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Abstract

In 1987, United States Environmental Protection Agency recommended installing a mitigation 

system when indoor concentration of radon, a well-known carcinogenic radioactive gas, is at or 

above 148 Bq/m3. In response, tens of millions of short-term radon measurements have been 

conducted in residential buildings over the past three decades either for disclosure or to initially 

evaluate the need for mitigation. These measurements, however, are currently underutilized to 

assess population radon exposure in epidemiological studies. Based on two relatively small 

radon surveys, Lawrence Berkeley National Laboratory developed a state-of-the-art national radon 

model. However, this model only provides coarse and invariant radon estimations, which limits the 

ability of epidemiological studies to accurately investigate the health effects of radon particularly 

the effects of acute exposure. This study involved obtaining over 2.8 million historical short-term 
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radon measurements from independent laboratories. Using these measurements, an innovative 

spatial random forest (SRF) model was developed based on geological, architectural, socio-

economical, and meteorological predictors. The model was used to estimate monthly community-

level radon concentrations for ZIP Code Tabulation Areas (ZCTAs) in the Northeastern and 

Midwestern regions of the United States from 2001 to 2020. Via cross-validation, we found 

that our ZCTA-level predictions were highly correlated with observations. The prediction errors 

declined quickly as the number of radon measurements in a ZCTA increased. When ≥15 

measurements existed, the mean absolute error was 24.6 Bq/m3, or 26.5% of the observed 

concentrations (R2=0.70). Our study demonstrates the potential of the large amount of historical 

short-term radon measurements that have been obtained to accurately estimate longitudinal ZCTA-

level radon exposures at unprecedented levels of resolutions and accuracy.
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Keywords

Radon; Exposure; Geographical; Map; Machine Learning

Introduction

Radon is the second leading cause of lung cancer after smoking in the United States, and 

it contributes to over 220,000 annual lung cancer mortalities worldwide 1. Radon gas is 

naturally generated in Earth’s crust and can move upwards into living spaces, accumulating 

to dangerous concentrations when ventilation is insufficient 2. In 1987, the United States 

Environmental Protection Agency (EPA) recommended installing a radon mitigation system 

when the concentration in living space is at or above 148 Bq/m3 (4 pCi/L) 3. As a 

response, tens of millions of radon measurements have been collected in the U.S. either 

for disclosure or to initially evaluate the need for mitigation 4,5. This extensive set of radon 

measurements has shown significant heterogeneity across regions and time 6–9, highlighting 

the importance of a detailed, spatially and temporally resolved model to estimate population 

radon exposure.
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The Lawrence Berkeley National Laboratory developed the state-of-the-art national radon 

model for the U.S. (referred to as LBNL model) in the 1990s 10,11, using approximately 

55,000 short-term measurements from the U.S. EPA/State Residential Radon Survey (SRRS) 

and 5,700 long-term measurements from the National Residential Radon Survey (NRRS) 

as data sources 12,13. The LBNL model employed a Bayesian mixed-effects method to 

predict county-level, temporally invariant average radon concentrations based on geological 

provinces and building characteristics. Radon concentrations predicted by the LBNL model 

have been utilized in previous epidemiological studies to investigate the health effects of 

radon, including lung cancer 14, breast cancer 15, and chronic obstructive pulmonary disease 
16.

However, the LBNL model has several limitations. First, the county-level prediction is too 

coarse to reflect the small-scale variations driven by geological and architectural factors 
17–19. Second, the temporally invariant radon predictions are unable to represent seasonal 

and long-term patterns 20,21. Third, the radon measurements used by the LBNL model 

were primarily conducted in unmitigated buildings over thirty years ago, and therefore 

do not account for recent trends due to the expanding installation of mitigation systems 
22 and improved energy efficiency in new buildings 23. These limitations likely introduce 

exposure misclassifications to the subsequent epidemiological studies, complicating the 

interpretations of the any observed exposure-response relationships.

Our study addresses the limitations of the LBNL model by estimating monthly radon 

concentrations at the ZIP Code Tabulation Area (ZCTA) level in Northeast and Midwest 

U.S. Compared to county-level prediction, ZCTA is a much smaller spatial unit that 

better captures the small-scale variations driven by geological and architectural factors. All 

obtained radon measurements were conducted with short-term detectors that lasted 2 to 7 

days because of the time sensitive nature of property transactions and initial evaluation 24. 

The short durations, though less useful in estimating long-term exposures, are particularly 

suitable to model the short-term fluctuations in radon concentrations. Radon disclosure 

during property transactions is required in 17 out of 21 states and highly recommended in 

the remaining 4 states in the study region 25. This de facto nonvoluntary and comprehensive 

participation guaranteed a large and representative sample of residential buildings, avoiding 

potential volunteer bias 26. Based on part of the data, Li et al (2021) developed an ensemble 

learning model to estimate monthly ZCTA-level radon concentrations for ZCTAs in Greater 

Boston, a densely populated fraction of this study region 9. Multiple studies used other 

classic statistical learning methods to model the spatial distribution of radon concentrations 

in different parts of the world 6,27–33. In this study, we developed an innovative geographical 

machine learning method to model the complex relationships between ZCTA-level radon 

concentrations and various predictors. This approach was particularly useful for studying 

large and heterogeneous areas, where the relationships between radon and predictors may 

vary significantly across space. Our goal is to enhance radon prediction models, thus 

facilitating prospective heath studies regarding the health effects of radon.
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Methods and Materials

Radon Measurements

Our study region consists of nine Northeastern and twelve Midwestern states of the U.S. The 

study region encompasses an area of 2.6 million square kilometers (32.1% of the contiguous 

U.S.) and a population of 127 million (38.2% of the contiguous U.S.). According to the 

Köppen-Geiger climate classification system 34, most of the study region is located in the 

humid continental climate zone, which is characterized by cold winters and semi-humid 

summers. Our study region covers areas of the highest geological radon potential in the U.S, 

such as southwestern Iowa and southwestern Pennsylvania. The study period is from 2001 to 

2020.

We obtained 2,867,120 short-term radon measurements (Figure 1A and 1B) from Spruce 

Environmental Technologies, Inc (Haverhill, MA). These measurements were conducted 

using three types of passive radon detectors approved both by the National Radon Safety 

Board (NRSB) and NRPP (National Radon Proficiency Program): the Air Chek foil bag 

charcoal kit (NRSB #10333, NRPP # AC-8200), AccuStar charcoal canister (AccuStar 

PicoCan-400; NRSB #10320; NRPP # AC-1159), and liquid scintillation vial (AccuStar 

CLS-2; NRSB# 12193; NRPP # LS-8088). All three types of detectors use activated 

charcoal, contained in three different kinds of containers, to passively absorb the radon 

in the surrounding environment during a 2-to-7-day period. The integral radon concentration 

during the period can be subsequently estimated either with gamma spectrometry (Air 

Chek and PicoCan-400) or scintillation counter (CLS-2) shortly after the completion of 

measurement in the three laboratories operated by Spruce Environmental Technologies, Inc. 

The relative errors of all three short-term passive detectors were below 0.2 in NRSB- and 

NRPP-accredited chambers 35,36. Li et al. (2023) reported a strong correlation (nearly 0.8) 

between a short-term measurement and a collocated follow-up 90-day radon measurement in 

a U.S-based study, suggesting that short-term measurements can serve as a good proxy for 

the average radon concentration in the following months 37.

Each radon measurement record in our dataset included the observed concentration in 

Bq/m3, an encrypted street address, the ZCTA of the residence, the starting and ending date 

and time of the measurement, testing floor, and the type of radon detector used. To protect 

the privacy of consumers, actual street addresses were encrypted by Spruce Environmental 

Technologies, Inc using a checksum function, which converted them into a semi-random 

string while keeping the measurements in the same building identifiable. We did not 

investigate floor-dependent gradients across aboveground floors because all measurements 

conducted on non-basement floors were labeled as aboveground. We were also unable 

to differentiate between aboveground concentrations in single-family and multi-family 

buildings due to a lack of building type information from the data provider. The study is 

part of a larger Harvard T.H. Chan School of Public Health IRB-approved project to reassess 

national residential radon exposure based on over ten million short-term measurements and 

one million long-term measurements (IRB21–0056).
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Data Processing

Three types of ZCTA-level radon concentrations: actual, observed, and predicted 

concentrations, were analyzed in this study. Actual ZCTA-level radon concentration (Ca) 

equals the geometric mean of all unit-specific radon concentrations within a ZCTA in a 

month. Owing to the logistic difficulties to measure all units within a ZCTA in a month, 

Ca is de facto unobservable. Observed ZCTA-level radon concentration (Co), which is the 

geometric mean of the N sampled individual unit-specific radon measurements in the ZCTA 

and month, is used to approximate Ca. Predicted ZCTA-level radon concentration (Cp) is the 

predicted concentration for a ZCTA and month of our model. The objective of our model 

is to minimize the differences between Cp and Ca. But due to the unobservability of Ca, we 

had to evaluate Cp against Co while accounting for the similarities between Co and Ca. The 

conceptual relationships between Ca, Co, and Cp are detailed in Supplementary Figure S1.

We collaborated closely with Spruce Environmental Technologies, Inc. to design the 

workflow for filtering and processing the original dataset of 2,867,120 rows of 

measurements (as shown in Supplementary Figure S2). To ensure the validity of the 

measurements, we excluded 46,034 readings that did not adhere to the prescribed 

measurement duration instructions. These instructions specified a duration of 3–7 days for 

AirChek, 2–4 days for both AccuStar PicoCan and AccuStar CLS, and 2–7 days for Alpha 

Energy. We then averaged concurrent measurements conducted in the same building on 

the same floor during the same period, a practice recommended in regions such as New 

Jersey. Measurements conducted before 2000 (n=***) were excluded from the analysis due 

to a lack of matching radon predictors. We removed *** radon measurements that were 

conducted within three months after the previous measurements in the same buildings. These 

follow-up measurements were either conducted to confirm the necessity of mitigation as 

recommended by U.S EPA or to evaluate the effectiveness of the mitigation. As a result, 

these follow-up measurements were no longer conducted in a random and representative 

sample of buildings in a ZCTA and should be excluded to avoid bias. **** measurements 

over 3,700 Bq/m3 (99.95th percentile) were excluded due to rarity of the measurements and 

the overshadowing impacts on the following model training. Measurements under the lower 

detection limit (LDL) of detectors (n=***) were imputed with random numbers uniformly 

distributed between 0.01 Bq/m3 and the detector-specific LDLs (AirChek: 3.7 Bq/m3; 

AccuStar PicoCan and CLS: 14.8 Bq/m3; Alpha Energy: 19 Bq/m3). We subsequently took 

the geometric mean of all measurements conducted within the same ZCTA during the same 

month, if more than two measurements were conducted. At the end of data processing, we 

obtained *** observed monthly ZCTA-level radon concentrations, which were subsequently 

log transformed and used in the model. It is important to note that we did not have access 

to building-specific mitigation records. As a result, we included all radon measurements, 

regardless of mitigation status, as long as they were taken from a representative sample 

of buildings in a ZCTA. This included radon concentrations from mitigated buildings, if 

they were measured during property transactions. The impact of an increasing proportion of 

mitigated residences was reflected in the ZCTA-level observations, although the presence of 

a specific mitigation system in a building could not be identified.
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Radon Predictors

We compiled a database of 81 predictors to estimate monthly ZCTA-level radon 

concentrations. These radon predictors were categorized into five classes: detector-related, 

geological, architectural, socioeconomical, and meteorological factors. Most of these 

covariates have been used in our previous study to predict the monthly ZCTA-level basement 

radon concentrations in Greater Boston 9. A few predictors, such as the spatially lagged 

radon concentrations, were excluded due to their over-smoothing effects in rural areas where 

radon measurements were sparse. The sources and resolutions of the 81 predictors are 

summarized in Supplementary Table S1.

Detector-related factors control for the difference among measurement due solely to 

the detector, independent of the other covariates. For each ZCTA-level observation, we 

calculated the proportions of measurements conducted in the basement, in aboveground 

spaces, and with three types of detectors. Incorporating the proportions of measuring floor 

enabled the model to detect floor-dependent gradients in concentrations, and subsequently 

predict radon concentrations in basement and aboveground floors respectively. Similarly, 

the proportions of three types of detectors allowed us to model the patterns in radon 

concentrations caused jointly by the systematic difference among detectors and regional 

market shares, therefore removing these artificial trends in the predicted ZCTA-level radon 

concentrations.

Geological factors govern the generation, emanation, and underground movement of radon, 

and therefore, determine the radon concentration in the soil gas 39. These factors include: 

the ground surface concentration of Uranium-238, the parent element of radon, to account 

for the generation of radon 40; radon potential, which accounts for the abundance of radon 

in soil gas 41; the age and granularity of surficial materials, which influence the generation 

and emanation of radon in soil 42; distance to the nearest geological fault, which account 

for the vertical movement of radon via fracture 7, magnetic and gravity anomality, which 

account for the underground structure 43; and soil parameters, including available water 

capacity, percent of organic matter, saturated hydraulic conductivity, vertical permeability, 

bulk density, field capacity, porosity, erodibility, depth and the percent of soil components of 

different granularity (gravel, sand and clay) 42.

Architectural factors influence the infiltration of radon from soil to the indoor environment 
44. We also incorporated covariates related to other domestic radon sources such as 

construction materials, drinking water and natural gas as cooking or heating fuel. Four 

included factors are: building size, as a proxy of foundation depth, which governs the 

pressure difference between soil and domestic environment; building density, as a proxy of 

whether the dwelling has access to municipal water supply, which has lower radon level or 

relies on private well that generally has a higher radon concentration 45; average building 

age, which accounts for the prevailing building structure, the construction materials applied 

and the condition of basement 46, and type of fuel, which accounts for the potential impact 

of heating or cooking with natural gas which has an elevated concentration of radon 47.

Socioeconomical factors likely influence energy efficiency and the prevalence of radon 

mitigation 19. The covariates in our model are median property value, mean household 
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annual income, percent of residents living below poverty line, and percent of properties 

occupied by owner.

Meteorological factors influence the exhalation of radon gas from soil to the atmosphere, 

underground radon movement, and atmospheric radon concentrations. Included factors are: 

snow depth and accumulated precipitation, which depress radon exhalation 48; barometric 

pressure, which is negatively related to radon exhalation 48; soil temperature, which impacts 

radon concentration in soil gas via a temperature-sensitive gaseous/aqueous partitioning 

process 49; soil moisture content, which can slow down the subterranean flow of soil gas 

and impact the emanation rate of radon 42, and gross beta radiation measurements at nearby 

RadNet monitors operated by U.S. EPA. Gross beta radiation is the sum of beta radiation 

from beta-emitting radionuclides that are bound to the ambient particulates 50. Most of beta 

radiation is emitted by Pb-210, a decay product of radon gas 51. Gross beta radiation can 

therefore be used as a proxy for atmospheric radon concentration, which has not been widely 

measured 52.

We included the calendar year to account for long-term trends and month of the year to 

account for seasonality that has not been fully captured by meteorological factors.

Data Analysis

We utilized a modified version of the random forest model called Spatial Random Forest 

(SRF) to predict the monthly average radon concentrations for each ZCTA in our study 

region. The original random forest method combines predictions from multiple decision tree 

models, each using a random subset of covariates and training dataset 53 This ensemble 

approach helps prevent the overfitting of individual decision trees, leading to a better overall 

accuracy. SRF builds upon the original model by incorporating two key characteristics of 

geographical phenomena: heterogeneity and dependence 54,55. Geographical heterogeneity, 

also known as nonstationarity, occurs when the mechanisms affecting the phenomenon are 

not homogeneous across space and time 56. This can lead to variation in the relationships 

between predictors and the outcome variable, as well as in the distribution of the outcome 

variable itself56. In the context of radon estimation, spatiotemporal heterogeneity leads to 

the varying performance of a universal prediction model in different regions during different 

periods. SRF addresses this issue by allowing the model to capture these nonstationarities 

and adapt to the local relationships between predictors and the outcome variable via 

place-based modelling. Geographic dependence was expressed by Tobler as “nearby things 

are more similar than distant things” 57. The positive spatial correlation between radon 

measurements observed in neighboring communities is unable to be effectively modeled in 

the original random forest model that is more suitable for independent measurements 55. 

SRF addresses this issue by weighing radon measurements based on proximity. SRF has 

been successfully used to estimate population density in Sub-Saharan Africa 54.

We fit local random forest sub-models to account for geographical heterogeneity using the 

place-based method. This approach was first introduced in geographical weighted regression 

and offers a flexible method to model the spatially varying relationship 58. For each ZCTA, 

we fitted a local random forest sub-model based on a subset of training dataset that consists 

of all Co within r km. Local random forest sub-models were built using a subset of the 
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81 radon predictors, which were selected based on their importance. The importance of 

each predictor was determined by measuring the relative increase in mean absolute error 

when an alternative random forest model was fitted using the predictor randomly permuted. 

Predictors that produced a significant increase in error were deemed more important than 

those that did not. Predictors whose permutation resulted in decreases in mean square error 

smaller than 0.01 log-transformed Bq/m3 in each local random forest model were excluded. 

Consequently, the number and rank of important predictors varied depending on the local 

relationship between radon and the predictors. The permutation and selection process were 

carried out using the ranger package 59. During the development of each tree, half of the 

selected important radon predictors were randomly chosen for each split. All other tuning 

parameters, including the number of trees (100), minimum size of node (1), and node 

splitting rule (minimize the residual), were kept constant across all local random forest 

models. Driven by the different training datasets, local random forest sub-models varied if 

local interactions among radon predictors changed.

The geographical dependence was modeled in each local random forest sub-model by 

weighting Co according to their geographical distances to the point of prediction 60. The 

weight of each Co determined its likelihood of being selected in fitting individual decision 

trees; therefore, modifying the random sampling method in original random forest method. 

Nearby Co, relative to distant Co, had greater weights and were more frequently used to 

estimate Cp for the ZCTA upon which local sub-model is centered. The weight of one 

Co jth  in calculating Cp ith  was calculated with the following formula:

wj i, j; b = Nj
σj

× 1
2πb e− 1

2
dist i, j

b
2

where b is the bandwidth parameter of the Gaussian kernel function that governs the decay 

in weights as the geographical distance between two points increases. The bandwidth 

parameter determines the rate at which the weight decreases. A larger b means a sharper 

decrease in weight across space, and greater relative leverages of nearby observations. Nj

is the number of radon measurements based on which a Co is calculated. σj is the standard 

deviation of the j-th ZCTA-level observation. We found that the performance of local 

random forest models relied on two parameters: r and b. We set r and b to 150 km and 75 

km, respectively, after evaluating the performance of models with different combinations of 

parameters.

To evaluate the performance of the model, we employed the leave-one-out cross validation 

(LOOCV) method after converting the predicted log-transformed concentrations back to 

their original form. Each Co was iteratively used as a testing set and predicted by a training 

set consisting of the remaining nearby observations. The local splitting of training and 

testing dataset guaranteed that each Co was not used to predict itself; therefore, avoiding data 

leakage issues. We evaluated the performance by calculating three metrics: Mean Absolute 

Error (MAE), Mean Error (ME), and Mean Relative Error (MRE). The difference between 

Cp and Co was separated into two sections: the difference between Cp and Ca and the 
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difference between Ca and Co. The difference between Ca and Co was a joint function of the 

sample size of Co and the within-ZCTA variation in unit-specific radon concentrations. Co

based on a larger sample was more likely to represent Ca than a similar Co based on a smaller 

sample. Co can be used as a reliable estimation of Ca when Co was based on a large sample. 

We, therefore, restricted the evaluation of Cp against Co whose sample size was over a cutoff 

value (n). The n was determined by stratifying the pairwise difference between Cp and Co

according to N, investigating the trend of differences against N and locating a value above 

which the difference between Cp and Co did not decrease. We furthermore fitted simple 

linear regression models to investigate the Pearson’s correlation between Cp and Co r2 . The 

R2 of the linear models was used to evaluate the degree to which the variance of Co can 

be explained by Cp. Local LOOCV-based metrics were also calculated to investigate the 

spatiotemporal patterns in the performance.

The prediction process followed a similar approach to the evaluation process, but with 

three key differences. Firstly, we assumed that the three types of detectors had equal 

proportions in order to remove spatial trends caused by regional differences in their market 

shares and systematic differences in performance. Secondly, we set the proportion of 

measurements in the basement to 100% and 0% to produce two separate prediction values 

for basement and aboveground floors. Finally, we used non-parametric bootstrapping to 

evaluate the uncertainty and the potential risk of overfitting for each Cp. This involved 

randomly resampling the nearby Cos with replacement, fitting local sub-models based on 

the resampled training sets, and subsequently generating predictions. We calculated 50 

alternative predictions via resampling, then calculated the standard deviation of the predicted 

concentrations. When a local sub-model overfitted the local training dataset, the local 

predictions based on the randomly resampled local training dataset tended to vary because 

approximately one third of the training dataset were replaced. On the contrary, if a local sub-

model characterized the underlying mechanism, the local predictions based on the randomly 

resampled local training dataset were insensitive to these changes. Local fitting (R2) of each 

sub-model was also reported to further evaluate the risk of overfitting. A conjunction of 

high R2 and great standard deviation of bootstrap-based predictions suggested higher risk of 

overfitting.

Results

The observed radon concentration in basements had a median value of 92.5 Bq/m3 and an 

interquartile range (IQR) of 37.0–196.1 Bq/m3, higher than the median concentration in 

aboveground floors (59.2 Bq/m3, IQR: 25.9–129.5 Bq/m3). The proportion of basement 

measurements that were above action level is 34.3%, higher than the corresponding 

proportion in aboveground floors (22.0%). The observed radon concentrations at the ZCTA 

level exhibit a log-normal distribution, as shown in Supplementary Figure S3. Observed 

radon concentrations in the basement (Figure 1A) and aboveground floors (Figure 1B) 

had similar spatial patterns. Midwestern states, especially those in the West North Central 

region, have higher observed radon concentrations than the rest of the study regions (Table 

1). The region with the highest observed radon concentration was the northwestern part of 

Iowa, in agreement with the results of the Iowa Lung Cancer Study 61,62.
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We observed similar year-to-year declining trends in the basement and aboveground radon 

concentrations (Supplementary Figure S4). However, the year-to-year declines in radon 

concentrations were not monotonic. Radon concentrations decreased from 2001 to 2004, 

increased slightly during 2005–2010, and resumed decreasing until the end of study period. 

The seasonal patterns of monthly average radon concentrations on both floors were similar 

(Supplementary Figure S4). Highest monthly concentrations of each year were always 

observed in the winter, and lowest monthly concentrations were always observed in the 

summer. The average concentrations measured by AirChek were greater than those by the 

other two AccuStar detectors (Table 1), probably because of the different market share 

across regions. As shown in Supplementary Figure S5, AccuStar detectors were more 

commonly used in Northeastern states, especially New England, where the average radon 

concentrations were lower than Midwestern states.

Our ZCTA-level radon predictions (Cp) were highly correlated with the observations (Co), 

especially when Co were based on large samples of radon measurements. The predicted 

ZCTA-level basement and aboveground radon concentrations both follow log-normal 

distributions (Supplementary Figure S3). The overall MAE of Cp against Co is 32.6 Bq/m3, 

with an r2 of 0.51 (Supplementary Table S2). By stratificating MAE with the sample size 

of Co N , we found that the difference between Co and Cp decreased sharply when N
increased from 5 to 15, then continued decreasing with smaller and inconsistent gradients 

when N was ≥ 15 (Figure 2A). Meanwhile, the correlation between Co and Cp increased 

as N increased from 5 to 15 (Figure 2B–D). We observed a similar size-dependent pattern 

in the original (non-transformative) scale (Supplementary Figure S6). These patterns were 

likely driven by the diminishing difference between Co and Ca as N increased from 5 

to 15 as the difference between Ca and Cp was theoretically independent of N. When 

N ≥ 15, the difference between Co and Ca contributed a relatively smaller fraction of the 

difference between Co and Cp, allowing us to approach the “true” prediction error (difference 

between Cp and Ca) with better accuracy. We therefore focused on comparing Cp with the 

corresponding Co that were based on ≥15 radon measurements. The MAE of Cp against Co

based on ≥15 radon measurements was 24.6 Bq/m3, much lower than that for Co based on 

5 radon measurements (32.6 Bq/m3). The ME and MRE values for Co based exclusively on 

≥15 radon measurements were −5.6 Bq/m3 and 26.5%, respectively, both smaller than the 

metrics for Co based on smaller samples (Supplementary Table S2).

The results of the cross-validation analysis were further stratified based on subregion, 

season, long-term period, and population density to detect varying levels of accuracy 

(Supplementary Table S2). Our model had the smallest prediction error in the New England 

area, with a MAE of 17.1 Bq/m3 and an MRE of 23.5%. The Mid-Atlantic region had 

the largest MAE of 31.5 Bq/m3 and MRE of 35.4%. Summer had the lowest seasonal 

MAE of 16.9 Bq/m3, while winter and autumn had the greatest seasonal MAE of 26.8 

Bq/m3. However, the seasonal r2 between Co and Cp in summer (0.43) was lower than 

the correlations in autumn (0.69) and winter (0.74), suggesting that the smaller MAEs in 

summer were likely due to low seasonal radon concentrations. No consistent long-term 

trends in the performance of our prediction model were observed. We used a threshold 
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value of 25,000 people per square mile to categorize ZCTAs as urban or non-urban 63. 

Non-urban ZCTAs generally had greater MAEs and r2 values than urban ZCTAs because 

radon measurements in non-urban buildings are more likely to be taken in the basement, 

where radon concentrations are generally higher than in aboveground spaces. This means 

that radon measurements in non-urban areas were less likely to be lower than the LDL and 

thus, less likely to be imputed with a random number between 0 and LDL. The trends in 

the accuracy of ZCTA-level radon estimations are similar in both urban and non-urban areas 

with regards to sample size, as shown in the Supplementary Figure S6.

Figure 1C and 1D showed the spatial distribution of predicted floor-specific ZCTA-level 

radon concentrations and the affiliated relative standard deviation across our study region. 

The spatial patterns in the predicted concentrations were largely in agreement with those 

in the original observation (Figure 1A and 1B). The relative standard deviations (Figure 1E 

and 1F) were greater in border areas, such as in the northwestern corner, where sub-models 

tended to rely on smaller local samples. The predicted concentrations in the basement 

(Figure 1C) were generally greater than the predictions for aboveground floors (Figure 

1D), in agreement with the original observations (Table 1). The relative standard deviations 

in aboveground predictions (Figure 1F) were commonly greater than those in basement 

predictions (Figure 1E), likely because of the lower aboveground radon concentrations and 

similar prediction uncertainties. Figure 3 showed the seasonal distributions of predicted 

floor-specific ZCTA-level radon concentrations across our study region. The patterns in 

Figure 3 agreed with the observed seasonal variation shown in Supplementary Figure S4. 

Predicted radon concentrations in the summer (Figure 3A) were generally lower than those 

in the winter (Figure 3B). The predicted radon concentrations for basements were greater 

than the predicted radon concentrations in aboveground floors (Supplementary Figure S8)

By aggregating the importance of radon predictors in all sub-models, we found that 

geological radon potential was the most important covariate to predict the spatiotemporal 

distribution of radon. Excluding geological radon potential alone inflated the RMSE by 

5.4% on average. The other most important radon predictors are: calendar year (4.3%), 

atmospheric temperature (4.1%), soil temperature (3.9%), gravity anomalies (3.6%), percent 

of measurements in the basement (3%), distance to the closest geological fault (2.8%), 

elevation (2.7%), barometric pressure (2.5%), population density (2.3%), and percent of 

units fueled by natural gas (2.0%). Figure 4 shows the heterogeneity of the importance of 

all radon predictors across local random forest sub-models. As shown in Figure 4A, the 

importance of geological radon potential was greater in northern Illinois and Ohio than other 

parts of the study region. The importance of the distance to the closest active geological fault 

was greater in border regions between Iowa and Indiana and the border regions between 

New York and Pennsylvania (Figure 4F) than other areas. The heterogeneity suggests that 

some features of the geological fault, such as depth and age, which were not characterized 

by the simple distance, also likely drive the spatial distribution of radon. Meanwhile, the 

importance of gravity anomaly was greater in southern Pennsylvania and New Jersey (Figure 

4E), suggesting that the underground variation in density influenced the local distribution of 

radon. The importance of calendar year was greater in eastern Wisconsin (Figure 4B) than 

other areas, suggesting a greater year-to-year variation that count not be modelled by other 

meteorological factors. The variance in the importance of meteorological factors, such as 
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atmospheric temperature (Figure 4C), soil temperature (Figure 4D), and barometric pressure 

(Figure 4H), were generally smaller than the geological factors. Figure 4I showed the 

gradients in the importance of the percents of units fueled by natural gas. The importance 

in northern and western Pennsylvania was greater, suggesting that natural gas in these areas 

was more likely to influence indoor radon concentrations than other areas.

The average local fitting (R2) of local sub-models was 0.32 with an interquartile range of 

0.24 to 0.27. The local fitting was generally lower than the overall fitting across the study 

region, which additionally accounted for large-scale agreement. Local fitting also showed 

strong spatial heterogeneity (Supplementary Figure S9). Areas with greater local R2 were 

southern Pennsylvania, western New York, northern Ohio, eastern Wisconsin, and middle 

Nebraska. None of them overlapped with the areas with greater relative standard deviation 

(Figure 1E and 1F), suggesting a low risk of overfitting.

Discussion

We developed a geographical machine learning model to predict the ZCTA-level monthly 

radon concentrations for Northeastern and Midwestern U.S. based on nearly 3 million short-

term radon measurements. Our model is able to predict ZCTA-level radon concentrations 

with a MAE of 24.5 Bq/m3 and a MRE of 26.3%, suggesting that the predicted ZCTA-level 

concentrations correlate well with the observed ZCTA-level concentrations. Compared with 

LBNL model, our model has higher spatiotemporal resolutions, and is based on a more 

recent and larger sample, therefore, can be used to enhance the assessment of residential 

exposure to radon.

We compared our predictions with the results of LBNL, after averaging the monthly ZCTA-

level predictions by county. Our predicted concentrations were moderately correlated to 

the LBNL predictions with an r2 of 0.47. Additionally, our predicted concentrations were 

significantly higher than those of LBNL model with an average difference of 46.0 Bq/m3 

(95% CI: 44.2–47.8 Bq/m3). This difference seemed contradictory to the observed pattern 

that radon concentrations decreased during the study period (Supplementary Figure S4). 

However, the pattern is likely caused by the differences in measuring protocols, measuring 

devices, and modeling methods. In specific, U.S. EPA did not implement the current short-

term radon testing protocol, which requires close-building conditions, until the completion 

of two national radon surveys ahead of LBNL model 24,38. Diffusion barrier is a regular 

design to lower the sensitivity to humidity and temperature conditions in all three types 

of detectors of our study. However, it was uncommonly used when the national radon 

surveys, on which LBNL model was based, were conducted in the 1980s 64. Finally, the 

validity of Bayesian regression method used in the LBNL model depended on several strong 

assumptions, such as stationarity, linearity, and no interactions among radon predictors. The 

SRF method used in this study is more flexible in accommodating the spatially varying and 

nonlinear relationships, and the complex interactions among radon predictors.

We observed spatial heterogeneity in the relationship between measured radon 

concentrations and their predictors using sub-models (Figure 4). Geological radon potential, 

the most significant predictor on average, did not hold equal importance across the region, 
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illuminating the various mechanisms governing local variations in radon concentrations. For 

example, natural gas from cooktops sourced from nearby fields generally exhibited higher 

radon concentrations than gas transported via long-distance pipelines or liquified natural 

gas cargos, owing to radon’s relatively short half-life (3 days). Consequently, natural gas 

from the Marcellus and Devonian shales in northern and southwestern Pennsylvania was 

more likely to influence distributions in adjacent areas than in more distant locations, despite 

equal reliance on natural gas, corroborating our observations (Figure 4I). 65 However, 

regional heterogeneity in predictor importance might also be attributed to the varying 

quality of radon predictors across the area. The diminished significance of coarsely gridded 

predictors, such as meteorological factors, could underestimate their actual importance since 

a sub-model only encompassed a portion of the study region.

Our study is the first of its kind to take advantage of the extensive previously underutilized 

short-term radon measurements to estimate temporally resolved community-level radon 

concentrations in a large area. Our model was built upon an existing data source, 

therefore was an economical way to enhance the assessment of residential exposure to 

radon. While individual short-term radon measurements may not be as accurate as a long-

term measurement, their large sample size and the mandatory disclosure during property 

transactions make them more representative of the population than the LBNL model, which 

was based on only about 12 voluntary measurements per county, less than 1% of our sample 

on average. The improved data source allowed us to model the varying radon concentrations 

on finer spatial and temporal resolutions than those of LBNL model. Furthermore, the large 

samples enabled us to make floor-specific predictions, which can likely be used to lower 

the uncertainties in exposure assessment jointly with residential behavior records 66. We 

modified the classic random forest method to account for the geographical heterogeneity and 

dependence. The place-based method enabled us to make local predictions based only on 

nearby observations, instead of by reference to all observations most of which were distant 

and likely to have different relationships among radon predictors. The place-based method 

can also lower the requirement for computation resources for local prediction and facilitated 

a fast implementation via parallel computing.

Limitations exist in our study. First, measurements by different types of detectors were 

used in our study. The accuracy and precision of different types of detectors varies under 

different circumstances, consequently complicating the ZCTA-level aggregation. To address 

this limitation, we used the proportions of three types of detectors as radon predictors 

to model the detector-specific difference. The predicted concentration was a synthetic 

concentration based on three detector-specific predictions under the assumption that three 

types of detectors have identical proportions and therefore are less likely to be biased than 

an unadjusted prediction. Second, building-level radon concentrations cannot be predicted 

with our model due to a lack of building-specific geological and architectural information 

in the training data set. We used ZCTA-level geological, architectural, and socioeconomical 

factors in the model, likely unable to fully represent the influences of these factors on 

individual buildings. As a result, our ZCTA-level predicted concentrations should not 

be generalized to individual buildings within the ZCTA due to varying geological and 

architectural factors. Third, aboveground floor-dependent gradients in multi-family buildings 

were not investigated. Multi-family buildings, such as high-rise residential buildings, are 
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getting increasingly popular in densely populated areas. But floor information (basement 

or aboveground) is only available for single-family buildings in our data. Previous studies 

have found that variation of radon among aboveground floors is generally smaller than 

the difference between basement and aboveground floors 46. As a result, aggregating 

aboveground measurements regardless of building type has low risk to seriously bias the 

ZCTA-level observations. Further tuning of the machine learning model, including trying 

other learning algorithms, experimenting with different combinations of parameters in 

local random forest models, may lead to additional improvements in prediction accuracy. 

However, these potential refinements are beyond the scope of our study and are unlikely to 

alter our primary conclusions.

The results of our study have illustrated the feasibility of applying extensive short-term 

radon measurements in assessing residential exposure to radon. Our model can be readily 

expanded to include more measurements from different providers without requiring much 

more computing resources, making it a candidate for centralizing all radon measurements 

from the past three decades. Currently, much less is known about the nonmalignant effects 

of radon, other than its well-known relationship with lung cancer. The accurate longitudinal 

exposure assessment, as presented here, can be used in future studies to investigate the 

nonmalignant effects of radon, thus improving our understanding of this omnipresent air 

pollutant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis:

We developed a geographical machine learning model based on over 2.8 million short-

term radon measurements from independent laboratories to predict radon concentrations 

at unprecedented resolutions in the Northeast and Midwest United States. Our study 

demonstrates the potential of these measurements to accurately estimate longitudinal 

community-level radon exposures, and highlights the value of using them to enhance our 

understanding of the health effects of radon in future studies.
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Figure 1. 
The spatial distributions of observed radon concentrations, predicted radon concentrations, 

and the relative standard deviation of the prediction.

The 1,595,661 measurements were aggregated into hexagons due to the difficulty to 

visualize/print each individual point. The radius of hexagon is 25 km. On average, each 

hexagon contains over 1,000 radon measurements during 2001–2020. Each hexagon is 

colored based on the geometric mean of short-term measurements within the extent during 

the study period. The hexagon was not shown if fewer than 5 measurements exist within. 

Radon measurements conducted in states adjacent to the study region are covered by a 

semitransparent layer with diagonal lines. Panel A shows the radon concentrations measured 

in the basement; Panel B shows the radon concentrations measured in upper floors; Panel 
C shows the spatial distribution of the predicted ZCTA-level radon concentrations in the 

basement; Panel D shows the spatial distribution of the relative standard deviation of 

the predicted concentrations in the basements; Panel E shows the spatial distribution of 

predicted ZCTA-level radon concentrations in the aboveground floors; Panel F shows the 

spatial distribution of the relative standard deviation of the predicted concentrations in the 

aboveground floors.
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Figure 2. 
The sample size-specific differences/correlations between the observed and predicted ZCTA-

level monthly radon concentrations.

Panel A shows the mean absolute error of predicted ZCTA-level radon concentrations as a 

function of the sample size of observed ZCTA-level radon concentrations. Panels B-D show 

the correlations between observed and predicted ZCTA-level radon concentrations that are 

stratified by the sample size of ZCTA-level observation (Panel B for 5–9; Panel C for 10–14; 

Panel D for ≥15).
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Figure 3. 
Seasonal patterns of predicted ZCTA-level radon concentrations for basement.

Panel A shows the distribution of ZCTA-level basement radon predictions in the summer; 

Panel B shows the distribution of ZCTA-level basement radon concentrations in the winter.
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Figure 4. 
The spatial distributions of the importance of nine radon predictors.

Panel A shows the spatial patterns of the importance of geological radon potential; Panel 
B shows the spatial patterns of the importance of calendar year; Panel C shows the spatial 

patterns of the importance of atmospheric temperature; Panel D shows the spatial patterns 

of the importance of soil temperature; Panel E shows the spatial patterns of the importance 

of gravity anomalies; Panel F shows the spatial patterns of the importance of distance to 

the closest active geological fault; Panel G shows the spatial patterns of the importance 

of elevation; Panel H shows the spatial patterns of the importance of barometric pressure; 

Panel I shows the spatial patterns of the importance of proportion of buildings fueled by 

natural gas.
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Table 1.

Summary of collected short-term radon concentrations

Categories Basement Aboveground

Count Median (IQR) in Bq/m3 Count Median (IQR) in Bq/m3

All 1,242,375 92.5 (37.0, 196.1) 353,286 59.2 (25.9, 129.5)

Regions

 New England1 (Northeast) 277,868 70.3 (37.0, 144.3) 32,958 37.0 (14.8, 77.7)

 Mid Atlantic2 (Northeast) 217,013 66.6 (25.9, 162.8) 45,206 40.7 (14.8, 107.3)

 East North Central3 (Midwest) 288,215 92.5 (37.0, 199.8) 82,803 55.5 (22.2, 125.8)

 West North Central4 (Midwest) 288,858 133.2 (59.2, 255.3) 75,968 88.8 (40.7, 173.9)

 Neighboring states 170,421 99.9 (40.7, 218.3) 116,351 55.5 (25.9, 125.8)

Seasons

 Winter 362,683 111.0 (48.1, 229.4) 123,634 74.0 (29.6, 159.1)

 Spring 368,359 92.5 (40.7, 203.5) 105,875 51.8 (22.2, 122.1)

 Summer 253,703 66.6 (29.6, 144.3) 57,592 37.0 (12.9, 85.1)

 Autumn 257,630 88.8 (37.0, 199.8) 66,185 59.2 (25.9, 133.2)

Years

 2001–2005 162,262 107.3 (48.1, 222.0) 57,743 59.2 (22.2, 136.9)

 2006–2010 308,325 99.9 (44.4, 207.2) 88,276 55.5 (24.0, 129.5)

 2011–2015 371,921 90.7 (37.0, 199.8) 96,635 59.2 (25.9, 136.9)

 2016–2020 399,867 81.4 (33.3, 177.6) 110,632 55.5 (22.2, 122.1)

Type of device

 AccuStar-Liquid scintillation 269,357 77.7 (37.0, 162.8) 29,258 44.4 (22.2, 99.9)

 AccuStar-Canister 144,021 55.5 (25.9, 125.8) 21,474 37.0 (18.5, 81.4)

 AirChek-Foil bag 828,997 103.6 (44.4, 222.0) 302,554 61.0 (25.9, 136.9)

1
New England region consists of Maine, Vermont, New Hampshire, Massachusetts, Connecticut, and Rhode Island.

2
Mid Atlantic region consists of Delaware, Maryland, New Jersey, New York, and Pennsylvania.

3
East North Central region consists of Illinois, Indiana, Michigan, Ohio, and Wisconsin.

4
West North Central region consists of Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota and South Dakota.
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