencing Kits SQK-LSK114 and
Flongle Flowcells R10) as it significantly increases the quality of the sequenced reads
from ~90% to ~99% (Sanderson et al., 2023; Ni et al., 2023). However, to further improve
the effectiveness of our pipeline it will be important to increase the recovered
mitochondrial fraction, which although concordant with other studies (Franco-Sierra &
Díaz-Nieto, 2020; De Vivo et al., 2022) it is still very small (between 0.01% and 0.06% of
total bases). Multiple methodologies have been developed to increase the mtDNA fraction
in a sample, such as the use of centrifugation protocols (Stockburger et al., 2016; Gaudioso
et al., 2019; Ramón-Laca, Gallego & Nichols, 2023), PCR-based methodologies
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(Zascavage et al., 2019) and Cas9 approaches (Ramón-Laca, Gallego & Nichols, 2023).
Nonetheless, additional laboratory steps include specialized equipment (ultracentrifuge) or
enzymes whose life depends on constant refrigeration, hinder the implementation of this
sequencing technology under field conditions, which we consider is the ultimate goal with
this technology. Also, incorporating more reagents and equipment would increase
operating costs, reducing its accessibility for institutions with limited budgets. Although,
the overall cost of mitochondrial genome sequencing decreases with the implementation of
mitochondrial DNA enrichment or sample multiplexing (Zascavage et al., 2019; Ramón-
Laca, Gallego & Nichols, 2023), such approaches require expensive materials and reagents
that will intrinsically inflate the protocol costs. Finally, increasing the mitochondrial
fraction may provide more accurate identifications, but also augment sample processing
time in up to 48 h depending on the protocol (Zascavage et al., 2019; Ramón-Laca, Gallego
& Nichols, 2023), reducing the “real-time” advantage of this approach.

Species identification based on phylogenetic analyses
Our results make an important contribution to the knowledge of small mammal diversity,
but also help to fill the gaps that still exist in genomic databases. This project is generating
the first complete mitochondrial genomes for the species Akodon affinis and Nephelomys
childi. Additionally, the first COI sequences for five species (Akodon affinis, Sturnira
bogotensis, Nephelomys pectoralis, Histiotus humboldti and Myotis caucensis); first Cytb
sequences for the species Nephelomys childi, N. pectoralis, and Myotis caucensis; the first
two (2) sequences for Nephelomys childi representing populations from Cordillera Central
(Colombia), and the second Cytb sequence for the species Akodon affinis.

Our Cytb sequences for Marmosa isthmica form a highly supported group sister to the
known M. isthmica haplogroup with an uncorrected p-distance of 0.068 between clades
(Fig. 5). Interspecific distances between congeneric species are similar and even smaller, as
is the case of M. demerarae and M. merida or M. parda and M. rutteri with p-distance
values of 0.07 and 0.05, respectively (Voss et al., 2020). Marmosa isthmica is distributed
from western Panama along the Pacific coast of Colombia to Santa Rosa (Ecuador),
including the lowlands of northwestern Colombia, and the intern-Andean valleys of Cauca
and Magdalena rivers. Despite extensive revisions (Rossi, Voss & Lunde, 2010; Gutiérrez,
Jansa & Voss, 2010; Gutiérrez et al., 2014; Voss et al., 2020), most studies have not included
genetic information from Colombian localities (Gutiérrez, Jansa & Voss, 2010; Gutiérrez
et al., 2014; Giarla & Voss, 2020). Noteworthy, our two M. isthmica individuals were
collected in dry forest areas of the Cauca River, below 700 masl, whereas most collection
sites reported for this species correspond to moist lowland and premontane forests below
1,700 m elevation (Rossi, Voss & Lunde, 2010). Consequently, it is important to evaluate
whether the observed genetic distance between these two clades suggests the presence of
cryptic diversity or is merely the result of an isolation-by-distance effect that will be diluted
when an expanded geographical sampling becomes available.

Nephelomys childi is endemic to cloud forest habitats in the three Andean Cordilleras of
Colombia (Patton, Pardiñas & D’Elía, 2015) and inter-Andean valleys have been proposed
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as barriers that prevent migration between populations resulting in the observed pattern of
allopatric distributions in the three Cordilleras (Cárdenas González, 2017). We found that
our COI sequences of N. childi form a highly supported clade sister to a haplogroup from
the Cordillera Oriental (Fig. 7). We also observed a considerable variation (5.61% in
uncorrected p-distance) between these two haplogroups (Fig. 7). Considering these facts,
we may be facing two different scenarios. First, there is hidden diversity within theN. childi
group, and the allopatric distributions reported for the species may have triggered
allopatric speciation processes. In fact, this is further substantiated by recent systematic
studies on this genus (Weksler, Percequillo & Voss, 2006), which have emphasized the need
for a taxonomic revision to elucidate the internal phylogenetic relationships and possible
presence of cryptic species, establish diagnosis, and clarify the geographical distribution of
the species (Cárdenas González, 2017; Ruelas et al., 2021). In a second scenario, our
sequence divergence is just the result of the geographic distance found between
populations (Wright, 1943; Meirmans, 2012). The species N. childi is underrepresented in
genomic databases. To date, the genus has 169 mitochondrial sequences available on
GenBank, of which only five belong to N. childi (Cordillera Oriental) and are restricted to
the marker COI. Incrementing the molecular sampling along the entire distribution of the
species would close the gap in the genetic distance between populations of the species.

CONCLUSIONS
In this study, we explored the use of the ONTMinION device with the Flongle flow cells as
a tool for the reconstruction of mitochondrial genomes of small mammals, and to obtain
species identifications of non-model mammals from multiple lineages (opossums, rodents,
bats) using solely ONT reads. Specifically, we learned that for sequencing runs above
550 Mbp, the mitochondrial genome reconstruction should be performed using pipelines
based on de novo assemblies, which have a better quality regardless of data type. However,
if sequencing runs have less than 550 Mb a better result can be obtained by using a
referenced-based assembler. Furthermore, although mitochondrial DNA filtering from
WGS data seems to increase the depth of recovered mitogenomes, it does not appear to
increase the number of successful assemblies. Instead, mitochondrial DNA filtering
produces more assembly errors compared to those obtained from WGS data. Also, our
findings suggest that the polishing step is not required as it does not improve the quality of
assemblies, instead it is time- and computational-resource consuming.

Although our pipeline has proven not to be flawless, we observed that it produces
identifications with more than 95% accuracy in non-model species of Neotropical small
mammals. This can become a powerful approach for the description and characterization
of the planet’s diversity because it can be implemented by any researcher (even without
extensive taxonomic, phylogenetic, or morphological training), in real-time and even
under field conditions. Species identification results are highly dependent on the
availability of data in public repositories and the curatorial (including taxonomy updates)
of that information. We found that the more sequences of a taxonomic group are available
in a database, the more effective is the identification of an individual with unknown
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identity. This demonstrates the importance of contributing to the growing field of species
identification and description and closing the gap of knowledge on non-model organism
diversity. Accordingly, the results obtained in this study make an important contribution
to increasing the knowledge of the genetic diversity of small mammals by making available
three new mitochondrial genomes and eight new DNA markers for science.

The findings of this work add to the growing body of data demonstrating the usefulness
of ONT as a PCR-free option for sequencing full organellar genomes and obtaining species
identifications in a short amount of time and on a wider taxonomic scale. Furthermore, the
proposed methodology in this work stands as a relevant tool to help increase the available
data for non-model organisms, and possibly it can be applied for onsite non-model species
identification.
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